Skip to main content

Advertisement

Log in

Can Neuroimaging Provide Reliable Biomarkers for Obsessive-Compulsive Disorder? A Narrative Review

  • Anxiety Disorders (A Pelissolo, Section Editor)
  • Published:
Current Psychiatry Reports Aims and scope Submit manuscript

Abstract

In this integrative review, we discuss findings supporting the use neuroimaging biomarkers in the diagnosis and treatment of obsessive-compulsive disorder (OCD). To do so, we have selected the most recent studies that attempted to identify the underlying pathogenic process associated with OCD and whether they provide useful information to predict clinical features, natural history or treatment responses. Studies using functional magnetic resonance (fMRI), voxel-based morphometry (VBM), diffusion tensor imaging (DTI) and proton magnetic resonance spectroscopy (1H MRS) in OCD patients are generally supportive of an expanded version of the earlier cortico-striatal-thalamus-cortical (CSTC) model of OCD. Although it is still unclear whether this information will be incorporated into the daily clinical practice (due to current conceptual approaches to mental illness), statistical techniques, such as pattern recognition methods, appear promising in identifying OCD patients and predicting their outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance,•• Of major importance

  1. American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th ed. Arlington: American Psychiatric Association; 2013.

  2. Fontenelle LF, Hasler G. The analytical epidemiology of obsessive-compulsive disorder: risk factors and correlates. Prog Neuropsychopharmacol Biol Psychiatry. 2008;32:1–15.

    Article  PubMed  Google Scholar 

  3. Frydman I, Ferreira-Garcia R, Borges MC, Velakoulis D, Walterfang M, Fontenelle LF. Dementia developing in late-onset and treatment-refractory obsessive-compulsive disorder. Cogn Behav Neurology. 2010;23(3):205–8. 208 ed.

    Article  Google Scholar 

  4. Group BDW. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Therapeut. 2001;69(3):89–95.

    Article  Google Scholar 

  5. Saxena S, Arthur BL, Schwartz JM, Baxter LR. Neuroimaging and frontal-subcortical circuitry in obsessive-compulsive disorder. Br J Psychiatry. 1998;173 Suppl 35:26–37.

    Google Scholar 

  6. Whiteside SP, Port JD, Abramowitz JS. A meta-analysis of functional neuroimaging in obsessive-compulsive disorder. Psychiatry Res. 2004;132(1):69–79. Elsevier.

    Article  PubMed  Google Scholar 

  7. Eng GK, Sim K, Chen S-HA. Meta-analytic investigations of structural grey matter, executive domain-related functional activations, and white matter diffusivity in obsessive compulsive disorder: an integrative review. Neurosci Biobehav Rev. 2015;52:233–57. Elsevier Ltd.

    Article  PubMed  Google Scholar 

  8. Menzies L, Chamberlain SR, Laird AR, Thelen SM, Sahakian BJ, Bullmore ET. Integrating evidence from neuroimaging and neuropsychological studies of obsessive-compulsive disorder: the orbitofronto-striatal model revisited. Neurosci Biobehav Rev. 2008;32(3):525–49.

    Article  PubMed  Google Scholar 

  9. Milad MR, Rauch SL. Obsessive-compulsive disorder: beyond segregated cortico-striatal pathways. Trends Cogn Sci. 2012;16(1):43–51.

    Article  PubMed  Google Scholar 

  10. Nakao T, Okada K, Kanba S. Neurobiological model of obsessive-compulsive disorder: evidence from recent neuropsychological and neuroimaging findings. Psychiatry Clin Neurosci. 2014;68(8):587–605.

    Article  PubMed  Google Scholar 

  11. Wood J, Ahmari SE. A framework for understanding the emerging role of corticolimbic-ventral striatal networks in OCD-associated repetitive behaviors. Front Syst Neurosci. 2015;17(9):545–22. 5 ed.

    Google Scholar 

  12. Saxena S, Bota RG, Brody AL. Brain-behavior relationships in obsessive-compulsive disorder. Semin Clin Neuropsychiatry. 2001;6(2):82–101.

    Article  CAS  PubMed  Google Scholar 

  13. Del Casale A, Kotzalidis GD, Rapinesi C, Serata D, Ambrosi E, Simonetti A, et al. Functional neuroimaging in obsessive-compulsive disorder. Neuropsychobiology. 2011;64(2):61–85.

    Article  PubMed  Google Scholar 

  14. Maia TV, Cooney RE, Peterson BS. The neural bases of obsessive–compulsive disorder in children and adults. Develop Psychopathol. 2008;20(04):1251–43.

    Article  Google Scholar 

  15. Brody AL, Saxena S, Schwartz JM. FDG-PET predictors of response to behaviour therapy and pharmacotherapy in obsessive compulsive disorder. Psychiatry Res. 1998;84:1–6.

    Article  CAS  PubMed  Google Scholar 

  16. Rauch SL, Shin LM, Dougherty DD, Alpert NM. Predictors of fluvoxamine response in contamination-related obsessive-compulsive disorder: a PET symptom provocation study. Neuropsychopharmacology. 2002;27(5):782–91.

    Article  CAS  PubMed  Google Scholar 

  17. Saxena S, Brody AL, Maidment KM, Dunkin JJ, Colgan M, Alborzian S, et al. Localized orbitofrontal and subcortical metabolic changes and predictors of response to paroxetine treatment in obsessive-compulsive disorder. Neuropsychopharmacology. 1999;21(6):683–93.

    Article  CAS  PubMed  Google Scholar 

  18. Swedo SE, Pietrini P, Leonard HL, Schapiro MB, Rettew DC, Goldberger EL, et al. Cerebral glucose metabolism in childhood-onset obsessive-compulsive disorder. Revisualization during pharmacotherapy. Arch Gen Psychiatry. 1992;49(9):690–4.

    Article  CAS  PubMed  Google Scholar 

  19. Rauch SL, Dougherty DD, Cosgrove GR, Cassem EH, Alpert NM, Price BH, et al. Cerebral metabolic correlates as potential predictors of response to anterior cingulotomy for obsessive compulsive disorder. Biol Psychiatry. 2001;50(9):659–67.

    Article  CAS  PubMed  Google Scholar 

  20. Saxena S, Brody AL, Ho ML, Zohrabi N, Maidment KM, Baxter LR. Differential brain metabolic predictors of response to paroxetine in obsessive-compulsive disorder versus major depression. Am J Psychiatry. 2003;160(3):522–32.

    Article  PubMed  Google Scholar 

  21. Sanematsu H, Nakao T, Yoshiura T, Nabeyama M, Togao O, Tomita M, et al. Predictors of treatment response to fluvoxamine in obsessive–compulsive disorder: an fMRI study. J Psychiatr Res. 2010;44(4):193–200. Elsevier Ltd.

    Article  PubMed  Google Scholar 

  22. Olatunji BO, Ferreira-Garcia R, Caseras X, Fullana MA, Wooderson S, Speckens A, et al. Predicting response to cognitive behavioral therapy in contamination-based obsessive-compulsive disorder from functional magnetic resonance imaging. Psychol Med. 2014;44(10):2125–37.

    Article  CAS  PubMed  Google Scholar 

  23. Göttlich M, Krämer UM, Kordon A, Hohagen F, Zurowski B. Resting-state connectivity of the amygdala predicts response to cognitive behavioral therapy in obsessive compulsive disorder. Biol Psychol. 2015;111:100–9.

    Article  PubMed  Google Scholar 

  24. Beucke JC, Sepulcre J, Talukdar T, Linnman C, Zschenderlein K, Endrass T, et al. Abnormally high degree connectivity of the orbitofrontal cortex in obsessive-compulsive disorder. JAMA Psychiatry. 2013;70(6):619–29.

    Article  PubMed  Google Scholar 

  25. Gruner P, Vo A, Argyelan M, Ikuta T, Degnan AJ, John M, et al. Independent component analysis of resting state activity in pediatric obsessive-compulsive disorder. Hum Brain Mapp. 2014;35(10):5306–15.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Harrison BJ, Pujol J, Cardoner N, Deus J, Alonso P, López-Solà M, et al. Brain corticostriatal systems and the major clinical symptom dimensions of obsessive-compulsive disorder. Biol Psychiatry. 2013;73(4):321–8. Elsevier.

    Article  PubMed  Google Scholar 

  27. Hou J-M, Zhao M, Zhang W, Song L-H, Wu W-J, Wang J, et al. Resting-state functional connectivity abnormalities in patients with obsessive-compulsive disorder and their healthy first-degree relatives. J Psychiatry Neurosci. 2014;39(5):304–11.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Jhung K, Ku J, Kim SJ, Lee H, Kim KR, An SK. Distinct functional connectivity of limbic network in the washing type obsessive–compulsive disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2014;53:149–55.

    Article  PubMed  Google Scholar 

  29. Jung WH, Kang D-H, Kim E, Shin KS, Jang JH, Kwon JS. Abnormal corticostriatal-limbic functional connectivity in obsessive-compulsive disorder during reward processing and resting-state. Neuroimage Clin. 2013;3:27–38. Elsevier.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kang D-H, Jang JH, Han JY, Kim J-H, Jung WH, Choi J-S, et al. Neural correlates of altered response inhibition and dysfunctional connectivity at rest in obsessive-compulsive disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2013;40:340–6.

    Article  PubMed  Google Scholar 

  31. Tian L, Meng C, Jiang Y, Tang Q, Wang S, Xie X, et al. Abnormal functional connectivity of brain network hubs associated with symptom severity in treatment-naive patients with obsessive-compulsive disorder: a resting-state functional MRI study. Prog Neuropsychopharmacol Biol Psychiatry. 2016;66:104–11.

    Article  PubMed  Google Scholar 

  32. Bernstein GA, Mueller BA, Schreiner MW, Campbell SM, Regan EK, Nelson PM, et al. Abnormal striatal resting-state functional connectivity in adolescents with obsessive-compulsive disorder. Psychiatry Res. 2016;247:49–56. Elsevier.

    Article  PubMed  Google Scholar 

  33. Posner J, Marsh R, Maia TV, Peterson BS, Gruber A, Simpson HB. Reduced functional connectivity within the limbic cortico-striato-thalamo-cortical loop in unmedicated adults with obsessive-compulsive disorder. Hum Brain Mapp. 2014;35(6):2852–60.

    Article  PubMed  Google Scholar 

  34. Weber AM, Soreni N, Noseworthy MD. A preliminary study of functional connectivity of medication naïve children with obsessive-compulsive disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2014;53:129–36.

    Article  PubMed  Google Scholar 

  35. Fitzgerald KD, Welsh RC, Stern ER, Angstadt M, Hanna GL, Abelson JL, et al. Developmental alterations of frontal-striatal-thalamic connectivity in obsessive-compulsive disorder. J Am Acad Child Adolesc Psychiatry. 2011;50(9):938–948.e3. Elsevier.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Harrison BJ, Soriano-Mas C, Pujol J, Ortiz H, López-Solà M, Hernández-Ribas R, et al. Altered corticostriatal functional connectivity in obsessive-compulsive disorder. Arch Gen Psychiatry. 2009;66(11):1189–200. American Medical Association.

    Article  PubMed  Google Scholar 

  37. Weygandt M, Blecker CR, Schäfer A, Hackmack K, Haynes J-D, Vaitl D, et al. fMRI pattern recognition in obsessive-compulsive disorder. NeuroImage. 2012;60(2):1186–93.

    Article  PubMed  Google Scholar 

  38. Peterson A, Thome J, Frewen P, Lanius RA. Resting-state neuroimaging studies: a new way of identifying differences and similarities among the anxiety disorders? Can J Psychiatry. 2014;59(6):294–300.

    PubMed  PubMed Central  Google Scholar 

  39. de Wit SJ, Alonso P, Schweren L, Mataix-Cols D, Lochner C, Menchon JM, et al. Multicenter voxel-based morphometry mega-analysis of structural brain scans in obsessive-compulsive disorder. Am J Psychiatry. 2014;171(3):340–9.

    Article  PubMed  Google Scholar 

  40. Radua J, Mataix-Cols D. Voxel-wise meta-analysis of grey matter changes in obsessive-compulsive disorder. Br J Psychiatry. 2009;195(5):393–402.

    Article  PubMed  Google Scholar 

  41. Rotge J-Y, Langbour N, Guehl D, Bioulac B, Jaafari N, Allard M, et al. Gray matter alterations in obsessive-compulsive disorder: an anatomic likelihood estimation meta-analysis. Neuropsychopharmacology. 2010;35(3):686–91.

    Article  CAS  PubMed  Google Scholar 

  42. Peng Z, Lui SSY, Cheung EFC, Jin Z, Miao G, Jing J, et al. Brain structural abnormalities in obsessive-compulsive disorder: converging evidence from white matter and grey matter. Asian J Psychiatr. 2012;5(4):290–6.

    Article  PubMed  Google Scholar 

  43. Piras F, Piras F, Chiapponi C, Girardi P, Caltagirone C, Spalletta G. Widespread structural brain changes in OCD: a systematic review of voxel-based morphometry studies. CORTEX. 2015;62:89–108. Excellent review on the structural imaging of OCD, including a very helpful discussion suggesting several avenues of potential research.

    Article  PubMed  Google Scholar 

  44. Hu X, Liu Q, Li B, Tang W, Sun H, Li F, et al. Multivariate pattern analysis of obsessive-compulsive disorder using structural neuroanatomy. Eur Neuropsychopharmacol. 2016;26(2):246–54.

  45. Radua J, van den Heuvel OA, Surguladze S, Mataix-Cols D. Meta-analytical comparison of voxel-based morphometry studies in obsessive-compulsive disorder vs other anxiety disorders. Arch Gen Psychiatry. 2010;67(7):701–11. American Medical Association.

    Article  PubMed  Google Scholar 

  46. Hoexter MQ, Diniz JB, Lopes AC, Batistuzzo MC, Shavitt RG, Dougherty DD, et al. Orbitofrontal thickness as a measure for treatment response prediction in obsessive-compulsive disorder. Depress Anxiety. 2015;32(12):900–8.

    Article  PubMed  Google Scholar 

  47. Basser PJ, Mattiello J, LeBihan D. MR diffusion tensor spectroscopy and imaging. Biophys J. 1994;66(1):259–67. Elsevier.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Koch K, Reeß TJ, Rus OG, Zimmer C, Zaudig M. Diffusion tensor imaging (DTI) studies in patients with obsessive-compulsive disorder (OCD): a review. J Psychiatr Res. 2014;54:26–35. Elsevier.

    Article  PubMed  Google Scholar 

  49. Song S-K, Sun S-W, Ramsbottom MJ, Chang C, Russell J, Cross AH. Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. NeuroImage. 2002;17(3):1429–36.

    Article  PubMed  Google Scholar 

  50. Catani M, Howard RJ, Pajevic S, Jones DK. Virtual in vivo interactive dissection of white matter fasciculi in the human brain. NeuroImage. 2002;17(1):77–94.

    Article  PubMed  Google Scholar 

  51. Karlsgodt KH, van Erp TGM, Poldrack RA, Bearden CE, Nuechterlein KH, Cannon TD. Diffusion tensor imaging of the superior longitudinal fasciculus and working memory in recent-onset schizophrenia. Biol Psychiatry. 2008;63(5):512–8.

    Article  PubMed  Google Scholar 

  52. Matsumoto R, Ito H, Takahashi H, Ando T, Fujimura Y, Nakayama K, et al. Reduced gray matter volume of dorsal cingulate cortex in patients with obsessive-compulsive disorder: a voxel-based morphometric study. Psychiatry Clin Neurosci. 2010;64(5):541–7. Blackwell Publishing Asia.

    Article  PubMed  Google Scholar 

  53. Petrides M, Pandya DN. Comparative cytoarchitectonic analysis of the human and the macaque ventrolateral prefrontal cortex and corticocortical connection patterns in the monkey. Eur J Neurosci. 2002;16(2):291–310.

    Article  CAS  PubMed  Google Scholar 

  54. Nakamae T, Narumoto J, Sakai Y, Nishida S, Yamada K, Nishimura T, et al. Diffusion tensor imaging and tract-based spatial statistics in obsessive-compulsive disorder. J Psychiatr Res. 2011;45(5):687–90. Elsevier.

    Article  PubMed  Google Scholar 

  55. Benedetti F, Giacosa C, Radaelli D, Poletti S, Pozzi E, Dallaspezia S, et al. Widespread changes of white matter microstructure in obsessive–compulsive disorder: effect of drug status. Eur Neuropsychopharmacol. 2013;23(7):581–93. Elsevier.

    Article  CAS  PubMed  Google Scholar 

  56. Fontenelle LF, Bramati IE, Moll J, Mendlowicz MV, de Oliveira-Souza R, Tovar-Moll F. White matter changes in OCD revealed by diffusion tensor imaging. CNS Spectr. 2012;16(05):101–9. Cambridge University Press.

    Article  Google Scholar 

  57. Li F, Huang X, Yang Y, Li B, Wu Q, Zhang T, et al. Microstructural brain abnormalities in patients with obsessive-compulsive disorder: diffusion-tensor MR imaging study at 3.0 T. Radiology. 2011;260(1):216–23.

    Article  PubMed  Google Scholar 

  58. Admon R, Bleich-Cohen M, Weizmant R, Poyurovsky M, Faragian S, Hendler T. Functional and structural neural indices of risk aversion in obsessive–compulsive disorder (OCD). Psychiatry Res Neuroimaging. 2012;203(2-3):207–13. Elsevier.

    Article  PubMed  Google Scholar 

  59. Fan S, van den Heuvel OA, Cath DC, van der Werf YD, de Wit SJ, de Vries FE, et al. Mild white matter changes in un-medicated obsessive-compulsive disorder patients and their unaffected siblings. Front Neurosci Frontiers. 2016;9:61.

    Google Scholar 

  60. Li F, Huang X, Tang W, Yang Y, Li B, Kemp GJ, et al. Multivariate pattern analysis of DTI reveals differential white matter in individuals with obsessive-compulsive disorder. Hum Brain Mapp. 2013;35(6):2643–51.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Spalletta G, Piras F, Fagioli S, Caltagirone C, Piras F. Brain microstructural changes and cognitive correlates in patients with pure obsessive compulsive disorder. Brain Behav. 2014;4(2):261–77.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Fan Q, Yan X, Wang J, Chen Y, Wang X, Li C, et al. Abnormalities of white matter microstructure in unmedicated obsessive-compulsive disorder and changes after medication. PLoS ONE. 2012;7(4):e35889. Harrison BJ, editor. Public Library of Science.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Feng W. Microstructural abnormality in left nucleus accumbens predicts dysfunctional beliefs in treatment-resistant obsessive-compulsive disorder. Med Sci Monit. 2014;20:2275–82. International Scientific Information, Inc.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Glahn A, Prell T, Grosskreutz J, Peschel T, Müller-Vahl KR. Obsessive-compulsive disorder is a heterogeneous disorder: evidence from diffusion tensor imaging and magnetization transfer imaging. BMC Psychiatry. 2015;15(1):397. BioMed Central.

    Article  Google Scholar 

  65. Zarei M, Mataix-Cols D, Heyman I, Hough M, Doherty J, Burge L, et al. Changes in gray matter volume and white matter microstructure in adolescents with obsessive-compulsive disorder. Biol Psychiatry. 2011;70(11):1083–90. Elsevier.

    Article  PubMed  Google Scholar 

  66. Jayarajan RN, Venkatasubramanian G, Viswanath B, Reddy YCJ, Srinath S, Vasudev MK, et al. White matter abnormalities in children and adolescents with obsessive-compulsive disorder: a diffusion tensor imaging study. Depress Anxiety. 2012;29(9):780–8.

    Article  PubMed  Google Scholar 

  67. Gruner P, Vo A, Ikuta T, Mahon K, Peters BD, Malhotra AK, et al. White matter abnormalities in pediatric obsessive-compulsive disorder. Neuropsychopharmacology. 2012;37(12):2730–9.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Silk T, Chen J, Seal M, Vance A. White matter abnormalities in pediatric obsessive-compulsive disorder. Psychiatry Res Neuroimaging. 2013;213(2):154–60. Elsevier.

    Article  PubMed  Google Scholar 

  69. Rosso IM, Olson EA, Britton JC, Stewart SE, Papadimitriou G, Killgore WD, et al. Brain white matter integrity and association with age at onset in pediatric obsessive-compulsive disorder. Biol Mood Anxiety Disord. 2014;4(1):353. BioMed Central.

    Article  Google Scholar 

  70. Gassó P, Ortiz AE, Mas S, Morer A, Calvo A, Bargalló N, et al. Association between genetic variants related to glutamatergic, dopaminergic and neurodevelopment pathways and white matter microstructure in child and adolescent patients with obsessive–compulsive disorder. J Affect Disord. 2015;186:284–92. Elsevier.

    Article  PubMed  Google Scholar 

  71. Lee MR, Denic A, Hinton DJ, Mishra PK, Choi D-S, Pirko I, et al. Preclinical 1H-MRS neurochemical profiling in neurological and psychiatric disorders. Bioanalysis. 2012;4(14):1787–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Dager SR, Corrigan NM, Richards TL, Posse S. Research applications of magnetic resonance spectroscopy to investigate psychiatric disorders. Top Magn Reson Imaging. 2008;19(2):81–96.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Pittenger C, Bloch MH, Williams K. Glutamate abnormalities in obsessive compulsive disorder: neurobiology, pathophysiology, and treatment. Pharmacol Ther. 2011;132(3):314–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Naaijen J, Lythgoe DJ, Amiri H, Buitelaar JK, Glennon JC. Fronto-striatal glutamatergic compounds in compulsive and impulsive syndromes: a review of magnetic resonance spectroscopy studies. Neurosci Biobehav Rev. 2015;52:74–88.

    Article  CAS  PubMed  Google Scholar 

  75. Brennan BP, Rauch SL, Jensen JE, Pope Jr HG. A critical review of magnetic resonance spectroscopy studies of obsessive-compulsive disorder. Biol Psychiatry. 2013;73(1):24–31. Elsevier.

    Article  PubMed  Google Scholar 

  76. Atmaca M, Yildirim H, Yilmaz S, Caglar N, Mermi O, Gurok MG, et al. 1HMRS results of hippocampus in the patients with obsessive–compulsive disorder before and after cognitive behavioral therapy. Int J Psychiatry Clin Pract. 2015;19(4):285–9.

    Article  PubMed  Google Scholar 

  77. O’Neill J, Gorbis E, Feusner JD, Yip JC, Chang S, Maidment KM, et al. Effects of intensive cognitive-behavioral therapy on cingulate neurochemistry in obsessive–compulsive disorder. J Psychiatr Res. 2013;47(4):494–504. Elsevier.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Tükel R, Aydın K, Ertekin E, Özyıldırım SŞ, Taravari V. Proton magnetic resonance spectroscopy in obsessive–compulsive disorder: evidence for reduced neuronal integrity in the anterior cingulate. Psychiatry Res Neuroimaging. 2014;224(3):275–80. Elsevier.

    Article  PubMed  Google Scholar 

  79. Simpson HB, Kegeles LS, Hunter L, Mao X, Van Meter P, Xu X, et al. Assessment of glutamate in striatal subregions in obsessive-compulsive disorder with proton magnetic resonance spectroscopy. Psychiatry Res Neuroimaging. 2015;232(1):65–70. Elsevier.

    Article  PubMed  Google Scholar 

  80. Brennan BP, Tkachenko O, Schwab ZJ, Juelich RJ, Ryan EM, Athey AJ, et al. An examination of rostral anterior cingulate cortex function and neurochemistry in obsessive–compulsive disorder. Neuropsychopharmacology. 2015;40(8):1866–76. This study illustrates how multimodal neuroimaging can provide useful information on the pathophysiology of OCD.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Gnanavel S, Sharan P, Khandelwal S, Sharma U, Jagannathan NR. Neurochemicals measured by 1H-MR spectroscopy: putative vulnerability biomarkers for obsessive compulsive disorder. Magn Reson Mater Phy. 2013;27(5):407–17. Springer Berlin Heidelberg.

    Article  Google Scholar 

  82. Ortiz AE, Ortiz AG, Falcon C, Morer A, Plana MT, Bargalló N, et al. 1H-MRS of the anterior cingulate cortex in childhood and adolescent obsessive–compulsive disorder: a case-control study. Eur Neuropsychopharmacol. 2015;25(1):60–8. Elsevier.

    Article  CAS  PubMed  Google Scholar 

  83. Barahona-Corrêa JB, Camacho M, Castro-Rodrigues P, Costa R, Oliveira-Maia AJ. From thought to action: how the interplay between neuroscience and phenomenology changed our understanding of obsessive-compulsive disorder. Front Psychol. 2015;6:1798.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Linden DEJ. The challenges and promise of neuroimaging in psychiatry. Neuron Elsevier Inc. 2012;73(1):8–22.

    CAS  Google Scholar 

  85. Wolfers T, Buitelaar JK, Beckmann CF, Franke B, Marquand AF. From estimating activation locality to predicting disorder: a review of pattern recognition for neuroimaging-based psychiatric diagnostics. Neurosci Biobehav Rev. 2015;57(C):328–49. Excellent literature review of statistical strategies (such as support vector machine) that may help diagnosing psychiatric disorders.

    Article  PubMed  Google Scholar 

  86. Mataix-Cols D, Cullen S, Lange K, Zelaya F, Andrew C, Amaro E, et al. Neural correlates of anxiety associated with obsessive-compulsive symptom dimensions in normal volunteers. Biol Psychiatry. 2003;53(6):482–93.

    Article  PubMed  Google Scholar 

  87. Fontenelle LF, Mendlowicz MV, Marques C, Versiani M. Early- and late-onset obsessive–compulsive disorder in adult patients: an exploratory clinical and therapeutic study. J Psychiatr Res. 2003;37(2):127–33.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo F. Fontenelle.

Ethics declarations

Conflict of Interest

Ilana Frydman, Juliana B. de Salles Andrade and Paula Vigne declare that they have no conflict of interest.

Leonardo F. Fontenelle reports personal fees from D’Or Institute for Research and Education.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Anxiety Disorders

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frydman, I., de Salles Andrade, J.B., Vigne, P. et al. Can Neuroimaging Provide Reliable Biomarkers for Obsessive-Compulsive Disorder? A Narrative Review. Curr Psychiatry Rep 18, 90 (2016). https://doi.org/10.1007/s11920-016-0729-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11920-016-0729-7

Keywords

Navigation