Skip to main content

Advertisement

Log in

Neuroendocrine Tumors: a Relevant Clinical Update

  • Neuroendocrine Neoplasms (NS Reed, Section Editor)
  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The field of neuroendocrine oncology has changed much since the time of Oberndorfer first described and coined the term carcinoid. The purpose of this review is to summarize recent findings and highlight clinically relevant updates in the management of NENs, particularly those that are practice changing.

Recent Findings

Neuroendocrine tumors (NETs) have replaced carcinoid tumor, for the most part. The classification of neuroendocrine neoplasms (NENs) improved, and the epidemiological understanding of this disease group also expanded with global collaborations and maturation of large tumor registries. Clarity in the utility of some NET biomarkers continues to be evolving. Knowledge of molecular drivers of tumorigenesis increases, and scientific/technological advancements lead the way to multiple drug approvals for the treatment of advanced NETs.

Summary

The incidence and prevalence of NENs continue to increase, and patients are living longer. Better understanding of molecular drivers and further understanding of the role of immunotherapy in NENs will further elevate the level of care and transform care for all patients with NENs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Oberndorfer S. Karzinoide tumoren des dunndarms. 1907. 1:426-432

  2. Gosset A, Masson P. Tumeurs endocrines de l’appendice. Presse Med. 25:237–240.

  3. Modlin IM, Shapiro MD, Kidd M. Siegfried Oberndorfer: origins and perspectives of carcinoid tumors. Hum Pathol. 2004;35(12):1440–51. https://doi.org/10.1016/j.humpath.2004.09.018.

    Article  PubMed  Google Scholar 

  4. Keener J, Sneyd J. Neuroendocrine cells. In: Keener J, Sneyd J, eds. Mathematical Physiology. Vol 8/1. Interdisciplinary Applied Mathematics. Springer New York; 2009:385–426. https://doi.org/10.1007/978-0-387-75847-3_9

  5. Kaltsas GA, Besser GM, Grossman AB. The diagnosis and medical management of advanced neuroendocrine tumors. Endocr Rev. 2004;25(3):458–511. https://doi.org/10.1210/er.2003-0014.

    Article  CAS  PubMed  Google Scholar 

  6. Metovic J, Barella M, Bianchi F, et al. Morphologic and molecular classification of lung neuroendocrine neoplasms. Virchows Arch Int J Pathol. 2021;478(1):5–19. https://doi.org/10.1007/s00428-020-03015-z.

    Article  Google Scholar 

  7. Strosberg JR. Update on the management of unusual neuroendocrine tumors: pheochromocytoma and paraganglioma, medullary thyroid cancer and adrenocortical carcinoma. Semin Oncol. 2013;40(1):120–33. https://doi.org/10.1053/j.seminoncol.2012.11.009.

    Article  PubMed  Google Scholar 

  8. Shah MH, Goldner WS, Halfdanarson TR, et al. NCCN guidelines insights: neuroendocrine and adrenal tumors version 2 2018. J Natl Compr Canc Netw. 2018;16(6):693–702.

    Article  CAS  Google Scholar 

  9. Fishbein L, Del Rivero J, Else T, et al. The North American Neuroendocrine Tumor Society Consensus Guidelines for Surveillance and Management of Metastatic and/or Unresectable Pheochromocytoma and Paraganglioma. Pancreas. 2021;50(4):469–93. https://doi.org/10.1097/MPA.0000000000001792.

    Article  PubMed  Google Scholar 

  10. Rindi G, Inzani F. Neuroendocrine neoplasm update: toward universal nomenclature. Endocr Relat Cancer. 2020;27(6):R211–8. https://doi.org/10.1530/ERC-20-0036.

    Article  CAS  PubMed  Google Scholar 

  11. Fernandez CJ, Agarwal M, Pottakkat B, Haroon NN, George AS, Pappachan JM. Gastroenteropancreatic neuroendocrine neoplasms: a clinical snapshot. World J Gastrointest Surg. 2021;13(3):231–55. https://doi.org/10.4240/wjgs.v13.i3.231.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Assarzadegan N, Montgomery E. What is new in the 2019 World Health Organization (WHO) classification of tumors of the digestive system: review of selected updates on neuroendocrine neoplasms, appendiceal tumors, and molecular testing. Arch Pathol Lab Med. 2021;145(6):664–77. https://doi.org/10.5858/arpa.2019-0665-RA.

    Article  PubMed  Google Scholar 

  13. Konukiewitz B, Schlitter AM, Jesinghaus M, et al. Somatostatin receptor expression related to TP53 and RB1 alterations in pancreatic and extrapancreatic neuroendocrine neoplasms with a Ki67-index above 20. Mod Pathol Off J U S Can Acad Pathol Inc. 2017;30(4):587–98.

    CAS  Google Scholar 

  14. Yachida S, Vakiani E, White CM, et al. Small cell and large cell neuroendocrine carcinomas of the pancreas are genetically similar and distinct from well-differentiated pancreatic neuroendocrine tumors. Am J Surg Pathol. 2012;36(2):173–84. https://doi.org/10.1097/PAS.0b013e3182417d36

  15. • Jiao Y, Shi C, Edil BH, et al. DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors. Science. 2011;331(6021):1199–203. https://doi.org/10.1126/science.1200609. This is important because it is one of the few original data on molecular tumorigenesis of pancreatic NETs.

  16. Australian Pancreatic Cancer Genome Initiative, Scarpa A, Chang DK, et al. Whole-genome landscape of pancreatic neuroendocrine tumours. Nature. 2017;543(7643):65–71. https://doi.org/10.1038/nature21063 This is important review on molecular landscape of small intestine NETs.

    Article  CAS  Google Scholar 

  17. Scarpa A. The landscape of molecular alterations in pancreatic and small intestinal neuroendocrine tumours. Ann Endocrinol. 2019;80(3):153–8. https://doi.org/10.1016/j.ando.2019.04.010.

    Article  Google Scholar 

  18. Mafficini A, Scarpa A. Genetics and epigenetics of gastroenteropancreatic neuroendocrine neoplasms. Endocr Rev. 2019;40(2):506–36. https://doi.org/10.1210/er.2018-00160.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Cunningham JL, Díaz de Ståhl T, Sjöblom T, Westin G, Dumanski JP, Janson ET. Common pathogenetic mechanism involving human chromosome 18 in familial and sporadic ileal carcinoid tumors. Genes Chromosomes Cancer. 2011;50(2):82–94. https://doi.org/10.1002/gcc.20834.

    Article  CAS  PubMed  Google Scholar 

  20. Karpathakis A, Dibra H, Pipinikas C, et al. Prognostic impact of novel molecular subtypes of small intestinal neuroendocrine tumor. Clin Cancer Res. 2016;22(1):250–8. https://doi.org/10.1158/1078-0432.CCR-15-0373.

    Article  CAS  PubMed  Google Scholar 

  21. Andersson E, Swärd C, Stenman G, Ahlman H, Nilsson O. High-resolution genomic profiling reveals gain of chromosome 14 as a predictor of poor outcome in ileal carcinoids. Endocr Relat Cancer. 2009;16(3):953–66. https://doi.org/10.1677/ERC-09-0052.

    Article  PubMed  Google Scholar 

  22. Marx SJ. Molecular genetics of multiple endocrine neoplasia types 1 and 2. Nat Rev Cancer. 2005;5(5):367–75. https://doi.org/10.1038/nrc1610.

    Article  CAS  PubMed  Google Scholar 

  23. Donis-Keller H, Dou S, Chi D, et al. Mutations in the RET proto-oncogene are associated with MEN 2A and FMTC. Hum Mol Genet. 1993;2(7):851–6. https://doi.org/10.1093/hmg/2.7.851.

    Article  CAS  PubMed  Google Scholar 

  24. Varshney N, Kebede AA, Owusu-Dapaah H, Lather J, Kaushik M, Bhullar JS. A Review of Von Hippel-Lindau syndrome. J Kidney Cancer VHL. 2017;4(3):20–9. https://doi.org/10.15586/jkcvhl.2017.88.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Larson AM, Hedgire SS, Deshpande V, et al. Pancreatic neuroendocrine tumors in patients with tuberous sclerosis complex. Clin Genet. 2012;82(6):558–63. https://doi.org/10.1111/j.1399-0004.2011.01805.x.

    Article  CAS  PubMed  Google Scholar 

  26. Ferner RE, Huson SM, Thomas N, et al. Guidelines for the diagnosis and management of individuals with neurofibromatosis 1. J Med Genet. 2007;44(2):81–8. https://doi.org/10.1136/jmg.2006.045906.

    Article  CAS  PubMed  Google Scholar 

  27. Geurts JL. Inherited syndromes involving pancreatic neuroendocrine tumors. J Gastrointest Oncol. 2020;11(3):559–66. https://doi.org/10.21037/jgo.2020.03.09.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Fritz A. International Classification of Diseases for Oncology: ICD-O (Ed 3). World Health Organization; 2000. This is important because it is the largest reporting of epidemiologic study

  29. • Dasari A, Shen C, Halperin D, et al. Trends in the incidence, prevalence, and survival outcomes in patients with neuroendocrine tumors in the United States. JAMA Oncol. 2017;3(10):1335. https://doi.org/10.1001/jamaoncol.2017.0589. This is important because it is the large USA population analysis leading to robust epidemiological understanding of NETs.

  30. Hallet J, Law CHL, Cukier M, Saskin R, Liu N, Singh S. Exploring the rising incidence of neuroendocrine tumors: a population-based analysis of epidemiology, metastatic presentation, and outcomes: neuroendocrine tumor epidemiology. Cancer. 2015;121(4):589–97. https://doi.org/10.1002/cncr.29099.

    Article  PubMed  Google Scholar 

  31. Ellis L, Shale MJ, Coleman MP. Carcinoid tumors of the gastrointestinal tract: trends in incidence in England since 1971. Am J Gastroenterol. 2010;105(12):2563–9. https://doi.org/10.1038/ajg.2010.341.

    Article  PubMed  Google Scholar 

  32. Korse CM, Taal BG, van Velthuysen MLF. Visser O 2013 Incidence and survival of neuroendocrine tumours in the Netherlands according to histological grade: experience of two decades of cancer registry. Eur J Cancer Oxf Engl. 1990;49(8):1975–83. https://doi.org/10.1016/j.ejca.2012.12.022.

    Article  Google Scholar 

  33. Hauso O, Gustafsson BI, Kidd M, et al. Neuroendocrine tumor epidemiology: contrasting Norway and North America. Cancer. 2008;113(10):2655–64. https://doi.org/10.1002/cncr.23883.

    Article  PubMed  Google Scholar 

  34. Leoncini E, Boffetta P, Shafir M, Aleksovska K, Boccia S, Rindi G. Increased incidence trend of low-grade and high-grade neuroendocrine neoplasms. Endocrine. 2017;58(2):368–79. https://doi.org/10.1007/s12020-017-1273-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lim CH, Lee IS, Jun BY, et al. Incidence and clinical characteristics of gastroenteropancreatic neuroendocrine tumor in Korea: a single-center experience. Korean J Intern Med. 2017;32(3):452–8. https://doi.org/10.3904/kjim.2015.232.

    Article  PubMed  Google Scholar 

  36. JNETS Project Study Group, Masui T, Ito T, Komoto I, Uemoto S. Recent epidemiology of patients with gastro-entero-pancreatic neuroendocrine neoplasms (GEP-NEN) in Japan: a population-based study. BMC Cancer. 2020;20(1):1104. https://doi.org/10.1186/s12885-020-07581-y.

  37. Fan JH, Zhang YQ, Shi SS, et al. A nation-wide retrospective epidemiological study of gastroenteropancreatic neuroendocrine neoplasms in china. Oncotarget. 2017;8(42):71699–708. https://doi.org/10.18632/oncotarget.17599.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Cho MY, Kim JM, Sohn JH, et al. Current trends of the incidence and pathological diagnosis of gastroenteropancreatic neuroendocrine tumors (GEP-NETs) in Korea 2000–2009: multicenter study. Cancer Res Treat. 2012;44(3):157–65. https://doi.org/10.4143/crt.2012.44.3.157.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Chauhan A, Yu Q, Ray N, et al. Global burden of neuroendocrine tumors and changing incidence in Kentucky. Oncotarget. 2018;9(27):19245–54. https://doi.org/10.18632/oncotarget.24983.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Pavel M, Öberg K, Falconi M, et al. Gastroenteropancreatic neuroendocrine neoplasms: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol Off J Eur Soc Med Oncol. 2020;31(7):844–60. https://doi.org/10.1016/j.annonc.2020.03.304.

    Article  CAS  Google Scholar 

  41. Yao JC, Hassan M, Phan A, et al. One hundred years after “carcinoid”: epidemiology of and prognostic factors for neuroendocrine tumors in 35,825 cases in the United States. J Clin Oncol. 2008;26(18):3063–72. https://doi.org/10.1200/JCO.2007.15.4377.

    Article  PubMed  Google Scholar 

  42. Oronsky B, Ma PC, Morgensztern D, Carter CA. Nothing but NET: a review of neuroendocrine tumors and carcinomas. Neoplasia. 2017;19(12):991–1002. https://doi.org/10.1016/j.neo.2017.09.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. FDA-NIH Biomarker Working Group. BEST (biomarkers, endpoints, and other tools) resource. Food and Drug Administration (US); 2016. Accessed October 3, 2021. http://www.ncbi.nlm.nih.gov/books/NBK326791/

  44. Oberg K, Modlin IM, De Herder W, et al. Consensus on biomarkers for neuroendocrine tumour disease. Lancet Oncol. 2015;16(9):e435–46. https://doi.org/10.1016/S1470-2045(15)00186-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kidd M, Drozdov I, Modlin I. Blood and tissue neuroendocrine tumor gene cluster analysis correlate, define hallmarks and predict disease status. Endocr Relat Cancer. 2015;22(4):561–75. https://doi.org/10.1530/ERC-15-0092.

    Article  CAS  PubMed  Google Scholar 

  46. Modlin IM, Drozdov I, Kidd M. Gut neuroendocrine tumor blood qPCR fingerprint assay: characteristics and reproducibility. Clin Chem Lab Med. 2014;52(3):419–29. https://doi.org/10.1515/cclm-2013-0496.

    Article  CAS  PubMed  Google Scholar 

  47. Öberg K, Califano A, Strosberg JR, et al. A meta-analysis of the accuracy of a neuroendocrine tumor mRNA genomic biomarker (NETest) in blood. Ann Oncol Off J Eur Soc Med Oncol. 2020;31(2):202–12. https://doi.org/10.1016/j.annonc.2019.11.003.

    Article  Google Scholar 

  48. Bodei L, Sundin A, Kidd M, Prasad V, Modlin IM. The status of neuroendocrine tumor imaging: from darkness to light? Neuroendocrinol. 2014;101(1):1–17. https://doi.org/10.1159/000367850.

    Article  CAS  Google Scholar 

  49. Moertel CG, Hanley JA, Johnson LA. Streptozocin alone compared with streptozocin plus fluorouracil in the treatment of advanced islet-cell carcinoma. N Engl J Med. 1980;303(21):1189–94. https://doi.org/10.1056/NEJM198011203032101.

    Article  CAS  PubMed  Google Scholar 

  50. Moertel CG, Lefkopoulo M, Lipsitz S, Hahn RG, Klaassen D. Streptozocin–doxorubicin, streptozocin–fluorouracil, or chlorozotocin in the treatment of advanced islet-cell carcinoma. N Engl J Med. 1992;326(8):519–23. https://doi.org/10.1056/NEJM199202203260804.

    Article  CAS  PubMed  Google Scholar 

  51. Kulke MH, Stuart K, Enzinger PC, et al. Phase II study of temozolomide and thalidomide in patients with metastatic neuroendocrine tumors. J Clin Oncol Off J Am Soc Clin Oncol. 2006;24(3):401–6. https://doi.org/10.1200/JCO.2005.03.6046.

    Article  CAS  Google Scholar 

  52. Chan JA, Stuart K, Earle CC, et al. Prospective study of bevacizumab plus temozolomide in patients with advanced neuroendocrine tumors. J Clin Oncol Off J Am Soc Clin Oncol. 2012;30(24):2963–8. https://doi.org/10.1200/JCO.2011.40.3147.

    Article  CAS  Google Scholar 

  53. Kulke MH, Hornick JL, Frauenhoffer C, et al. O6-methylguanine DNA methyltransferase deficiency and response to temozolomide-based therapy in patients with neuroendocrine tumors. Clin Cancer Res Off J Am Assoc Cancer Res. 2009;15(1):338–45. https://doi.org/10.1158/1078-0432.CCR-08-1476.

    Article  CAS  Google Scholar 

  54. Cives M, Ghayouri M, Morse B, et al. Analysis of potential response predictors to capecitabine/temozolomide in metastatic pancreatic neuroendocrine tumors. Endocr Relat Cancer. 2016;23(9):759–67. https://doi.org/10.1530/ERC-16-0147.

    Article  CAS  PubMed  Google Scholar 

  55. Kunz PL, Catalano PJ, Nimeiri H, et al. 2018 A randomized study of temozolomide or temozolomide and capecitabine in patients with advanced pancreatic neuroendocrine tumors: a trial of the ECOG-ACRIN Cancer Research Group (E2211). J Clin Oncol. 2018;36(15_supp):4004–4004. https://doi.org/10.1200/JCO.2018.36.15_suppl.4004.

    Article  Google Scholar 

  56. Roth BJ, Johnson DH, Einhorn LH, et al. Randomized study of cyclophosphamide, doxorubicin, and vincristine versus etoposide and cisplatin versus alternation of these two regimens in extensive small-cell lung cancer: a phase III trial of the Southeastern Cancer Study Group. J Clin Oncol Off J Am Soc Clin Oncol. 1992;10(2):282–91. https://doi.org/10.1200/JCO.1992.10.2.282.

    Article  CAS  Google Scholar 

  57. Fukuoka M, Furuse K, Saijo N, et al. Randomized trial of cyclophosphamide, doxorubicin, and vincristine versus cisplatin and etoposide versus alternation of these regimens in small-cell lung cancer. J Natl Cancer Inst. 1991;83(12):855–61. https://doi.org/10.1093/jnci/83.12.855.

  58. Sundstrøm S, Bremnes RM, Kaasa S, et al. Cisplatin and etoposide regimen is superior to cyclophosphamide, epirubicin, and vincristine regimen in small-cell lung cancer: results from a randomized phase III trial with 5 years’ follow-up. J Clin Oncol Off J Am Soc Clin Oncol. 2002;20(24):4665–72. https://doi.org/10.1200/JCO.2002.12.111.

  59. Reubi JC, Kvols LK, Waser B, et al. Detection of somatostatin receptors in surgical and percutaneous needle biopsy samples of carcinoids and islet cell carcinomas. Cancer Res. 1990;50(18):5969–77.

    CAS  PubMed  Google Scholar 

  60. Kvols LK, Moertel CG, Óconnell MJ, Schutt AJ, Rubin J, Hahn RG. Treatment of the malignant carcinoid syndrome Evaluation of a long-acting somatostatin analogue. N Engl J Med. 1986;315(11):663–6. https://doi.org/10.1056/NEJM198609113151102.

    Article  CAS  PubMed  Google Scholar 

  61. • Rinke A, Müller HH, Schade-Brittinger C, et al. Placebo-controlled, double-blind, prospective, randomized study on the effect of octreotide LAR in the control of tumor growth in patients with metastatic neuroendocrine midgut tumors: a report from the PROMID study group. J Clin Oncol. 2009;27(28):4656–63. https://doi.org/10.1200/JCO.2009.22.8510The same pivotal and practice changing trials.

  62. • Caplin ME, Pavel M, Ćwikła JB, et al. Lanreotide in metastatic enteropancreatic neuroendocrine tumors. N Engl J Med. 2014;371(3):224–33. https://doi.org/10.1056/NEJMoa1316158The same pivotal and practice changing trials.

  63. • Strosberg J, El-Haddad G, Wolin E, et al. Phase 3 trial of 177Lu-dotatate for midgut neuroendocrine tumors. N Engl J Med. 2017;376(2):125–35. https://doi.org/10.1056/NEJMoa1607427The same pivotal and practice changing trials.

  64. Kwekkeboom DJ, de Herder WW, Kam BL, et al. Treatment with the radiolabeled somatostatin analog [177 Lu-DOTA 0, Tyr3]octreotate: toxicity, efficacy, and survival. J Clin Oncol Off J Am Soc Clin Oncol. 2008;26(13):2124–30. https://doi.org/10.1200/JCO.2007.15.2553.

    Article  CAS  Google Scholar 

  65. Yao JC, Phan A, Hoff PM, et al. Targeting vascular endothelial growth factor in advanced carcinoid tumor: a random assignment phase II study of depot octreotide with bevacizumab and pegylated interferon alpha-2b. J Clin Oncol Off J Am Soc Clin Oncol. 2008;26(8):1316–23. https://doi.org/10.1200/JCO.2007.13.6374.

    Article  CAS  Google Scholar 

  66. Yao JC, Guthrie KA, Moran C, et al. Phase III prospective randomized comparison trial of depot octreotide plus interferon alfa-2b versus depot octreotide plus bevacizumab in patients with advanced carcinoid tumors: SWOG S0518. J Clin Oncol Off J Am Soc Clin Oncol. 2017;35(15):1695–703. https://doi.org/10.1200/JCO.2016.70.4072.

    Article  CAS  Google Scholar 

  67. Hobday TJ, Rubin J, Holen K, et al. MC044h, a phase II trial of sorafenib in patients (pts) with metastatic neuroendocrine tumors (NET): a phase II consortium (P2C) study. J Clin Oncol. 2007;25(18_suppl):4504–4504. https://doi.org/10.1200/jco.2007.25.18_suppl.4504.

  68. Kulke MH, Lenz HJ, Meropol NJ, et al. Activity of sunitinib in patients with advanced neuroendocrine tumors. J Clin Oncol. 2008;26(20):3403–10. https://doi.org/10.1200/JCO.2007.15.9020.

    Article  CAS  PubMed  Google Scholar 

  69. Phan AT, Halperin DM, Chan JA, et al. Pazopanib and depot octreotide in advanced, well-differentiated neuroendocrine tumours: a multicentre, single-group, phase 2 study. Lancet Oncol. 2015;16(6):695–703. https://doi.org/10.1016/S1470-2045(15)70136-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Capdevila J, Fazio N, Lopez C, et al. Lenvatinib in patients with advanced grade 1/2 pancreatic and gastrointestinal neuroendocrine tumors: results of the phase II TALENT trial (GETNE1509). J Clin Oncol Off J Am Soc Clin Oncol. 2021;39(20):2304–12. https://doi.org/10.1200/JCO.20.03368.

    Article  CAS  Google Scholar 

  71. Chan JA, Faris JE, Murphy JE, et al. Phase trial of cabozantinib in patients with carcinoid and pancreatic neuroendocrine tumors. J Clin Oncol. 2017;35(4_supp):228–228. https://doi.org/10.1200/JCO.2017.35.4_suppl.228.

    Article  Google Scholar 

  72. • Raymond E, Dahan L, Raoul JL, et al. Sunitinib malate for the treatment of pancreatic neuroendocrine tumors. N Engl J Med. 2011;364(6):501–13. https://doi.org/10.1056/NEJMoa1003825The same pivotal and practice changing trials. 

  73. • Xu J, Shen L, Bai C, et al. Surufatinib in advanced pancreatic neuroendocrine tumours (SANET-p): a randomised, double-blind, placebo-controlled, phase 3 study. Lancet Oncol. 2020;21(11):1489–99. https://doi.org/10.1016/S1470-2045(20)30493-9The same pivotal and practice changing trials.

  74. • Xu J, Shen L, Zhou Z, et al. Surufatinib in advanced extrapancreatic neuroendocrine tumours (SANET-ep): a randomised, double-blind, placebo-controlled, phase 3 study. Lancet Oncol. 2020;21(11):1500–12. https://doi.org/10.1016/S1470-2045(20)30496-4The same pivotal and practice changing trials.

  75. Zoncu R, Efeyan A, Sabatini DM. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol. 2011;12(1):21–35. https://doi.org/10.1038/nrm3025.

  76. Chan J, Kulke M. Targeting the mTOR signaling pathway in neuroendocrine tumors. Curr Treat Options Oncol. 2014;15(3):365–79. https://doi.org/10.1007/s11864-014-0294-4.

  77. Kasajima A, Pavel M, Darb-Esfahani S, et al. mTOR expression and activity patterns in gastroenteropancreatic neuroendocrine tumours. Endocr Relat Cancer. 2011;18(1):181–92. https://doi.org/10.1677/ERC-10-0126.

    Article  CAS  PubMed  Google Scholar 

  78. Yao JC, Phan AT, Chang DZ, et al. Efficacy of RAD001 (everolimus) and octreotide LAR in advanced low- to intermediate-grade neuroendocrine tumors: results of a phase II study. J Clin Oncol Off J Am Soc Clin Oncol. 2008;26(26):4311–8. https://doi.org/10.1200/JCO.2008.16.7858.

    Article  Google Scholar 

  79. Pavel ME, Hainsworth JD, Baudin E, et al. Everolimus plus octreotide long-acting repeatable for the treatment of advanced neuroendocrine tumours associated with carcinoid syndrome (RADIANT-2): a randomised, placebo-controlled, phase 3 study. Lancet Lond Engl. 2011;378(9808):2005–12. https://doi.org/10.1016/S0140-6736(11)61742-X.

    Article  CAS  Google Scholar 

  80. • Yao JC, Shah MH, Ito T, et al. Everolimus for advanced pancreatic neuroendocrine tumors. N Engl J Med. 2011;364(6):514–23. https://doi.org/10.1056/NEJMoa1009290The same pivotal and practice changing trials.

  81. • Yao JC, Fazio N, Singh S, et al. Everolimus for the treatment of advanced, non-functional neuroendocrine tumours of the lung or gastrointestinal tract (RADIANT-4): a randomised, placebo-controlled, phase 3 study. Lancet Lond Engl. 2016;387(10022):968–77. https://doi.org/10.1016/S0140-6736(15)00817-XThe same pivotal and practice changing trials.

  82. Yao JC, Strosberg J, Fazio N, et al. Spartalizumab in metastatic, well/poorly-differentiated neuroendocrine neoplasms. Endocr Relat Cancer. Published online January 1, 2021:ERC-20–0382.R1. https://doi.org/10.1530/ERC-20-0382

  83. Strosberg J, Mizuno N, Doi T, et al. Efficacy and safety of pembrolizumab in previously treated advanced neuroendocrine tumors: results from the phase II KEYNOTE-158 study. Clin Cancer Res Off J Am Assoc Cancer Res. 2020;26(9):2124–30. https://doi.org/10.1158/1078-0432.CCR-19-3014.

    Article  CAS  Google Scholar 

  84. Mehnert JM, Bergsland E, O’Neil BH, et al. Pembrolizumab for the treatment of programmed death-ligand 1-positive advanced carcinoid or pancreatic neuroendocrine tumors: results from the KEYNOTE-028 study. Cancer. 2020;126(13):3021–30. https://doi.org/10.1002/cncr.32883.

    Article  CAS  PubMed  Google Scholar 

  85. Klein O, Kee D, Markman B, et al. Immunotherapy of ipilimumab and nivolumab in patients with advanced neuroendocrine tumors: a subgroup analysis of the CA209-538 clinical trial for rare cancers. Clin Cancer Res Off J Am Assoc Cancer Res. 2020;26(17):4454–9. https://doi.org/10.1158/1078-0432.CCR-20-0621.

    Article  CAS  Google Scholar 

  86. Patel SP, Othus M, Chae YK, et al. A phase II basket trial of dual anti-CTLA-4 and anti-PD-1 blockade in rare tumors (DART SWOG 1609) in patients with nonpancreatic neuroendocrine tumors. Clin Cancer Res Off J Am Assoc Cancer Res. 2020;26(10):2290–6. https://doi.org/10.1158/1078-0432.CCR-19-3356.

    Article  CAS  Google Scholar 

  87. Srinivasan R, Donskov F, Iliopoulos O, et al. Phase 2 study of belzutifan (MK-6482), an oral hypoxia-inducible factor 2α (HIF-2α) inhibitor, for Von Hippel-Lindau (VHL) disease-associated clear cell renal cell carcinoma (ccRCC). J Clin Oncol. 2021;39(15_suppl):4555–4555. https://doi.org/10.1200/JCO.2021.39.15_suppl.4555.

    Article  Google Scholar 

  88. Hörsch D, Ezziddin S, Haug A, et al. Effectiveness and side-effects of peptide receptor radionuclide therapy for neuroendocrine neoplasms in Germany: a multi-institutional registry study with prospective follow-up. Eur J Cancer Oxf Engl. 1990;2016(58):41–51. https://doi.org/10.1016/j.ejca.2016.01.009.

    Article  CAS  Google Scholar 

  89. Brabander T, van der Zwan WA, Teunissen JJM, et al. Long-term efficacy, survival, and safety of [177Lu-DOTA0, Tyr3]octreotate in patients with gastroenteropancreatic and bronchial neuroendocrine tumors. Clin Cancer Res Off J Am Assoc Cancer Res. 2017;23(16):4617–24. https://doi.org/10.1158/1078-0432.CCR-16-2743.

    Article  CAS  Google Scholar 

  90. Sun W, Lipsitz S, Catalano P, Mailliard JA, Haller DG. Phase II/III study of doxorubicin with fluorouracil compared with streptozocin with fluorouracil or dacarbazine in the treatment of advanced carcinoid tumors: eastern cooperative oncology group study E1281. J Clin Oncol. 2005;23(22):4897–904. https://doi.org/10.1200/JCO.2005.03.616.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandria T. Phan.

Ethics declarations

Conflict of Interests

Emma N. Rizen declares that she has no conflict of interest. Alexandria T. Phan has received compensation for service as a consultant from Roche Diagnostics, and has received speaker's honoraria from Ipsen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical collection on Neuroendocrine Neoplasms

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rizen, E.N., Phan, A.T. Neuroendocrine Tumors: a Relevant Clinical Update. Curr Oncol Rep 24, 703–714 (2022). https://doi.org/10.1007/s11912-022-01217-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11912-022-01217-z

Keywords

Navigation