Skip to main content

Advertisement

Log in

Obesity and Bone

  • Current Therapeutics (SL Silverman, Section Editor)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Recent studies indicate that fractures in obese postmenopausal women and older men contribute significantly to the overall fracture burden. The effect of obesity is to some extent site-dependent, the risk being increased for some fractures and decreased for others, possibly related to different patterns of falling and the presence or absence of soft tissue padding. Risk factors for fracture in obese individuals appear to be similar to those in the nonobese population, although falls may be particularly important in the obese. There is some evidence that the morbidity associated with fractures in obese individuals is greater than in the nonobese; however, a recent study indicates that the mortality associated with fracture is lower in obese and overweight people than in those of normal weight. The evidence base for strategies to prevent fractures in obese individuals is weak and is an important area for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance•• Of major importance

  1. Available at: http://www.who.int/topics/obesity/en/. Accessed 11 Feb 2012.

  2. Available at: http://www.euro.who.int/en/what-we-do/health-topics/noncommunicable-diseases/obesity/facts-and-figures. Accessed 11 Feb 2012.

  3. Finucane MM, Stevens GA, Cowan MJ, et al. National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9.1 million participants. Lancet. 2011;377:557–67.

    Article  PubMed  Google Scholar 

  4. Flegal KM, Carroll MD, Ogden CL, et al. Prevalence and trends in obesity among US adults, 1999–2008. JAMA. 2010;303:235–41.

    Article  PubMed  CAS  Google Scholar 

  5. Haby MM, Markwick A, Peeters A, et al. Future predictions of body mass index and overweight prevalence in Australia, 2005–2025. Health Promot Int. 2012;27:250–60.

    Article  PubMed  Google Scholar 

  6. Ramachandran A, Snehalatha C. Rising burden of obesity in Asia. J Obes. 2010. doi:10.1155/2010/868573

  7. Guh DP, Zhang W, Bansback N, et al. The incidence of co-morbidities related to obesity and overweight: a systematic review and meta-analysis. BMC Publ Health. 2009;9:88.

    Article  Google Scholar 

  8. De Laet C, Kanis JA, Oden A, et al. Body mass index as a predictor of fracture risk: a meta-analysis. Osteoporos Int. 2005;16:1330–8.

    Article  PubMed  Google Scholar 

  9. Johansson H, Kanis J, Oden A, et al. High body mass index, adjusted for BMD, is a risk factor for fracture in women. Paper presented at: American Society for Bone & Mineral Research (ASBMR) 2011 Annual Meeting, San Diego, CA, September 16–20, 2011.

  10. Premaor MO, Pilbrow L, Tonkin C, et al. Obesity and fractures in postmenopausal women. J Bone Miner Res. 2010;25:292–7.

    Article  PubMed  Google Scholar 

  11. •• Compston JE, Watts NB, Chapurlat R, et al. Obesity is not protective against fracture in postmenopausal women: GLOW. Am J Med. 2011;124:1043–50. Large population-based study examining associations between obesity and fracture in postmenopausal women.

    Article  PubMed  Google Scholar 

  12. Armstrong ME, Spencer EA, Cairns BJ, et al. Body mass index and physical activity in relation to the incidence of hip fracture in postmenopausal women. J Bone Miner Res. 2011;26:1330–8.

    Article  PubMed  Google Scholar 

  13. • Premaor MO, Ensrud K, Lui L, Study of Osteoporotic Fractures, et al. Risk factors for nonvertebral fracture in obese older women. J Clin Endocrinol Metab. 2011;96:2414–21. Reports risk factors for fracture in obese postmenopausal women and demonstrates lower bone density in obese women with than without fracture.

    Article  PubMed  CAS  Google Scholar 

  14. •• Nielson CM, Marshall LM, Adams AL, et al. BMI and fracture risk in older men: the Osteoporotic Fractures in Men Study (MrOS). J Bone Miner Res. 2011;26:496–502. Population-based study reporting on the association between obesity and fractures in older men.

    Article  PubMed  Google Scholar 

  15. Nielson CM, Srikanth P, Orwoll ES. Obesity and fracture in men and women: an epidemiologic perspective. J Bone Miner Res. 2012;27:1–10.

    Article  PubMed  Google Scholar 

  16. Bergkvist D, Hekmat K, Svensson T, Dahlberg L. Obesity in orthopedic patients. Surg Obes Relat Dis. 2009;5:670–2.

    Article  PubMed  Google Scholar 

  17. King CM, Hamilton GA, Cobb M, et al. Association between ankle fractures and obesity. J Foot Ankle Surg. 2012;51(5):543–7.

    Article  PubMed  Google Scholar 

  18. Gnudi S, Emanuela S, Lisi L. Relationship of body mass index with main limb fragility fractures in postmenopausal women. J Bone Miner Metab. 2009;27:479–84.

    Article  PubMed  Google Scholar 

  19. Prieto-Alhambra D, Premaor MO, Fina Avilés F, et al. The association between fracture and obesity is site-dependent: a population-based study in postmenopausal women. J Bone Miner Res. 2012;27:294–300.

    Article  PubMed  Google Scholar 

  20. Pirro M, Fabbriciani G, Leli C, et al. High weight or body mass index increases the risk of vertebral fractures in postmenopausal osteoporotic women. J Bone Miner Metab. 2010;28:88–93.

    Article  PubMed  Google Scholar 

  21. Laslett LL, Just Nee Foley SJ, Quinn SJ, et al. Excess body fat is associated with higher risk of vertebral deformities in older women but not in men: a cross-sectional study. Osteoporos Int. 2012;23:67–74.

    Article  PubMed  CAS  Google Scholar 

  22. Premaor MO, Compston J, Martinez-Laguna D, et al. The association between fracture site and obesity in men: a population-based study. Presented at the ASBMR Annual Meeting in Minneapolis. 2012;abstract SU0335.

  23. Green E, Lubahn JD, Evans J. Risk factors, treatment, and outcomes associated with nonunion of the midshaft humerus fracture. J Surg Orthop Adv. 2005;14:64–72.

    PubMed  Google Scholar 

  24. King AR, Moran SL, Steinmann SP. Humeral nonunion. Hand Clin. 2007;23:449–56. vi.

    Article  PubMed  Google Scholar 

  25. Strauss EJ, Frank JB, Walsh M, et al. Does obesity influence the outcome after the operative treatment of ankle fractures? J Bone Joint Surg Br. 2007;89:794–8.

    Article  PubMed  CAS  Google Scholar 

  26. Porter SE, Graves ML, Qin Z, Russell GV. Operative experience of pelvic fractures in the obese. Obes Surg. 2008;18:702–8.

    Article  PubMed  Google Scholar 

  27. Sems SA, Johnson M, Cole PA, Minnesota Orthopaedic Trauma Group, et al. Elevated body mass index increases early complications of surgical treatment of pelvic ring injuries. J Orthop Trauma. 2010;24:309–14.

    Article  PubMed  Google Scholar 

  28. Baldwin KD, Matuszewski PE, Namdari S, Esterhai JL, Mehta S. Does morbid obesity negatively affect the hospital course of patients undergoing treatment of closed, lower-extremity diaphyseal long-bone fractures? Orthopedics. 2011;34:18.

    PubMed  Google Scholar 

  29. Compston J, Flahive J, Boonen S, et al. Effect of obesity on healthcare utilization and quality of life after fracture in postmenopausal women: the Global Longitudinal study of Osteoporosis in Women (GLOW). Presented at the ASBMR Annual Meeting in Minneapolis. 2012; abstract FR0353.

  30. Prieto-Alhambra D, Premaor MO, Aviles FF, et al. Obese and overweight patients have reduced mortality after a hip fracture: the latest obesity paradox. Presented at the ASBMR Annual Meeting in Minneapolis. 2012;abstract MO0332.

  31. Taylor J. The obesity paradox. Eur Heart J. 2011;32:1575–6.

    PubMed  CAS  Google Scholar 

  32. Schenkeveld L, Magro M, Oemrawsingh RM, et al. The influence of optimal medical treatment on the 'obesity paradox', body mass index, and long-term mortality in patients treated with percutaneous coronary intervention: a prospective cohort study. BMJ Open. 2012;2:e000535. Print 2012.

    Article  PubMed  Google Scholar 

  33. Batsis JA, Huddleston JM, Melton 4th LJ, et al. Body mass index and risk of adverse cardiac events in elderly patients with hip fracture: a population-based study. J Am Geriatr Soc. 2009;57:419–26.

    Article  PubMed  Google Scholar 

  34. Batsis JA, Huddleston JM, Melton 3rd LJ, et al. Body mass index (BMI) and risk of noncardiac postoperative medical complications in elderly hip fracture patients: a population-based study. J Hosp Med. 2009;4:E1–9.

    Article  PubMed  Google Scholar 

  35. Zhao LJ, Jiang H, Papasian CJ, et al. Correlation of obesity and osteoporosis: effect of fat mass on the determination of osteoporosis. J Bone Miner Res. 2008;23:17–29.

    Article  PubMed  CAS  Google Scholar 

  36. Rosen CJ, Klibanski A. Bone, fat, and body composition: evolving concepts in the pathogenesis of osteoporosis. Am J Med. 2009;122:409–14.

    Article  PubMed  CAS  Google Scholar 

  37. Lecka-Czernik B, Rosen CJ, Kawai M. Skeletal aging and the adipocyte program: new insights from an "old" molecule. Cell Cycle. 2010;9:3648–54.

    Article  PubMed  CAS  Google Scholar 

  38. Cao JJ. Effects of obesity on bone metabolism. J Orthop Surg Res. 2011;6:30.

    Article  PubMed  Google Scholar 

  39. Gilsanz V, Chalfant J, Mo AO, et al. Reciprocal relations of subcutaneous and visceral fat to bone structure and strength. J Clin Endocrinol Metab. 2009;94:3387–93.

    Article  PubMed  CAS  Google Scholar 

  40. Barbour KE, Zmuda JM, Boudreau R, et al. Adipokines and the risk of fracture in older adults. J Bone Miner Res. 2011;26:1568–76.

    Article  PubMed  CAS  Google Scholar 

  41. Barbour KE, Zmuda JM, Boudreau R, et al. The effects of adiponectin and leptin on changes in bone mineral density. Osteoporos Int. 2012;23:1699–710.

    Article  PubMed  CAS  Google Scholar 

  42. Napoli N, Pedone C, Pozzilli P, et al. Adiponectin and bone mass density: the InCHIANTI study. Bone. 2010;47:1001–5.

    Article  PubMed  CAS  Google Scholar 

  43. Russell M, Mendes N, Miller KK, et al. Visceral fat is a negative predictor of bone density measures in obese adolescent girls. J Clin Endocrinol Metab. 2010;95:1247–55.

    Article  PubMed  CAS  Google Scholar 

  44. Bredella MA, Torriani M, Ghomi RH, et al. Determinants of bone mineral density in obese premenopausal women. Obesity. 2011;19:49–53.

    Article  PubMed  CAS  Google Scholar 

  45. Bredella MA, Torriani M, Ghomi RH, et al. Vertebral bone marrow fat is positively associated with visceral fat and inversely associated with IGF-1 in obese women. Obesity. 2011;19:49–53.

    Article  PubMed  CAS  Google Scholar 

  46. Amati F, Pennant M, Azuma K, et al. Lower thigh subcutaneous and higher visceral abdominal adipose tissue content both contribute to insulin resistance. Obesity. 2012;20:1115–7.

    Article  PubMed  CAS  Google Scholar 

  47. Ducy P. The role of osteocalcin in the endocrine cross-talk between bone remodelling and energy metabolism. Diabetologia. 2011;54:1291–7.

    Article  PubMed  CAS  Google Scholar 

  48. Clemens TL, Karsenty G. The osteoblast: an insulin target cell controlling glucose homeostasis. J Bone Miner Res. 2011;26:677–80.

    Article  PubMed  CAS  Google Scholar 

  49. Fulzele K, Clemens TL. Novel functions for insulin in bone. Bone. 2012;50:452–6.

    Article  PubMed  CAS  Google Scholar 

  50. Cheng S, Massaro JM, Fox CS, et al. Adiposity, cardiometabolic risk, and vitamin D status: the Framingham Heart Study. Diabetes. 2010;59:242–8.

    Article  PubMed  CAS  Google Scholar 

  51. Earthman CP, Beckman LM, Masodkar K, Sibley SD. The link between obesity and low circulating 25-hydroxyvitamin D concentrations: considerations and implications. Int J Obes. 2012;36:96–107.

    Article  Google Scholar 

  52. Bolland MJ, Grey AB, Ames RW, et al. Fat mass is an important predictor of parathyroid hormone levels in postmenopausal women. Bone. 2006;38:317–21.

    Article  PubMed  CAS  Google Scholar 

  53. Grethen E, McClintock R, Gupta CE, et al. Vitamin D and hyperparathyroidism in obesity. J Clin Endocrinol Metab. 2011;96:1320–6.

    Article  PubMed  CAS  Google Scholar 

  54. Orwoll E, Lambert LC, Marshall LM, et al. Endogenous testosterone levels, physical performance, and fall risk in older men. Arch Int Med. 2006;166:2124–31.

    Article  Google Scholar 

  55. Sukumar D, Schlussel Y, Riedt CS, et al. Obesity alters cortical and trabecular bone density and geometry in women. Osteoporos Int. 2011;22:635–45.

    Article  PubMed  CAS  Google Scholar 

  56. Kanis JA, on behalf of the World Health Organization Scientific Group. Assessment of osteoporosis at the primary healthcare level. Technical Report, WHO Collaborating Centre for Metabolic Bone Disease, University of Sheffield, UK. 2008. Available at: http://www.shef.ac.uk/FRAX. Accessed 11 Feb 2012.

  57. Premaor M, Parker RA, Cummings SR, et al. Predictive value of FRAX for fracture in obese older women. J Bone Miner Res. 2013;28:188–95. doi:10.1002/jbmr.1729.

    Google Scholar 

  58. Lee P, Greenfield JR, Seibel MJ, et al. Adequacy of vitamin D replacement in severe deficiency is dependent on body mass index. Am J Med. 2009;122:1056–60.

    Article  PubMed  CAS  Google Scholar 

  59. Ensrud KE, Fullman RL, Barrett-Connor E, et al. Voluntary weight reduction in older men increases hip bone loss: the osteoporotic fractures in men study. J Clin Endocrinol Metab. 2005;90:1998–2004.

    Article  PubMed  CAS  Google Scholar 

  60. • Villareal DT, Chode S, Parimi N, et al. Weight loss, exercise, or both and physical function in obese older adults. N Engl J Med. 2011;364:1218–29. Demonstrates that when intentional weight loss is accompanied by exercise programs, bone loss can be reduced or prevented.

    Article  PubMed  CAS  Google Scholar 

  61. Chesnut III CH, Skag A, Christiansen C, et al. Effects of oral ibandronate administered daily or intermittently on fracture risk in postmenopausal osteoporosis. J Bone Miner Res. 2004;19:1241–9.

    Article  CAS  Google Scholar 

  62. Cummings SR, Black DM, Thompson DE, et al. Effect of alendronate on risk of fracture in women with low bone density but without vertebral fractures: results from the Fracture Intervention Trial. JAMA. 1998;280:2077–82.

    Article  PubMed  CAS  Google Scholar 

  63. Silverman SL, Christiansen C, Genant HK, et al. Efficacy of bazedoxifene in reducing new vertebral fracture risk in postmenopausal women with osteoporosis: results from a 3-year, randomized, placebo-, and active-controlled clinical trial. J Bone Miner Res. 2008;23:1923–34.

    Article  PubMed  CAS  Google Scholar 

  64. McClung M, Boonen S, Törring O, et al. Effect of denosumab treatment on the risk of fractures in subgroups of women with postmenopausal osteoporosis. J Bone Miner Res. 2012;27:211–8. doi:10.1002/jbmr.536.

    Google Scholar 

  65. McCloskey EV, Johansson H, Oden A, et al. Ten-year fracture probability identifies women who will benefit from clodronate therapy–additional results from a double-blind, placebo-controlled randomized study. Osteoporos Int. 2009;20:811–7.

    Article  PubMed  CAS  Google Scholar 

  66. Eastell R, Black DM, Boonen S, et al. Effect of once-yearly zoledronic acid 5 milligrams on fracture risk and change in femoral neck bone mineral density. J Clin Endocrinol Metab. 2009;94:3215–25.

    Article  PubMed  CAS  Google Scholar 

Download references

Disclosure

The author would like to disclose that she has served as a consultant for Novartis DSMB and Amgen DMC; her institution received payment for these services. She has also served as a lecturer for Amgen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juliet Compston.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Compston, J. Obesity and Bone. Curr Osteoporos Rep 11, 30–35 (2013). https://doi.org/10.1007/s11914-012-0127-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-012-0127-y

Keywords

Navigation