Skip to main content

Advertisement

Log in

Finite Element Assessment of Bone Fragility from Clinical Images

  • Imaging (H Isaksson and S Boyd, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

We re-evaluated clinical applications of image-to-FE models to understand if clinical advantages are already evident, which proposals are promising, and which questions are still open.

Recent Findings

CT-to-FE is useful in longitudinal treatment evaluation and groups discrimination. In metastatic lesions, CT-to-FE strength alone accurately predicts impending femoral fractures. In osteoporosis, strength from CT-to-FE or DXA-to-FE predicts incident fractures similarly to DXA-aBMD. Coupling loads and strength (possibly in dynamic models) may improve prediction. One promising MRI-to-FE workflow may now be tested on clinical data. Evidence of artificial intelligence usefulness is appearing.

Summary

CT-to-FE is already clinical in opportunistic CT screening for osteoporosis, and risk of metastasis-related impending fractures. Short-term keys to improve image-to-FE in osteoporosis may be coupling FE with fall risk estimates, pool FE results with other parameters through robust artificial intelligence approaches, and increase reproducibility and cross-validation of models. Modeling bone modifications over time and bone fracture mechanics are still open issues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Leslie WD, Morin SN. New developments in fracture risk assessment for current osteoporosis reports. Curr Osteoporos Rep. 2020;18:115–29. Reviews non FE-specific specific risk factors used to assess fracture risk. Motivates further reviewing for FE-specific risk factors

    PubMed  Google Scholar 

  2. Keaveny TM, Clarke BL, Cosman F, Orwoll ES, Siris ES, Khosla S, Bouxsein ML. Biomechanical Computed Tomography analysis (BCT) for clinical assessment of osteoporosis. Osteoporos Int. 2020;31:1025–48. Reviews applications of BCT, the most clinically used and FDA-approved CT-to-FE workflow, having opportunistic CT diagnosis of osteoporosis as primary clinical indication. Acknowledges equivalent fracture prediction of strength estimates from CT-to-FE vs. aBMD (hip) or vBMD (spine)

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Benemerito I, Griffiths W, Allsopp J, Furnass W, Bhattacharya P, Li X, Marzo A, Wood S, Viceconti M, Narracott A. Delivering computationally-intensive digital patient applications to the clinic: An exemplar solution to predict femoral bone strength from CT data. Comput Methods Prog Biomed. 2021;208:106200.

    CAS  Google Scholar 

  4. Lee Y, Ogihara N, Lee T. Assessment of finite element models for prediction of osteoporotic fracture. J Mech Behav Biomed Mater. 2019;97:312–20. Reviews methodological aspects of CT-to-FE, and claims consolidation of advancements in FE analysis before entering clinical scenarios

    PubMed  Google Scholar 

  5. Falcinelli C, Whyne C. Image-based finite-element modeling of the human femur. Comput Methods Biomech Biomed Engin. 2020;23:1138–61. Reviews methodological aspects of femoral CT-to-FE; highlights similar (encouraging) results from different workflows; motivates the adoption of a standardized workflow

    PubMed  Google Scholar 

  6. Zysset P, Qin L, Lang T, Khosla S, Leslie WD, Shepherd JA, Schousboe JT, Engelke K. Clinical Use of Quantitative Computed Tomography–Based Finite Element Analysis of the Hip and Spine in the Management of Osteoporosis in Adults: the 2015 ISCD Official Positions—Part II. J Clin Densitom. 2015;18:359–92.

    PubMed  Google Scholar 

  7. Samelson EJ, Broe KE, Xu H, Yang L, Boyd S, Biver E, Szulc P, Adachi J, Amin S, Atkinson E, Berger C, Burt L, Chapurlat R, Chevalley T, Ferrari S, Goltzman D, Hanley DA, Hannan MT, Khosla S, et al. Cortical and trabecular bone microarchitecture as an independent predictor of incident fracture risk in older women and men in the Bone Microarchitecture International Consortium (BoMIC): a prospective study. Lancet Diabetes Endocrinol. 2019;7:34–43.

    PubMed  Google Scholar 

  8. Cody DD, Gross GJ, Hou FJ, Spencer HJ, Goldstein SA, Fyhrie DP. Femoral strength is better predicted by nite element models than QCT and DXA. J Biomech. 1999;32:1013–20.

    CAS  PubMed  Google Scholar 

  9. Orwoll ES, Marshall LM, Nielson CM, Cummings SR, Lapidus J, Cauley JA, Ensrud K, Lane N, Hoffmann PR, Kopperdahl DL, Keaveny TM, for the Osteoporotic Fractures in Men (MrOS) Study Group. Finite element analysis of the proximal femur and hip fracture risk in older men. J Bone Miner Res. 2009;24:475–83.

    PubMed  Google Scholar 

  10. Keyak JH, Sigurdsson S, Karlsdottir G, Oskarsdottir D, Sigmarsdottir A, Zhao S, Kornak J, Harris TB, Sigurdsson G, Jonsson BY, Siggeirsdottir K, Eiriksdottir G, Gudnason V, Lang TF. Male–female differences in the association between incident hip fracture and proximal femoral strength: A finite element analysis study. Bone. 2011;48:1239–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Amin S, Kopperdhal DL, Melton LJ, Achenbach SJ, Therneau TM, Riggs BL, Keaveny TM, Khosla S. Association of hip strength estimates by finite-element analysis with fractures in women and men. J Bone Miner Res. 2011;26:1593–600.

    PubMed  Google Scholar 

  12. Wang X, Sanyal A, Cawthon PM, Palermo L, Jekir M, Christensen J, Ensrud KE, Cummings SR, Orwoll E, Black DM, for the Osteoporotic Fractures in Men (MrOS) Research Group, Keaveny TM. Prediction of new clinical vertebral fractures in elderly men using finite element analysis of CT scans. J Bone Miner Res. 2012;27:808–16.

    PubMed  Google Scholar 

  13. Imai K, Ohnishi I, Matsumoto T, Yamamoto S, Nakamura K. Assessment of vertebral fracture risk and therapeutic effects of alendronate in postmenopausal women using a quantitative computed tomography-based nonlinear finite element method. Osteoporos Int. 2009;20:801–10.

    CAS  PubMed  Google Scholar 

  14. Falcinelli C, Schileo E, Balistreri L, Baruffaldi F, Bordini B, Viceconti M, Albisinni U, Ceccarelli F, Milandri L, Toni A, Taddei F. Multiple loading conditions analysis can improve the association between finite element bone strength estimates and proximal femur fractures: A preliminary study in elderly women. Bone. 2014;67:71–80.

    PubMed  Google Scholar 

  15. Nishiyama KK, Ito M, Harada A, Boyd SK. Classification of women with and without hip fracture based on quantitative computed tomography and finite element analysis. Osteoporos Int. 2014;25:619–26.

    CAS  PubMed  Google Scholar 

  16. Kopperdahl DL, Aspelund T, Hoffmann PF, Sigurdsson S, Siggeirsdottir K, Harris TB, Gudnason V, Keaveny TM. Assessment of incident spine and hip fractures in women and men using finite element analysis of CT scans. J Bone Miner Res. 2014;29:570–80.

    PubMed  Google Scholar 

  17. Adams AL, Fischer H, Kopperdahl DL, et al. Osteoporosis and hip fracture risk from routine computed tomography scans: the fracture, osteoporosis, and CT utilization study (FOCUS): osteoporosis and hip fracture risk from routine CT scans. J Bone Miner Res. 2018;33:1291–301. Largest CT-to-FE cohort study (close to 4000 subjects), showing evidence of equivalent incidence fracture prediction for CT-to-FE strength and DXA aBMD

    PubMed  Google Scholar 

  18. Allaire BT, Lu D, Johannesdottir F, Kopperdahl D, Keaveny TM, Jarraya M, Guermazi A, Bredella MA, Samelson EJ, Kiel DP, Anderson DE, Demissie S, Bouxsein ML. Prediction of incident vertebral fracture using CT-based finite element analysis. Osteoporos Int. 2019;30:323–31.

    CAS  PubMed  Google Scholar 

  19. Johannesdottir F, Allaire B, Kopperdahl DL, Keaveny TM, Sigurdsson S, Bredella MA, Anderson DE, Samelson EJ, Kiel DP, Gudnason VG, Bouxsein ML. Bone density and strength from thoracic and lumbar CT scans both predict incident vertebral fractures independently of fracture location. Osteoporos Int. 2021;32:261–9.

    CAS  PubMed  Google Scholar 

  20. Michalski AS, Besler BA, Burt LA, Boyd SK. Opportunistic CT screening predicts individuals at risk of major osteoporotic fracture. Osteoporos Int. 2021;32:1639–49. https://doi.org/10.1007/s00198-021-05863-0.

    Article  CAS  PubMed  Google Scholar 

  21. Viceconti M, Qasim M, Bhattacharya P, Li X. Are CT-based finite element model predictions of femoral bone strengthening clinically useful? Curr Osteoporos Rep. 2018;16:216–23.

    PubMed  PubMed Central  Google Scholar 

  22. Winsor C, Li X, Qasim M, Henak CR, Pickhardt PJ, Ploeg H, Viceconti M. Evaluation of patient tissue selection methods for deriving equivalent density calibration for femoral bone quantitative CT analyses. Bone. 2021;143:115759.

    CAS  PubMed  Google Scholar 

  23. Prado M, Khosla S, Chaput C, Giambini H. Opportunistic application of phantom-less calibration methods for fracture risk prediction using QCT/FEA. Eur Radiol. 2021; https://doi.org/10.1007/s00330-021-08071-w.

  24. Rayudu NM, Anitha DP, Mei K, Zoffl F, Kopp FK, Sollmann N, Löffler MT, Kirschke JS, Noël PB, Subburaj K, Baum T. Low-dose and sparse sampling MDCT-based femoral bone strength prediction using finite element analysis. Arch Osteoporos. 2020;15:17.

    PubMed  Google Scholar 

  25. Nakanowatari K, Watanabe K, Mori K, Nakajima S, Sekine N, Mutsuzaki H. Evaluation of vertebral bone strength with a finite element method using low dose computed tomography imaging. J Orthop Sci. 2021;S0949-2658(21):00121–4.

    Google Scholar 

  26. Rayudu NM, Subburaj K, Mei K, Dieckmeyer M, Kirschke JS, Noël PB, Baum T. Finite element analysis-based vertebral bone strength prediction using MDCT data: how low can we go? Front Endocrinol. 2020;11:442. Reports CT dose reductions up to 90% at the vertebrae (by sparse sampling) and 50% at the femur (by sparse sampling or tube current reduction) combined with iterative reconstruction algorithms may not worsen CT-to-FE strength predictions derived from standard clinical protocols

    Google Scholar 

  27. Qasim M, Farinella G, Zhang J, Li X, Yang L, Eastell R, Viceconti M. Patient-specific finite element estimated femur strength as a predictor of the risk of hip fracture: the effect of methodological determinants. Osteoporos Int. 2016;27:2815–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Bhattacharya P, Altai Z, Qasim M, Viceconti M. A multiscale model to predict current absolute risk of femoral fracture in a postmenopausal population. Biomech Model Mechanobiol. 2019;18:301–18. Improves CT-to-FE prevalent fracture association using the ratio between the estimate of the fall-loads (stochastic sampling of directions, personalised inverse pendulum model) and bone strengts rather than bone strength alone

    PubMed  Google Scholar 

  29. Fleps I, Guy P, Ferguson SJ, Cripton PA, Helgason B. Explicit finite element models accurately predict subject-specific and velocity-dependent kinetics of sideways fall impact. J Bone Miner Res. 2019;34:1837–50. Validates novel personalised, dynamic explicit FE model of the human body against controlled ex-vivo experiments (n=12) of sideways fall impacts from standing height. Reports good accuracy for peak impact force, effective pelvic stiffness, and actual fracture outcome upon the impact

    PubMed  Google Scholar 

  30. Enns-Bray WS, Bahaloo H, Fleps I, et al. Biofidelic finite element models for accurately classifying hip fracture in a retrospective clinical study of elderly women from the AGES Reykjavik cohort. Bone. 2019;120:25–37. Applies dynamic CT-to-FE to predict incident fracture in the AGES cohort, using a metric of tensile tissue damage. On fallers, dynamic CT-to-FE improves incident fracture prediction (AUC 0.85 vs. 0.74 for aBMD). On the whole sample, Dynamic FE and aBMD are indistinguishable (AUC 0.72 vs 0.70). This work demonstrates that fall risk estimates have the highest priority

    CAS  PubMed  Google Scholar 

  31. Sternheim A, Giladi O, Gortzak Y, Drexler M, Salai M, Trabelsi N, Milgrom C, Yosibash Z. Pathological fracture risk assessment in patients with femoral metastases using CT-based finite element methods. A retrospective clinical study. Bone. 2018;110:215–20. Derives, using validated CT-to-FE models, a typical strain ratio of pathological vs. contralateral healthy femurs in a cohort of pathological femoral fracture cases

    PubMed  Google Scholar 

  32. Yosibash Z, Plitman Mayo R, Dahan G, Trabelsi N, Amir G, Milgrom C. Predicting the stiffness and strength of human femurs with real metastatic tumors. Bone. 2014;69:180–90.

    PubMed  Google Scholar 

  33. Sternheim A, Traub F, Trabelsi N, Dadia S, Gortzak Y, Snir N, Gorfine M, Yosibash Z. When and where do patients with bone metastases actually break their femurs?: a CT-based finite element analysis. The Bone & Joint Journal. 2020;102-B:638–45. CT-to-FE, using the strain ratio threshold derived from pathological cases [31], outperforms a clinical standard (Mirels score) in terms of specificity and AUC (0.90 vs. 0.58) when predicting impending femoral fracture due to metastatic lesions in a clinical cohort

    CAS  Google Scholar 

  34. Eggermont F, Derikx LC, Verdonschot N, van der Geest ICM, de Jong MAA, Snyers A, van der Linden YM, Tanck E. Can patient-specific finite element models better predict fractures in metastatic bone disease than experienced clinicians?: Towards computational modelling in daily clinical practice. Bone & Joint Research. 2018;7:430–9.

    CAS  Google Scholar 

  35. Eggermont F, van der Wal G, Westhoff P, et al. Patient-specific finite element computer models improve fracture risk assessments in cancer patients with femoral bone metastases compared to clinical guidelines. Bone. 2020;130:115101. Obtains sensitivity and specificity prediction gains for metastasis-related femoral fractures that are impressively similar to those reported by [33], even though with a slightly different workflow and metric, and compared to a different clinical standard

    PubMed  Google Scholar 

  36. Sas A, Ohs N, Tanck E, van Lenthe GH. Nonlinear voxel-based finite element model for strength assessment of healthy and metastatic proximal femurs. Bone Reports. 2020;12:100263.

    PubMed  PubMed Central  Google Scholar 

  37. Stadelmann MA, Schenk DE, Maquer G, Lenherr C, Buck FM, Bosshardt DD, Hoppe S, Theumann N, Alkalay RN, Zysset PK. Conventional finite element models estimate the strength of metastatic human vertebrae despite alterations of the bone’s tissue and structure. Bone. 2020;141:115598.

    CAS  PubMed  Google Scholar 

  38. Haider IT, Simonian N, Schnitzer TJ, Edwards WB. Stiffness and strength predictions from finite element models of the knee are associated with lower-limb fractures after spinal cord injury. Ann Biomed Eng. 2021;49:769–79.

    PubMed  Google Scholar 

  39. Brown JP, Engelke K, Keaveny TM, et al. Romosozumab improves lumbar spine bone mass and bone strength parameters relative to alendronate in postmenopausal women: results from the ARCH trial. J Bone Miner Res. 2021; https://doi.org/10.1002/jbmr.4409.

  40. Ono K, Ohashi S, Oka H, Kadono Y, Yasui T, Matsumoto T, Omata Y, Tanaka S. Evaluations of daily teriparatide using finite-element analysis over 12 months in rheumatoid arthritis patients. J Bone Miner Metab. 2021;39:270–7. Uses CT-to-FE strength to longitudinally assess treatment with teriparatide, and finds association of increased N-terminal type I procollagen propeptide (PINP) at 1 and 3 months with increased CT-to-FE strength (although only at the lumbar spine) at 12 months

    CAS  PubMed  Google Scholar 

  41. Hong N, Lee DC, Khosla S, Keaveny TM, Rhee Y. Comparison of vertebral and femoral strength between White and Asian adults using finite element analysis of computed tomography scans. J Bone Miner Res. 2020;35:2345–54.

    PubMed  Google Scholar 

  42. Keyak JH, Kaneko TS, Khosla S, Amin S, Atkinson EJ, Lang TF, Sibonga JD. Hip load capacity and yield load in men and women of all ages. Bone. 2020;137:115321.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Sibonga J, Matsumoto T, Jones J, Shapiro J, Lang T, Shackelford L, Smith SM, Young M, Keyak J, Kohri K, Ohshima H, Spector E, LeBlanc A. Resistive exercise in astronauts on prolonged spaceflights provides partial protection against spaceflight-induced bone loss. Bone. 2019;128:112037.

    CAS  PubMed  Google Scholar 

  44. Burkhart K, Allaire B, Anderson DE, Lee D, Keaveny TM, Bouxsein ML. Effects of long-duration spaceflight on vertebral strength and risk of spine fracture. J Bone Miner Res. 2020;35:269–76. Reports that long-duration spaceflight could induce persistent risk of vertebral fracture using CT-to-FE supplemented with musculoskeletal models to define a load-to-strength ratio

    CAS  PubMed  Google Scholar 

  45. Kersh ME, Martelli S, Zebaze R, Seeman E, Pandy MG. Mechanical loading of the femoral neck in human locomotion: mechanical loading of the femoral neck in human locomotion. J Bone Miner Res. 2018;33:1999–2006.

    PubMed  Google Scholar 

  46. Pellikaan P, Giarmatzis G, Vander Sloten J, Verschueren S, Jonkers I. Ranking of osteogenic potential of physical exercises in postmenopausal women based on femoral neck strains. PLoS One. 2018;13:e0195463.

    PubMed  PubMed Central  Google Scholar 

  47. Martelli S, Beck B, Saxby D, Lloyd D, Pivonka P, Taylor M. Modelling human locomotion to inform exercise prescription for osteoporosis. Curr Osteoporos Rep. 2020;18:301–11.

    PubMed  PubMed Central  Google Scholar 

  48. Warden SJ, Carballido-Gamio J, Weatherholt AM, Keyak JH, Yan C, Kersh ME, Lang TF, Fuchs RK. Heterogeneous spatial and strength adaptation of the proximal femur to physical activity: a within-subject controlled cross-sectional study. J Bone Miner Res. 2020;35:681–90. Supplements CT-to-FE with computational anatomy algorithms to understand effect of physical activity on bone adaptation

    CAS  PubMed  Google Scholar 

  49. Fuchs RK, Carballido-Gamio J, Keyak JH, Kersh ME, Warden SJ. Physical activity induced adaptation can increase proximal femur strength under loading from a fall onto the greater trochanter. Bone. 2021;152:116090.

    PubMed  Google Scholar 

  50. Treece GM, Gee AH. Independent measurement of femoral cortical thickness and cortical bone density using clinical CT. Med Image Anal. 2015;20:249–64.

    CAS  PubMed  Google Scholar 

  51. Väänänen SP, Grassi L, Venäläinen MS, Matikka H, Zheng Y, Jurvelin JS, Isaksson H. Automated segmentation of cortical and trabecular bone to generate finite element models for femoral bone mechanics. Med Eng Phys. 2019;70:19–28.

    PubMed  Google Scholar 

  52. Schileo E, Pitocchi J, Falcinelli C, Taddei F. Cortical bone mapping improves finite element strain prediction accuracy at the proximal femur. Bone. 2020;136:115348. Reports improvement in ex-vivo strain prediction by coupling a computational anatomy algorithm (Cortical Bone Mapping) and CT-to-FE to counteract CT blurring of thin cortical layers due mostly to partial volume effect

    PubMed  Google Scholar 

  53. Rajapakse CS, Chang G. Micro-finite element analysis of the proximal femur on the basis of high-resolution magnetic resonance images. Curr Osteoporos Rep. 2018;16:657–64.

    PubMed  PubMed Central  Google Scholar 

  54. Rajapakse CS, Farid AR, Kargilis DC, Jones BC, Lee JS, Johncola AJ, Batzdorf AS, Shetye SS, Hast MW, Chang G. MRI-based assessment of proximal femur strength compared to mechanical testing. Bone. 2020;133:115227. First time validation of an MRI-to-FE workflow for the prediction of strength, stiffness and strain measured ex-vivo in proximal femurs

    PubMed  PubMed Central  Google Scholar 

  55. Rajapakse CS, Hotca A, Newman BT, Ramme A, Vira S, Kobe EA, Miller R, Honig S, Chang G. Patient-specific hip fracture strength assessment with microstructural MR imaging-based finite element modeling. Radiology. 2017;283:854–61. Detailed description and thorough verification of an MRI-to-FE workflow for the proximal femur (then validated in [54])

    PubMed  Google Scholar 

  56. Zhang L, Wang L, Fu R, Wang J, Yang D, Liu Y, Zhang W, Liang W, Yang R, Yang H, Cheng X. In vivo assessment of age- and loading configuration-related changes in multiscale mechanical behavior of the human proximal femur using MRI-based finite element analysis. J Magn Reson Imaging. 2021;53:905–12.

    PubMed  Google Scholar 

  57. Luo Y, Ahmed S, Leslie WD. Automation of a DXA-based finite element tool for clinical assessment of hip fracture risk. Comput Methods Prog Biomed. 2018;155:75–83.

    Google Scholar 

  58. Yang L, Parimi N, Orwoll ES, Black DM, Schousboe JT, Eastell R. Association of incident hip fracture with the estimated femoral strength by finite element analysis of DXA scans in the osteoporotic fractures in men (MrOS) study. Osteoporos Int. 2018;29:643–51.

    CAS  PubMed  Google Scholar 

  59. Yang S, Luo Y, Yang L, Dall’Ara E, Eastell R, Goertzen AL, McCloskey EV, Leslie WD, Lix LM. Comparison of femoral strength and fracture risk index derived from DXA-based finite element analysis for stratifying hip fracture risk: A cross-sectional study. Bone. 2018;110:386–91.

    PubMed  Google Scholar 

  60. Leslie WD, Luo Y, Yang S, Goertzen AL, Ahmed S, Delubac I, Lix LM. Fracture risk indices from DXA-based finite element analysis predict incident fractures independently from FRAX: the Manitoba BMD registry. J Clin Densitom. 2019;22:338–45. Largest so far reported image-to-FE study in osteoporosis (n=13978, from the Manitoba BMD registry). DXA-to-2DFE independently predics incident hip fracture, but was inferior to femoral neck T-score and FRAX including BMD

    PubMed  Google Scholar 

  61. Colombo C, Libonati F, Rinaudo L, Bellazzi M, Ulivieri FM, Vergani L. A new finite element based parameter to predict bone fracture. PLoS One. 2019;14:e0225905.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Messina C, Acquasanta M, Rinaudo L, Tortora S, Arena G, Albano D, Sconfienza LM, Ulivieri FM. Short-term precision error of bone strain index, a new DXA-based finite element analysis software for assessing hip strength. J Clin Densitom. 2021;24:330–7.

    PubMed  Google Scholar 

  63. Ulivieri FM, Rinaudo L. Beyond bone mineral density: a new dual X-ray absorptiometry index of bone strength to predict fragility fractures, the bone strain index. Front Med. 2021;7:590139. Clear explanation of the Bone Strain Index (BSI) concept from DXA-to-2DFE, and useful review of its clinical applications so far

    Google Scholar 

  64. Choisne J, Valiadis J-M, Travert C, Kolta S, Roux C, Skalli W. Vertebral strength prediction from Bi-Planar dual energy x-ray absorptiometry under anterior compressive force using a finite element model: An in vitro study. J Mech Behav Biomed Mater. 2018;87:190–6.

    PubMed  Google Scholar 

  65. Väänänen SP, Grassi L, Flivik G, Jurvelin JS, Isaksson H. Generation of 3D shape, density, cortical thickness and finite element mesh of proximal femur from a DXA image. Med Image Anal. 2015;24:125–34.

    PubMed  Google Scholar 

  66. Jazinizadeh F, Quenneville CE. 3D Analysis of the proximal femur compared to 2D analysis for hip fracture risk prediction in a clinical population. Ann Biomed Eng. 2021;49:1222–32.

    PubMed  Google Scholar 

  67. Grassi L, Fleps I, Sahlstedt H, Väänänen SP, Ferguson SJ, Isaksson H, Helgason B. Validation of 3D finite element models from simulated DXA images for biofidelic simulations of sideways fall impact to the hip. Bone. 2021;142:115678. DXA-to-3DFE matches impressively well CT-to-FE [29] (including the actual fracture outcome classification) in the validation against impact experiments

    PubMed  Google Scholar 

  68. Grassi L, Väänänen SP, Ristinmaa M, Jurvelin JS, Isaksson H. Prediction of femoral strength using 3D finite element models reconstructed from DXA images: validation against experiments. Biomech Model Mechanobiol. 2017;16:989–1000.

    PubMed  Google Scholar 

  69. Ruiz Wills C, Olivares AL, Tassani S, Ceresa M, Zimmer V, González Ballester MA, del Río LM, Humbert L, Noailly J. 3D patient-specific finite element models of the proximal femur based on DXA towards the classification of fracture and non-fracture cases. Bone. 2019;121:89–99.

    PubMed  Google Scholar 

  70. O’Rourke D, Beck BR, Harding AT, Watson SL, Pivonka P, Martelli S. Assessment of femoral neck strength and bone mineral density changes following exercise using 3D-DXA images. J Biomech. 2021;119:110315.

    PubMed  Google Scholar 

  71. König N, Taylor WR, Armbrecht G, Dietzel R, Singh NB. Identification of functional parameters for the classification of older female fallers and prediction of ‘first-time’ fallers. J R Soc Interface. 2014;11:20140353.

    PubMed  PubMed Central  Google Scholar 

  72. Gillain S, Boutaayamou M, Schwartz C, Brüls O, Bruyère O, Croisier J-L, Salmon E, Reginster J-Y, Garraux G, Petermans J. Using supervised learning machine algorithm to identify future fallers based on gait patterns: a two-year longitudinal study. Exp Gerontol. 2019;127:110730.

    PubMed  Google Scholar 

  73. Rhodes S, Batzdorf A, Sorci O, Peng M, Jankelovits A, Hornyak J, An J, Noël PB, Høilund-Carlsen PF, Alavi A, Rajapakse CS. Assessment of femoral neck bone metabolism using 18F-sodium fluoride PET/CT imaging. Bone. 2020;136:115351.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Colloca M, Blanchard R, Hellmich C, Ito K, van Rietbergen B. A multiscale analytical approach for bone remodeling simulations: Linking scales from collagen to trabeculae. Bone. 2014;64:303–13.

    PubMed  Google Scholar 

  75. Iori G, Du J, Hackenbeck J, Kilappa V, Raum K. Estimation of cortical bone microstructure from ultrasound backscatter. IEEE Trans Ultrason Ferroelectr Freq Control. 2021;68:1081–95.

    PubMed  Google Scholar 

  76. Peralta L, Maeztu Redin JD, Fan F, Cai X, Laugier P, Schneider J, Raum K, Grimal Q. Bulk wave velocities in cortical bone reflect porosity and compression strength. Ultrasound Med Biol. 2021;47:799–808.

    PubMed  Google Scholar 

  77. Buckley K, Kerns JG, Vinton J, Gikas PD, Smith C, Parker AW, Matousek P, Goodship AE. Towards the in vivo prediction of fragility fractures with Raman spectroscopy. J Raman Spectrosc. 2015;46:610–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Manhard MK, Uppuganti S, Granke M, Gochberg DF, Nyman JS, Does MD. MRI-derived bound and pore water concentrations as predictors of fracture resistance. Bone. 2016;87:1–10.

    PubMed  PubMed Central  Google Scholar 

  79. Jones BC, Jia S, Lee H, Feng A, Shetye SS, Batzdorf A, Shapira N, Noël PB, Pleshko N, Rajapakse CS. MRI-derived porosity index is associated with whole-bone stiffness and mineral density in human cadaveric femora. Bone. 2021;143:115774.

    PubMed  Google Scholar 

  80. Gustafsson A, Tognini M, Bengtsson F, Gasser TC, Isaksson H, Grassi L. Subject-specific FE models of the human femur predict fracture path and bone strength under single-leg-stance loading. J Mech Behav Biomed Mater. 2021;113:104118.

    CAS  PubMed  Google Scholar 

  81. Demirtas A, Rajapakse CS, Ural A. Assessment of the multifactorial causes of atypical femoral fractures using a novel multiscale finite element approach. Bone. 2020;135:115318.

    PubMed  Google Scholar 

  82. The American Socuety of Mechanical Engineers (2018) ASME V&V 40 – 2018, Assessing credibility of computational modeling through verification and validation: application to medical devices.

  83. Smets J, Shevroja E, Hügle T, Leslie WD, Hans D. Machine learning solutions for osteoporosis—a review. J Bone Miner Res. 2021;36:833–51.

    PubMed  Google Scholar 

  84. Ulivieri FM, Rinaudo L, Piodi LP, Messina C, Sconfienza LM, Sardanelli F, Guglielmi G, Grossi E. Bone strain index as a predictor of further vertebral fracture in osteoporotic women: An artificial intelligence-based analysis. PLoS One. 2021;16:e0245967. Promising AI approach to complement DXA-to-2DFE, whose accuracy should be however confirmed on independent cohorts

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Villamor E, Monserrat C, Del Río L, Romero-Martín JA, Rupérez MJ. Prediction of osteoporotic hip fracture in postmenopausal women through patient-specific FE analyses and machine learning. Comput Methods Prog Biomed. 2020;193:105484.

    CAS  Google Scholar 

  86. Zhang M, Gong H, Zhang K, Zhang M. Prediction of lumbar vertebral strength of elderly men based on quantitative computed tomography images using machine learning. Osteoporos Int. 2019;30:2271–82.

    CAS  PubMed  Google Scholar 

  87. Chandran V, Maquer G, Gerig T, Zysset P, Reyes M. Supervised learning for bone shape and cortical thickness estimation from CT images for finite element analysis. Med Image Anal. 2019;52:42–55.

    PubMed  Google Scholar 

  88. Galbusera F, Cina A, Panico M, Albano D, Messina C. Image-based biomechanical models of the musculoskeletal system. Eur Radiol Exp. 2020;4:49.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Italian Ministry of Health (qSINS project, grant number: RF-2016-02364359).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Schileo.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Imaging

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schileo, E., Taddei, F. Finite Element Assessment of Bone Fragility from Clinical Images. Curr Osteoporos Rep 19, 688–698 (2021). https://doi.org/10.1007/s11914-021-00714-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-021-00714-7

Keywords

Navigation