Skip to main content

Advertisement

Log in

Understanding the Transcriptomic Landscape to Drive New Innovations in Musculoskeletal Regenerative Medicine

  • Regenerative Biology and Medicine in Osteoporosis (S Bryant and M Krebs, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

RNA-sequencing (RNA-seq) is a novel and highly sought-after tool in the field of musculoskeletal regenerative medicine. The technology is being used to better understand pathological processes, as well as elucidate mechanisms governing development and regeneration. It has allowed in-depth characterization of stem cell populations and discovery of molecular mechanisms that regulate stem cell development, maintenance, and differentiation in a way that was not possible with previous technology. This review introduces RNA-seq technology and how it has paved the way for advances in musculoskeletal regenerative medicine.

Recent Findings

Recent studies in regenerative medicine have utilized RNA-seq to decipher mechanisms of pathophysiology and identify novel targets for regenerative medicine. The technology has also advanced stem cell biology through in-depth characterization of stem cells, identifying differentiation trajectories and optimizing cell culture conditions. It has also provided new knowledge that has led to improved growth factor use and scaffold design for musculoskeletal regenerative medicine.

Summary

This article reviews recent studies utilizing RNA-seq in the field of musculoskeletal regenerative medicine. It demonstrates how transcriptomic analysis can be used to provide insights that can aid in formulating a regenerative strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

Abbreviations

RNA:

Ribonucleic acid

RNA-seq:

RNA-sequencing

mRNAs:

Messenger RNAs

miRNAs:

MicroRNAs

siRNAs:

Small interfering RNAs

NGS:

Next-generation sequencing

cDNA:

Complimentary DNA

scRNA-seq:

Single-cell RNA-seq

GO:

Gene ontology

Obese/T2D:

Obese and type 2 diabetes

MSCs:

Mesenchymal stem cells

ADSC:

Adipose-derived stem cells

BMSC:

Bone marrow–derived stem cells

HLA:

Human leukocyte antigen

WJMSCs:

Wharton’s jelly–derived MSCs

UCMSCs:

Umbilical cord MSCs

ACs:

Articular chondrocytes

PCA:

Principal component analysis

hPSCs:

Human pluripotent stem cells

hiPSCs:

Human induced pluripotent stem cells

References

  1. Yelin E, Weinstein S, King T. The burden of musculoskeletal diseases in the United States. Semin Arthritis Rheum. 2016;46(3):259–60.

    Article  PubMed  Google Scholar 

  2. Vos T, Barber RM, Bell B, Bertozzi-Villa A, Biryukov S, Bolliger I, Charlson F, Davis A, Degenhardt L, Dicker D, Duan L, Erskine H, Feigin VL, Ferrari AJ, Fitzmaurice C, Fleming T, Graetz N, Guinovart C, Haagsma J, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2015;386(9995):743–800.

  3. Ciccocioppo R, Cantore A, Chaimov D, Orlando G. Regenerative medicine: the red planet for clinicians. Intern Emerg Med. 2019;14(6):911–21.

    Article  PubMed  Google Scholar 

  4. Matichescu A, Ardelean LC, Rusu LC, Craciun D, Bratu EA, Babucea M, Leretter M. Advanced biomaterials and techniques for oral tissue engineering and regeneration—a review. Materials. 2020;13(22):5303.

    Article  CAS  PubMed Central  Google Scholar 

  5. Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009;10(1):57–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, Xu N, Wang X, Bodeau J, Tuch BB, Siddiqui A, Lao K, Surani MA. mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods. 2009;6(5):377–82.

    Article  CAS  PubMed  Google Scholar 

  7. Olsen TK, Baryawno N. Introduction to single-cell RNA sequencing. Curr Protoc Mol Biol. 2018;122(1):e57.

    Article  PubMed  CAS  Google Scholar 

  8. Li X, Liao Z, Deng Z, Chen N, Zhao L. Combining bulk and single-cell RNA-sequencing data to reveal gene expression pattern of chondrocytes in the osteoarthritic knee. Bioengineered. 2021;12(1):997–1007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Huynh NPT, Zhang B, Guilak F. High-depth transcriptomic profiling reveals the temporal gene signature of human mesenchymal stem cells during chondrogenesis. FASEB J. 2019;33(1):358–72.

    Article  CAS  PubMed  Google Scholar 

  10. Doostparast Torshizi A, Wang K. Next-generation sequencing in drug development: target identification and genetically stratified clinical trials. Drug Discov Today. 2018;23(10):1776–83.

    Article  CAS  PubMed  Google Scholar 

  11. Jaksik R, Iwanaszko M, Rzeszowska-Wolny J, Kimmel M. Microarray experiments and factors which affect their reliability. Biol Direct. 2015;10(1):46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Mehta JP. In: O'Driscoll L, editor. Microarray analysis of mRNAs: experimental design and data analysis fundamentals, in Gene Expression Profiling: Methods and Protocols. Totowa: Humana Press; 2011. p. 27–40.

    Google Scholar 

  13. Bottomly D, Walter NAR, Hunter JE, Darakjian P, Kawane S, Buck KJ, Searles RP, Mooney M, McWeeney SK, Hitzemann R. Evaluating gene expression in C57BL/6J and DBA/2J mouse striatum using RNA-Seq and microarrays. PLoS ONE. 2011;6(3):e17820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y. RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res. 2008;18(9):1509–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu Y, Zhou J, White KP. RNA-seq differential expression studies: more sequence or more replication? Bioinformatics. 2014;30(3):301–4.

    Article  CAS  PubMed  Google Scholar 

  16. Stark R, Grzelak M, Hadfield J. RNA sequencing: the teenage years. Nat Rev Genet. 2019;20(11):631–56.

    Article  CAS  PubMed  Google Scholar 

  17. Kukurba KR, Montgomery SB. RNA sequencing and analysis. Cold Spring Harb Protoc. 2015;2015(11) p. pdb.top084970.

  18. Auer PL, Doerge RW. Statistical design and analysis of RNA sequencing data. Genetics. 2010;185(2):405–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fang Z, Cui X. Design and validation issues in RNA-seq experiments. Brief Bioinform. 2011;12(3):280–7.

    Article  CAS  PubMed  Google Scholar 

  20. Koch CM, Chiu SF, Akbarpour M, Bharat A, Ridge KM, Bartom ET, Winter DR. A beginner’s guide to analysis of RNA sequencing data. Am J Respir Cell Mol Biol. 2018;59(2):145–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yalamanchili HK, Wan YW, Liu Z. Data analysis pipeline for RNA-seq experiments: from differential expression to cryptic splicing. Curr Protoc Bioinform. 2017;59(1):11.15.1–11.15.21.

    Article  CAS  Google Scholar 

  22. Munger SC, Raghupathy N, Choi K, Simons AK, Gatti DM, Hinerfeld DA, Svenson KL, Keller MP, Attie AD, Hibbs MA, Graber JH, Chesler EJ, Churchill GA. RNA-Seq alignment to individualized genomes improves transcript abundance estimates in multiparent populations. Genetics. 2014;198(1):59–73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Tarazona S, García-Alcalde F, Dopazo J, Ferrer A, Conesa A. Differential expression in RNA-seq: a matter of depth. Genome Res. 2011;21(12):2213–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Raghupathy N, Choi K, Vincent MJ, Beane GL, Sheppard KS, Munger SC, Korstanje R, Pardo-Manual de Villena F, Churchill GA. Hierarchical analysis of RNA-seq reads improves the accuracy of allele-specific expression. Bioinformatics. 2018;34(13):2177–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Oikonomopoulos S, Bayega A, Fahiminiya S, Djambazian H, Berube P, Ragoussis J. Methodologies for transcript profiling using long-read technologies. Front Genet. 2020;11:606–6.

  26. Satija R, Farrell JA, Gennert D, Schier AF, Regev A. Spatial reconstruction of single-cell gene expression data. Nat Biotechnol. 2015;33(5):495–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Choi YH, Kim JK. Dissecting cellular heterogeneity using single-cell RNA sequencing. Mol Cell. 2019;42(3):189–99.

    CAS  Google Scholar 

  28. Sun C, Wang L, Wang H, Huang T, Yao W, Li J, Zhang X. Single-cell RNA-seq highlights heterogeneity in human primary Wharton’s jelly mesenchymal stem/stromal cells cultured in vitro. Stem Cell Res Ther. 2020;11(1):149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhong L, Yao L, Tower RJ, Wei Y, Miao Z, Park J, Shrestha R, Wang L, Yu W, Holdreith N, Huang X, Zhang Y, Tong W, Gong Y, Ahn J, Susztak K, Dyment N, Li M, Long F, et al. Single cell transcriptomics identifies a unique adipose lineage cell population that regulates bone marrow environment. eLife. 2020;9.

  30. Peng G, Cui G, Ke J, Jing N. Using single-cell and spatial transcriptomes to understand stem cell lineage specification during early embryo development. Annu Rev Genomics Hum Genet. 2020;21(1):163–81.

    Article  CAS  PubMed  Google Scholar 

  31. Brielle S, Bavli D, Motzik A, Kan-Tor Y, Sun X, Kozulin C, Avni B, Ram O, Buxboim A. Delineating the heterogeneity of matrix-directed differentiation toward soft and stiff tissue lineages via single-cell profiling. Proc Natl Acad Sci. 2021;118(19):e2016322118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol. 2018;36(5):411–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lafzi A, Moutinho C, Picelli S, Heyn H. Tutorial: guidelines for the experimental design of single-cell RNA sequencing studies. Nat Protoc. 2018;13(12):2742–57.

    Article  CAS  PubMed  Google Scholar 

  34. Lee JS, Yi K, Ju YS, Shin EC. Effects of Cryopreservation and Thawing on Single-Cell Transcriptomes of Human T Cells. Immune Netw. 2020;20(4):e34.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Denisenko E, Guo BB, Jones M, Hou R, de Kock L, Lassmann T, Poppe D, Clément O, Simmons RK, Lister R, Forrest ARR. Systematic assessment of tissue dissociation and storage biases in single-cell and single-nucleus RNA-seq workflows. Genome Biol. 2020;21(1):130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Andrews TS, Kiselev VY, McCarthy D, Hemberg M. Tutorial: guidelines for the computational analysis of single-cell RNA sequencing data. Nat Protoc. 2021;16(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  37. Hao Y, et al. Integrated analysis of multimodal single-cell data. Cell. 2021;184(13):3573–3587.e29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tuerlings M, et al. RNA sequencing reveals interacting key determinants of osteoarthritis acting in subchondral bone and articular cartilage: identification of IL11 and CHADL as attractive treatment targets. Arthritis Rheum. 2021;73:789–99.

    Article  CAS  Google Scholar 

  39. Coutinho De Almeida R, et al. RNA sequencing data integration reveals an miRNA interactome of osteoarthritis cartilage. Ann Rheum Dis. 2019;78(2):270–7.

    Article  PubMed  CAS  Google Scholar 

  40. Ji Q, Zheng Y, Zhang G, Hu Y, Fan X, Hou Y, Wen L, Li L, Xu Y, Wang Y, Tang F. Single-cell RNA-seq analysis reveals the progression of human osteoarthritis. Ann Rheum Dis. 2019;78(1):100–10.

    Article  CAS  PubMed  Google Scholar 

  41. Dell'Orso S, et al. Single cell analysis of adult mouse skeletal muscle stem cells in homeostatic and regenerative conditions. Development. 2019;146(12) p. dev174177.

  42. Qu F, Palte IC, Gontarz PM, Zhang B, Guilak F. Transcriptomic analysis of bone and fibrous tissue morphogenesis during digit tip regeneration in the adult mouse. FASEB J. 2020;34(7):9740–54.

    Article  CAS  PubMed  Google Scholar 

  43. Qin T, Fan CM, Wang TZ, Sun H, Zhao YY, Yan RJ, Yang L, Shen WL, Lin JX, Bunpetch V, Cucchiarini M, Clement ND, Mason CE, Nakamura N, Bhonde R, Yin Z, Chen X. Single-cell RNA-seq reveals novel mitochondria-related musculoskeletal cell populations during adult axolotl limb regeneration process. Cell Death Differ. 2021;28(3):1110–25.

    Article  CAS  PubMed  Google Scholar 

  44. Song N, Scholtemeijer M, Shah K. Mesenchymal stem cell immunomodulation: mechanisms and therapeutic potential. Trends Pharmacol Sci. 2020;41(9):653–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pino CJ, Westover AJ, Johnston KA, Buffington DA, Humes HD. Regenerative medicine and immunomodulatory therapy: insights from the kidney, heart, brain, and lung. Kidney Int Rep. 2018;3(4):771–83.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Guerrouahen BS, Sidahmed H, al Sulaiti A, al Khulaifi M, Cugno C. Enhancing mesenchymal stromal cell immunomodulation for treating conditions influenced by the immune system. Stem Cells Int. 2019;2019:1–11.

    Article  CAS  Google Scholar 

  47. Lee DK, Song SU. Immunomodulatory mechanisms of mesenchymal stem cells and their therapeutic applications. Cell Immunol. 2018;326:68–76.

    Article  CAS  PubMed  Google Scholar 

  48. Panina Y, Karagiannis P, Kurtz A, Stacey GN, Fujibuchi W. Human Cell Atlas and cell-type authentication for regenerative medicine. Exp Mol Med. 2020;52(9):1443–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Andrews TS, Hemberg M. Identifying cell populations with scRNASeq. Mol Asp Med. 2018;59:114–22.

    Article  CAS  Google Scholar 

  50. Savulescu AF, Jacobs C, Negishi Y, Davignon L, Mhlanga MM. Pinpointing cell identity in time and space. Front Mol Biosci. 2020;7.

  51. Zhou W, Lin J, Zhao K, Jin K, He Q, Hu Y, Feng G, Cai Y, Xia C, Liu H, Shen W, Hu X, Ouyang H. Single-cell profiles and clinically useful properties of human mesenchymal stem cells of adipose and bone marrow origin. Am J Sports Med. 2019;47(7):1722–33.

    Article  PubMed  Google Scholar 

  52. Sun C, Zhang K, Yue J, Meng S, Zhang X. Deconstructing transcriptional variations and their effects on immunomodulatory function among human mesenchymal stromal cells. Stem Cell Res Ther. 2021;12(1):53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Stüdle C, Occhetta P, Geier F, Mehrkens A, Barbero A, Martin I. Challenges toward the identification of predictive markers for human mesenchymal stromal cells chondrogenic potential. Stem Cells Transl Med. 2019;8(2):194–204.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Yin Z, Lin J, Yan R, Liu R, Liu M, Zhou B, Zhou W, An C, Chen Y, Hu Y, Fan C, Zhao K, Wu B, Zou X, Zhang J, el-Hashash AH, Chen X, Ouyang H. Atlas of musculoskeletal stem cells with the soft and hard tissue differentiation architecture. Advanced Science. 2020;7(23):2000938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Baldwin MJ, Cribbs AP, Guilak F, Snelling SJB. Mapping the musculoskeletal system one cell at a time. Nat Rev Rheumatol. 2021;17(5):247–8.

    Article  PubMed  Google Scholar 

  56. Wu C-L, Dicks A, Steward N, Tang R, Katz DB, Choi YR, Guilak F. Single cell transcriptomic analysis of human pluripotent stem cell chondrogenesis. Nat Commun. 2021;12(1):362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kelly NH, Huynh NPT, Guilak F. Single cell RNA-sequencing reveals cellular heterogeneity and trajectories of lineage specification during murine embryonic limb development. Matrix Biol. 2020;89:1–10.

    Article  CAS  PubMed  Google Scholar 

  58. Wolock SL, et al. Mapping distinct bone marrow niche populations and their differentiation paths. Cell Rep. 2019;28(2):302–311.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Han X, Chen H, Huang D, Chen H, Fei L, Cheng C, Huang H, Yuan GC, Guo G. Mapping human pluripotent stem cell differentiation pathways using high throughput single-cell RNA-sequencing. Genome Biol. 2018;19(1):47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Elabd C, Ichim TE, Miller K, Anneling A, Grinstein V, Vargas V, Silva FJ. Comparing atmospheric and hypoxic cultured mesenchymal stem cell transcriptome: implication for stem cell therapies targeting intervertebral discs. J Transl Med. 2018;16(1):222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Shaik S, Martin EC, Hayes DJ, Gimble JM, Devireddy RV. Transcriptomic profiling of adipose derived stem cells undergoing osteogenesis by RNA-Seq. Sci Rep. 2019;9(1):11800.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Chang C-C, Venø MT, Chen L, Ditzel N, le DQS, Dillschneider P, Kassem M, Kjems J. Global MicroRNA profiling in human bone marrow skeletal—stromal or mesenchymal–stem cells identified candidates for bone regeneration. Mol Ther. 2018;26(2):593–605.

    Article  CAS  PubMed  Google Scholar 

  63. Carrow JK, Cross LM, Reese RW, Jaiswal MK, Gregory CA, Kaunas R, Singh I, Gaharwar AK. Widespread changes in transcriptome profile of human mesenchymal stem cells induced by two-dimensional nanosilicates. Proc Natl Acad Sci. 2018;115(17):E3905–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bao X, Shi R, Zhao T, Wang Y, Anastasov N, Rosemann M, Fang W. Integrated analysis of single-cell RNA-seq and bulk RNA-seq unravels tumour heterogeneity plus M2-like tumour-associated macrophage infiltration and aggressiveness in TNBC. Cancer Immunol Immunother. 2021;70(1):189–202.

    Article  CAS  PubMed  Google Scholar 

  65. Method of the Year 2020: spatially resolved transcriptomics. Nat Methods. 2021;18(1):1.

  66. Larsson L, Frisén J, Lundeberg J. Spatially resolved transcriptomics adds a new dimension to genomics. Nat Methods. 2021;18(1):15–8.

    Article  CAS  PubMed  Google Scholar 

  67. Merritt CR, Ong GT, Church SE, Barker K, Danaher P, Geiss G, Hoang M, Jung J, Liang Y, McKay-Fleisch J, Nguyen K, Norgaard Z, Sorg K, Sprague I, Warren C, Warren S, Webster PJ, Zhou Z, Zollinger DR, et al. Multiplex digital spatial profiling of proteins and RNA in fixed tissue. Nat Biotechnol. 2020;38(5):586–99.

  68. Sikes KJ, McConnell A, Serkova N, Cole B, Frisbie D. Untargeted metabolomics analysis identifies creatine, myo-inositol, and lipid pathway modulation in a murine model of tendinopathy. J Orthop Res. 2021.

  69. Schott EM, Farnsworth CW, Grier A, Lillis JA, Soniwala S, Dadourian GH, Bell RD, Doolittle ML, Villani DA, Awad H, Ketz JP, Kamal F, Ackert-Bicknell C, Ashton JM, Gill SR, Mooney RA, Zuscik MJ. Targeting the gut microbiome to treat the osteoarthritis of obesity. JCI Insight. 2018;3(8):e95997.

    Article  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Institutes of Health under award numbers R33HD090696 (KAP), R01AR079839 (CLAB), R01AR078414 (MJZ), and the Department of Defense under award number W81XWH-19-1-0807 (MJZ)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karin A. Payne.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Regenerative Biology and Medicine in Osteoporosis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomas, S.M., Ackert-Bicknell, C.L., Zuscik, M.J. et al. Understanding the Transcriptomic Landscape to Drive New Innovations in Musculoskeletal Regenerative Medicine. Curr Osteoporos Rep 20, 141–152 (2022). https://doi.org/10.1007/s11914-022-00726-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-022-00726-x

Keywords

Navigation