Skip to main content

Advertisement

Log in

Cardiovascular Risks with Epidermal Growth Factor Receptor (EGFR) Tyrosine Kinase Inhibitors and Monoclonal Antibody Therapy

  • Cardio-oncology (JN Upshaw, Section Editor)
  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Tyrosine kinase inhibitors (TKI) and monoclonal antibodies (mAbs) that target the epidermal growth factor receptor (EGFR) have changed the therapeutic landscape across a range of solid malignancies. However, there is little data regarding the cardiovascular (CV) impact of these agents. The purpose of this review is to discuss reported CV effects, pathophysiology, pre-treatment screening, diagnostic workup, and treatment recommendations in this patient population.

Recent Findings

It is apparent that CV events are not class dependent, and while infrequently reported in clinical trials, unique CV toxicity may occur with EGFR inhibitors, including structural, electrical, and vascular events.

Summary

There remains an unmet need to fully elucidate the spectrum of CV events associated with EGFR inhibitors. Early CV screening, close clinical monitoring, coupled with a multidisciplinary approach between medical and cardio-oncology is needed to minimize the potentially detrimental impact of cardiotoxicity in this patient population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ACS:

Acute coronary syndrome

AE:

Adverse effects

CAD:

Coronary artery disease

CMR:

Cardiac magnetic resonance imaging

CRC:

Colorectal cancer

CT:

Computed tomography

CV:

Cardiovascular

ECG:

Electrocardiogram

EGFR:

Epidermal growth factor receptor

FDA:

United States Food and Drug Administration

FOLFIRI:

Folinic acid, 5-fluorouracil, irinotecan

GLS:

Global longitudinal strain

HER:

Human epidermal growth factor receptor

KRAS:

Kirsten rat sarcoma virus

LV:

Left ventricle

LVEF:

Left ventricular ejection fraction

mAb:

Monoclonal antibody

MET:

Mesenchymal epithelial transition factor

MI:

Myocardial infarction

NR:

Not reported

NSCLC:

Non-small cell lung cancer

RET:

Rearranged during transfection

SCA:

Sudden cardiac arrest

SCC:

Squamous cell carcinoma

TdP:

Torsades de pointes

TKI:

Tyrosine kinase inhibitor

VEGF:

Vascular endothelial growth factor

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Chen MH, Kerkelä R, Force T. Mechanisms of cardiac dysfunction associated with tyrosine kinase inhibitor cancer therapeutics. Circulation. 2008;118(1):84–95. https://doi.org/10.1161/CIRCULATIONAHA.108.776831.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Holbro T, Hynes NE. ErbB receptors: directing key signaling networks throughout life. Annu Rev Pharmacol Toxicol. 2004;44:195–217. https://doi.org/10.1146/annurev.pharmtox.44.101802.121440.

    Article  CAS  PubMed  Google Scholar 

  3. Hervent AS, De Keulenaer GW. Molecular mechanisms of cardiotoxicity induced by ErbB receptor inhibitor cancer therapeutics. Int J Mol Sci. 2012;13(10):12268–86. https://doi.org/10.3390/ijms131012268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol. 2001;2(2):127–37. https://doi.org/10.1038/35052073.

    Article  CAS  PubMed  Google Scholar 

  5. Ozcelik C, Erdmann B, Pilz B, et al. Conditional mutation of the ErbB2 (HER2) receptor in cardiomyocytes leads to dilated cardiomyopathy. Proc Natl Acad Sci U S A. 2002;99(13):8880–5. https://doi.org/10.1073/pnas.122249299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kitani T, Ong SG, Lam CK, et al. Human-induced pluripotent stem cell model of trastuzumab-induced cardiac dysfunction in patients with breast cancer. Circulation. 2019;139(21):2451–65. https://doi.org/10.1161/CIRCULATIONAHA.118.037357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lee KF, Simon H, Chen H, et al. Requirement for neuregulin receptor erbB2 in neural and cardiac development. Nature. 1995;378(6555):394–8. https://doi.org/10.1038/378394a0.

    Article  CAS  PubMed  Google Scholar 

  8. Gassmann M, Casagranda F, Orioli D, et al. Aberrant neural and cardiac development in mice lacking the ErbB4 neuregulin receptor. Nature. 1995;378(6555):390–4. https://doi.org/10.1038/378390a0.

    Article  CAS  PubMed  Google Scholar 

  9. Meyer D, Birchmeier C. Multiple essential functions of neuregulin in development. Nature. 1995;378(6555):386–90. https://doi.org/10.1038/378386a0.Erratum.In:Nature1995;378(6558):753.

    Article  CAS  PubMed  Google Scholar 

  10. Erickson SL, O’Shea KS, Ghaboosi N, et al. ErbB3 is required for normal cerebellar and cardiac development: a comparison with ErbB2-and heregulin-deficient mice. Development. 1997;124(24):4999–5011.

    Article  CAS  PubMed  Google Scholar 

  11. Schreier B, Döhler M, Rabe S, et al. Consequences of epidermal growth factor receptor (ErbB1) loss for vascular smooth muscle cells from mice with targeted deletion of ErbB1. Arterioscler Thromb Vasc Biol. 2011;31(7):1643–52. https://doi.org/10.1161/ATVBAHA.111.223537. This was a preclinical model of vascular smooth muscle isolated from mice aortas with EGFR deletion and abolished signaling. EGFR deletion led to diminished calcium signaling, decreased ERK1/2 activation in response to oxidative stress, and enhanced spontaneous cell death

    Article  CAS  PubMed  Google Scholar 

  12. Rajagopalan V, Zucker IH, Jones JA, et al. Cardiac ErbB-1/ErbB-2 mutant expression in young adult mice leads to cardiac dysfunction. Am J Physiol Heart Circ Physiol. 2008;295(2):H543–54. https://doi.org/10.1152/ajpheart.91436.2007. Blockade of ErbB-1 signaling in young adult mice. This led to blockade of ErbB-2 signaling, cardiac hypertrophy, chamber dilation, and depressed cardiac function, indicating the need of ErbB-1 signaling in normal cardiac homeostasis in adult mice.

    Article  CAS  PubMed  Google Scholar 

  13. Necela BM, Axenfeld BC, Serie DJ, et al. The antineoplastic drug, trastuzumab, dysregulates metabolism in iPSC-derived cardiomyocytes. Clin Transl Med. 2017;6:5. https://doi.org/10.1186/s40169-016-0133-2.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lee HA, Hyun SA, Byun B, et al. Electrophysiological mechanisms of vandetanib-induced cardiotoxicity: comparison of action potentials in rabbit Purkinje fibers and pluripotent stem cell-derived cardiomyocytes. PLoS ONE. 2018;13(4):e0195577. https://doi.org/10.1371/journal.pone.0195577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dowell J, Minna J, Kirkpatrick P. Erlotinib hydrochloride. Nat Rev Drug Discovery. 2005;4(5):S14–5.

    Article  Google Scholar 

  16. [Internet]. Accessdata.fda.gov. 2021 [cited 6 September 2021]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2010/021743s14s16lbl.pdf.

  17. [Internet]. European Medicine Agency. 2021 [cited 6 September 2021]. Available from: https://www.ema.europa.eu/en/documents/variation-report/tarceva-h-c-618-ii-0043-epar-assessment-report-variation_en.pdf

  18. Petrelli F, Cabiddu M, Borgonovo K, et al. Risk of venous and arterial thromboembolic events associated with anti-EGFR agents: a meta-analysis of randomized clinical trials. Ann Oncol. 2012;23(7):1672–9. https://doi.org/10.1093/annonc/mdr592.

    Article  CAS  PubMed  Google Scholar 

  19. Stuhlmiller TJ, Zawistowski JS, Chen X, et al. Kinome and transcriptome profiling reveal broad and distinct activities of erlotinib, sunitinib, and sorafenib in the mouse heart and suggest cardiotoxicity from combined signal transducer and activator of transcription and epidermal growth factor receptor inhibition. J Am Heart Assoc. 2017;6(10):e006635. https://doi.org/10.1161/JAHA.117.006635.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Moore MJ, Goldstein D, Hamm J, National Cancer Institute of Canada Clinical Trials Group, et al. Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol. 2007;25(15):1960–6. https://doi.org/10.1200/JCO.2006.07.9525. A phase III trial comparing erlotinib/gemcitabine to placebo/gemcitabine in locally advanced or metastatic pancreatic adenocarcinoma. There was a higher incidence of coronary artery events reported in the treatment arm (2.3% vs 1.2%).

    Article  CAS  PubMed  Google Scholar 

  21. Zaborowska-Szmit M, Krzakowski M, Kowalski DM, et al. Cardiovascular complications of systemic therapy in non-small-cell lung cancer. J Clin Med. 2020;9(5):1268. https://doi.org/10.3390/jcm9051268A comprehensive review of cardiotoxicity with various treatment modalities in patients with NSCLC, including several approved EGFR TKIs, including Erlotinib, Gefitinib, Afatinib, and Osimertinib.

    Article  CAS  PubMed Central  Google Scholar 

  22. Cicènas S, Geater SL, Petrov P, et al. Maintenance erlotinib versus erlotinib at disease progression in patients with advanced non-small-cell lung cancer who have not progressed following platinum-based chemotherapy (IUNO study). Lung Cancer. 2016;102:30–7. https://doi.org/10.1016/j.lungcan.2016.10.007.

    Article  PubMed  Google Scholar 

  23. Bukowski RM, Kabbinavar FF, Figlin RA, et al. Randomized phase II study of erlotinib combined with bevacizumab compared with bevacizumab alone in metastatic renal cell cancer. J Clin Oncol. 2007;25(29):4536–41. https://doi.org/10.1200/JCO.2007.11.5154.

    Article  CAS  PubMed  Google Scholar 

  24. Johnson BE, Kabbinavar F, Fehrenbacher L, et al. ATLAS: randomized, double-blind, placebo-controlled, phase IIIB trial comparing bevacizumab therapy with or without erlotinib, after completion of chemotherapy, with bevacizumab for first-line treatment of advanced non-small-cell lung cancer. J Clin Oncol. 2013;31(31):3926–34. https://doi.org/10.1200/JCO.2012.47.3983.

    Article  CAS  PubMed  Google Scholar 

  25. Pinquié F, de Chabot G, Urban T, et al. Maintenance treatment by erlotinib and toxic cardiomyopathy: a case report. Oncology. 2016;90(3):176–7. https://doi.org/10.1159/000444186.

    Article  CAS  PubMed  Google Scholar 

  26. Kus T, Aktas G, Sevinc A, et al. Could erlotinib treatment lead to acute cardiovascular events in patients with lung adenocarcinoma after chemotherapy failure? Onco Targets Ther. 2015;8:1341–3. https://doi.org/10.2147/OTT.S84480.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Truell JS, Fishbein MC, Figlin R. Myocarditis temporally related to the use of gefitinib (Iressa). Arch Pathol Lab Med. 2005;129(8):1044–6. https://doi.org/10.5858/2005-129-1044-MTRTTU.

    Article  PubMed  Google Scholar 

  28. Lynch DR Jr, Kickler TS, et al. Recurrent myocardial infarction associated with gefitinib therapy. J Thromb Thrombolysis. 2011;32(1):120–4. https://doi.org/10.1007/s11239-010-0539-4.

    Article  CAS  PubMed  Google Scholar 

  29. Yamaguchi K, Kanazawa S, Kinoshita Y, et al. Acute myocardial infarction with lung cancer during treatment with gefitinib: the possibility of gefitinib-induced thrombosis. Pathophysiol Haemost Thromb. 2005;34(1):48–50. https://doi.org/10.1159/000088548.

    Article  CAS  PubMed  Google Scholar 

  30. Omori S, Oyakawa T, Naito T, et al. Gefitinib-induced cardiomyopathy in epidermal growth receptor-mutated NSCLC. J Thorac Oncol. 2018;13(10):e207–8. https://doi.org/10.1016/j.jtho.2018.05.020.

    Article  PubMed  Google Scholar 

  31. Nuvola G, Dall’Olio FG, Melotti B, et al. Cardiac toxicity from afatinib in EGFR-mutated NSCLC: a rare but possible side effect. J Thorac Oncol. 2019;14(7):e145–6. https://doi.org/10.1016/j.jtho.2019.02.027.

    Article  PubMed  Google Scholar 

  32. Mok TS, Wu Y-L, Ahn M-J, et al. Osimertinib or platinum-pemetrexed in EGFR T790M-positive lung cancer. N Engl J Med. 2017;376(7):629–40. https://doi.org/10.1056/NEJMoa1612674. A phase III trial assessing Osimertinib in T790M-positive advanced non–small-cell lung cancer, who had disease progression after first-line EGFR-TKI therapy. A decrease in LVEF ≥10% and an absolute LVEF <50% occurred in 5% of the osimertinib arm with a median time onset of 5.5 months. Furthermore, 3% of the osimertinib arm had QTc prolongation compared to 0% in the control arm.

    Article  CAS  PubMed  Google Scholar 

  33. Ramalingam SS, Vansteenkiste J, Planchard D, et al. Overall survival with osimertinib in untreated, EGFR-mutated advanced NSCLC. N Engl J Med. 2020;382(1):41–50. https://doi.org/10.1056/NEJMoa1913662. A phase III trial comparing frontline osimertinib to gefitinib or erlotinib for advanced NSCLC. In this study, 10% of osimertinib treated patients had QTc prolongation, with ≥ grade 3 QTc prolongation in 1%, and decreased LVEF occurred in 5% of osimertinib treated patients.

    Article  CAS  PubMed  Google Scholar 

  34. Wu YL, Tsuboi M, He J, et al. Osimertinib in resected EGFR-mutated non-small-cell lung cancer. N Engl J Med. 2020;383(18):1711–23. https://doi.org/10.1056/NEJMoa2027071. A phase III study assessing adjuvant Osimertinib compared to placebo in stage IB to IIIA NSCLC. The Osimertinib arm reported cardiac AE in 5% (reduced EF, cardiomyopathy, pulmonary edema and cardiomyopathy compared to 3% in the placebo group.

    Article  CAS  PubMed  Google Scholar 

  35. Kunimasa K, Kamada R, Oka T, et al. Cardiac adverse events in EGFR-mutated non-small cell lung cancer treated with osimertinib. JACC CardioOncol. 2020;2(1):1–10. https://doi.org/10.1016/j.jaccao.2020.02.003.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Anand K, Ensor J, Trachtenberg B, et al. Osimertinib-induced cardiotoxicity: a retrospective review of the FDA Adverse Events Reporting System (FAERS). JACC CardioOncol. 2019;1(2):172–8. https://doi.org/10.1016/j.jaccao.2019.10.006. A pharmacovigilance study that showed a statistically significant reporting odds ratio of heart failure, QTc prolongation and atrial fibrillation in Osimertinib treated patients compared to first and second-generation EGFR TKIs and total reported events in the database.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Waliany S, Zhu H, Wakelee H, et al. Pharmacovigilance analysis of cardiac toxicities associated with targeted therapies for metastatic NSCLC. J Thorac Oncol. 2021;S1556–0864(21):02377–87. https://doi.org/10.1016/j.jtho.2021.07.030.

    Article  CAS  Google Scholar 

  38. [Internet]. Accessdata.fda.gov. 2021 [cited 20 September 2021]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/215310s000lbl.pdf.

  39. Saura C, Oliveira M, Feng YH, et al. Neratinib plus capecitabine versus lapatinib plus capecitabine in HER2-positive metastatic breast cancer previously treated with ≥ 2 HER2-directed regimens: phase III NALA Trial. J Clin Oncol. 2020;38(27):3138–49. https://doi.org/10.1200/JCO.20.00147. A phase III trial comparing neratinib/capecitabine to lapatinib/capecitabine. Arrhythmia (3.3% vs 3.5%), ischemic heart disease (0.7% vs 0.6%), QTc prolongation (2.3% vs 3.9%), and decreased LVEF (4.3% vs 2.3%) was reported in both treatment arms.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Piccart-Gebhart M, Holmes E, Baselga J, et al. Adjuvant lapatinib and trastuzumab for early human epidermal growth factor receptor 2-positive breast cancer: results from the randomized phase III adjuvant lapatinib and/or trastuzumab treatment optimization trial. J Clin Oncol. 2016;34(10):1034–42. https://doi.org/10.1200/JCO.2015.62.1797. Epub 2015 Nov 23. Erratum in: J Clin Oncol. 2019 Feb 1; 37(4):356.

  41. Pivot X, Manikhas A, Żurawski B, et al. CEREBEL (EGF111438): A phase III, randomized, open-label study of lapatinib plus capecitabine versus trastuzumab plus capecitabine in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer. J Clin Oncol. 2015;33(14):1564–73. https://doi.org/10.1200/JCO.2014.57.1794.

    Article  CAS  PubMed  Google Scholar 

  42. Chan A, Delaloge S, Holmes FA, et al. Neratinib after trastuzumab-based adjuvant therapy in patients with HER2-positive breast cancer (ExteNET): a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2016;17(3):367–77. https://doi.org/10.1016/S1470-2045(15)00551-3A phase III trial assessing extended adjuvant neratinib in patients with HER2 positive breast cancer and had aready received adjuvant trastuzumab. In this study, QTc prolongation occurred in 3% and decreased LVEF in 1%.

    Article  CAS  PubMed  Google Scholar 

  43. Awada A, Colomer R, Inoue K, et al. Neratinib plus paclitaxel vs trastuzumab plus paclitaxel in previously untreated metastatic ERBB2-positive breast cancer: the NEfERT-T randomized clinical trial. JAMA Oncol. 2016;2(12):1557–64. https://doi.org/10.1001/jamaoncol.2016.0237.

    Article  PubMed  Google Scholar 

  44. Wells SA Jr, Robinson BG, Gagel RF, et al MJ. Vandetanib in patients with locally advanced or metastatic medullary thyroid cancer: a randomized, double-blind phase III trial. J Clin Oncol. 2012;30(2):134–41. https://doi.org/10.1200/JCO.2011.35.5040. Epub 2011 Oct 24. Erratum in: J Clin Oncol. 2013 Aug; 31 (24):3049. A phase III study of Vandetanic in patients with locally advanced or metastatic medullary thyroid cancer. Hypertension was reported in 32% and QTc prolongation in 14%, with SCA occurring in one patient.

  45. Natale RB, Thongprasert S, Greco FA, et al. Phase III trial of vandetanib compared with erlotinib in patients with previously treated advanced non-small-cell lung cancer. J Clin Oncol. 2011;29(8):1059–66. https://doi.org/10.1200/JCO.2010.28.5981.

    Article  CAS  PubMed  Google Scholar 

  46. Kiura K, Nakagawa K, Shinkai T, et al. A randomized, double-blind, phase IIa dose-finding study of Vandetanib (ZD6474) in Japanese patients with non-small cell lung cancer. J Thorac Oncol. 2008;3(4):386–93. https://doi.org/10.1097/JTO.0b013e318168d228.

    Article  PubMed  Google Scholar 

  47. Liu Y, Liu Y, Fan ZW, et al. Meta-analysis of the risks of hypertension and QTc prolongation in patients with advanced non-small cell lung cancer who were receiving vandetanib. Eur J Clin Pharmacol. 2015;71(5):541–7. https://doi.org/10.1007/s00228-015-1831-1.

    Article  CAS  PubMed  Google Scholar 

  48. Zang J, Wu S, Tang L, et al. Incidence and risk of QTc interval prolongation among cancer patients treated with vandetanib: a systematic review and meta-analysis. PLoS ONE. 2012;7(2):e30353. https://doi.org/10.1371/journal.pone.0030353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. •• Paz-Ares L, Mezger J, Ciuleanu TE, et al. Necitumumab plus pemetrexed and cisplatin as first-line therapy in patients with stage IV non-squamous non-small-cell lung cancer (INSPIRE): an open-label, randomised, controlled phase 3 study. Lancet Oncol. 2015;16(3):328–37. https://doi.org/10.1016/S1470-2045(15)70046-X. A phase III study comparing cisplatin/pemetrexed/necitumumab to cisplatin/pemetrexed/placebo as first line in stage IV SCC NSCLC. In the treatment arm, pulmonary thromboembolism was reported in 5% and SCA was reported in 3% of the treatment arm.

    Article  CAS  PubMed  Google Scholar 

  50. Besse B, Garrido P, Cortot AB, et al. Efficacy and safety of necitumumab and pembrolizumab combination therapy in patients with Stage IV non-small cell lung cancer. Lung Cancer. 2020;142:63–9. https://doi.org/10.1016/j.lungcan.2020.02.003.

    Article  PubMed  Google Scholar 

  51. Thatcher N, Hirsch FR, Luft AV, et al. Necitumumab plus gemcitabine and cisplatin versus gemcitabine and cisplatin alone as first-line therapy in patients with stage IV squamous non-small-cell lung cancer (SQUIRE): an open-label, randomised, controlled phase 3 trial. Lancet Oncol. 2015;16(7):763–74. https://doi.org/10.1016/S1470-2045(15)00021-2.

    Article  CAS  PubMed  Google Scholar 

  52. Vermorken JB, Mesia R, Rivera F, et al. Platinum-based chemotherapy plus cetuximab in head and neck cancer. N Engl J Med. 2008;359(11):1116–27. https://doi.org/10.1056/NEJMoa0802656.

    Article  CAS  PubMed  Google Scholar 

  53. Sobrero A, Lenz HJ, Eng C, et al. Extended RAS Analysis of the phase III EPIC trial: irinotecan + cetuximab versus irinotecan as second-line treatment for patients with metastatic colorectal cancer. Oncologist. 2021;26(2):e261–9. https://doi.org/10.1002/onco.13591.

    Article  CAS  PubMed  Google Scholar 

  54. Ishiguro M, Watanabe T, Yamaguchi K, et al. A Japanese post-marketing surveillance of cetuximab (Erbitux®) in patients with metastatic colorectal cancer. Jpn J Clin Oncol. 2012;42(4):287–94. https://doi.org/10.1093/jjco/hys005. A post-marketing study of Japanese patients receiving cetuximab with our without chemotherapy for metastatic colorectal cancer. Cardiotoxicity occurred in 0.9% of 2,126 patients, with 4 deaths attributed to cardiotoxicity.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Gronich N, Lavi I, Barnett-Griness O, et al. Tyrosine kinase-targeting drugs-associated heart failure. Br J Cancer. 2017;116(10):1366–73. https://doi.org/10.1038/bjc.2017.88A nested case-control analysis that found both cetuximab and panitumumab had a higher odds of reported heartfailure, particulary in patients with history of diabetes mellitus, hypertension, chronic renal failure, ischemic heart disease, valvular heart disease, arrhythmia, and smoking.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tang XM, Chen H, Li Q, et al. Assessment of the cardiac safety between cetuximab and panitumumab as single therapy in Chinese chemotherapy-refractory mCRC. Onco Targets Ther. 2017;11:123–9. https://doi.org/10.2147/OTT.S149716. A study to assess cardiac safety with either single agent cetuximab or panitumumab used as single agent in refractory metastatic colorectal cancer. No significant difference between the two treatment arms, but EKG changes, and troponin elevations were frequently reported.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Qi WX, Zhao S, Chen J. Risk factors for developing cardiac toxicities in cancer patients treated with panitumumab combination therapy. Future Oncol. 2020;16(19):1359–70. https://doi.org/10.2217/fon-2020-0050.

    Article  CAS  PubMed  Google Scholar 

  58. Boku N, Sugihara K, Kitagawa Y, et al. Panitumumab in Japanese patients with unresectable colorectal cancer: a post-marketing surveillance study of 3085 patients. Jpn J Clin Oncol. 2014;44(3):214–23. https://doi.org/10.1093/jjco/hyt196.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Park K, Haura EB, Leighl NB, et al. Amivantamab in EGFR Exon 20 Insertion–mutated non–small-cell lung cancer progressing on platinum chemotherapy: initial results from the CHRYSALIS phase I study. J Clin Oncol. 2021; JCO.21.00662. https://doi.org/10.1200/jco.21.00662. A phase I, open-label, dose-escalation, and dose-expansion study assessing amivantamab in patients with EGFR Exon 20 insertion mutations in NSCLC. In the safety population (n=114), there was one case of acute coronary syndrome and once case of atrial flutter.

  60. Giaccone G. The role of gefitinib in lung cancer treatment. Clin Cancer Res. 2004;10(12 Pt 2):4233s–7s. https://doi.org/10.1158/1078-0432.CCR-040005 ([Internet]).

    Article  CAS  PubMed  Google Scholar 

  61. Accessdata.fda.gov. 2021 [cited 6 September 2021]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/206995s003lbl.pdf-ADDED.

  62. Maemondo M, Inoue A, Kobayashi K, et al. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N Engl J Med. 2010;362(25):2380–8. https://doi.org/10.1056/NEJMoa0909530.

    Article  CAS  PubMed  Google Scholar 

  63. Wu YL, Cheng Y, Zhou X, et al. Dacomitinib versus gefitinib as first-line treatment for patients with EGFR-mutation-positive non-small-cell lung cancer (ARCHER 1050): a randomised, open-label, phase 3 trial. Lancet Oncol. 2017;18(11):1454–66. https://doi.org/10.1016/S1470-2045(17)30608-3.

    Article  CAS  PubMed  Google Scholar 

  64. Mitsudomi T, Morita S, Yatabe Y, et al. Gefitinib versus cisplatin plus docetaxel in patients with non-small-cell lung cancer harbouring mutations of the epidermal growth factor receptor (WJTOG3405): an open label, randomised phase 3 trial. Lancet Oncol. 2010;11(2):121–8. https://doi.org/10.1016/S1470-2045(09)70364-X.

    Article  CAS  PubMed  Google Scholar 

  65. Park K, Tan E, O’Byrne K, et al. Afatinib versus gefitinib as first-line treatment of patients with EGFR mutation-positive non-small-cell lung cancer (LUX-Lung 7): a phase 2B, open-label, randomised controlled trial. Lancet Oncol. 2016;17(5):577–89.

    Article  CAS  PubMed  Google Scholar 

  66. Yang JJ, Zhou Q, Yan HH, et al. A phase III randomised controlled trial of erlotinib vs gefitinib in advanced non-small cell lung cancer with EGFR mutations. Br J Cancer. 2017;116(5):568–74. https://doi.org/10.1038/bjc.2016.456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Buza V, Rajagopalan B, Curtis AB. Cancer treatment-induced arrhythmias: focus on chemotherapy and targeted therapies. Circ Arrhythm Electrophysiol. 2017;10(8):e005443. https://doi.org/10.1161/CIRCEP.117.005443.

    Article  PubMed  Google Scholar 

  68. Brinkmeyer JK, Moore DC. Necitumumab for the treatment of squamous cell non-small cell lung cancer. J Oncol Pharm Pract. 2018;24(1):37–41. https://doi.org/10.1177/1078155216682365.

    Article  CAS  PubMed  Google Scholar 

  69. [Internet]. Accessdata.fda.gov. 2021 [cited 7 September 2021]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2015/125547s000lbl.pdf.

  70. Ewer MS, Patel K, O’Brien D, et al. Cardiac safety of afatinib: a review of data from clinical trials. Cardiooncology. 2015;1(1):3. https://doi.org/10.1186/s40959-015-0006-7.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Mok TS, Cheng Y, Zhou X, et al. Updated overall survival in a randomized study comparing dacomitinib with gefitinib as first-line treatment in patients with advanced non-small-cell lung cancer and EGFR-activating mutations. Drugs. 2021;81(2):257–66. https://doi.org/10.1007/s40265-020-01441-6.

    Article  CAS  PubMed  Google Scholar 

  72. Tan W, Giri N, Quinn S, et al. Evaluation of the potential effect of dacomitinib, an EGFR tyrosine kinase inhibitor, on ECG parameters in patients with advanced non-small cell lung cancer. Invest New Drugs. 2020;38(3):874–84. https://doi.org/10.1007/s10637-019-00887-0. A phase II study assessing the CV safety of Dacomitinib. There were no clinically relevant effect on QTc interval or other ECG parameters.

    Article  PubMed  Google Scholar 

  73. Pacheco J. Mobocertinib: a potential treatment for NSCLC with EGFR Exon 20 insertions. Cancer Discov. 2021;11(7):1617–9. https://doi.org/10.1158/2159-8290.CD-21-0379.

    Article  CAS  PubMed  Google Scholar 

  74. Riely GJ, Neal JW, Camidge DR, et al. Activity and safety of mobocertinib (TAK-788) in previously treated non-small cell lung cancer with EGFR Exon 20 Insertion Mutations from a Phase I/II Trial. Cancer Discov. 2021;11(7):1688–99. https://doi.org/10.1158/2159-8290.CD-20-1598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ramalingam S, Zhou C, Kim T, et al. Mobocertinib (TAK-788) in EGFR exon 20 insertion (ex20ins)+ metastatic NSCLC (mNSCLC): Additional results from platinum-pretreated patients (pts) and EXCLAIM cohort of phase 1/2 study. J Clin Oncol. 2021;39((15_suppl)):9014–9014. https://doi.org/10.1200/JCO.2021.39.15_suppl.9014.

    Article  Google Scholar 

  76. Center for Drug Evaluation and Research. (2021, May 21). FDA grants accelerated approval to amivantamab-vmjw for metastatic non-small cell lung cancer. U.S. Food and Drug Administration. https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-amivantamab-vmjw-metastatic-non-small-cell-lung-cancer.

  77. Chan A, Moy B, Mansi J, et al. Final efficacy results of neratinib in HER2-positive hormone receptor-positive early-stage breast cancer from the phase III ExteNET Trial. Clin Breast Cancer. 2021;21(1):80-91.e7. https://doi.org/10.1016/j.clbc.2020.09.014.

    Article  CAS  PubMed  Google Scholar 

  78. US Food & Drug Administration: FDA approves neratinib for metastatic HER2-positive breast cancer. https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-neratinib-metastatic-her2-positive-breast-cancer#:∼:text=On%20February%2025%2C%202020%2C%20the,regimens%20in%20the%20metastatic%20setting.

  79. Cameron D, Casey M, Oliva C, et al. Lapatinib plus capecitabine in women with HER-2-positive advanced breast cancer: final survival analysis of a phase III randomized trial. Oncologist. 2010;15(9):924–34. https://doi.org/10.1634/theoncologist.2009-0181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. FDA Approves Tykerb for First-Line Combination Treatment of Metastatic Breast Cancer. https://www.drugs.com/newdrugs/gsk-s-tykerb-receives-accelerated-approval-first-line-combination-metastatic-breast-cancer-1979.html.

  81. Johnston S, Pippen J Jr, Pivot X, et al. Lapatinib combined with letrozole versus letrozole and placebo as first-line therapy for postmenopausal hormone receptor-positive metastatic breast cancer. J Clin Oncol. 2009;27(33):5538–46. https://doi.org/10.1200/JCO.2009.23.3734.

    Article  CAS  PubMed  Google Scholar 

  82. Ando K, Wada T, Cao X. Precise safety pharmacology studies of lapatinib for onco-cardiology assessed using in vivo canine models. Sci Rep. 2020; 10 (738). https://doi.org/10.1038/s41598-020-57601-x.

  83. Perez EA, Koehler M, Byrne J, et al. Cardiac safety of lapatinib: pooled analysis of 3689 patients enrolled in clinical trials. Mayo Clin Proc. 2008;83(6):679–86. https://doi.org/10.4065/83.6.679.

    Article  PubMed  Google Scholar 

  84. Diéras V, Miles D, Verma S, et al. Trastuzumab emtansine versus capecitabine plus lapatinib in patients with previously treated HER2-positive advanced breast cancer (EMILIA): a descriptive analysis of final overall survival results from a randomised, open-label, phase 3 trial. Lancet Oncol. 2017;18(6):732–742. https://doi.org/10.1016/S1470-2045(17)30312-1. Epub 2017 May 16. Erratum in: Lancet Oncol. 2017 Aug;18(8):e433. Erratum in: Lancet Oncol. 2018 Aug; 19(12):e667.

  85. Choi HD, Chang MJ. Cardiac toxicities of lapatinib in patients with breast cancer and other HER2-positive cancers: a meta-analysis. Breast Cancer Res Treat. 2017;166(3):927–36. https://doi.org/10.1007/s10549-017-4460-9.

    Article  CAS  PubMed  Google Scholar 

  86. Dogan E, Yorgun H, Petekkaya I, et al. Evaluation of cardiac safety of lapatinib therapy for ErbB2-positive metastatic breast cancer: a single center experience. Med Oncol. 2012;29(5):3232–9. https://doi.org/10.1007/s12032-012-0253-5.

    Article  CAS  PubMed  Google Scholar 

  87. Eiger D, Pondé NF, Agbor-Tarh D, et al. Long-term cardiac outcomes of patients with HER2-positive breast cancer treated in the adjuvant lapatinib and/or trastuzumab treatment optimization trial. Br J Cancer. 2020;122(10):1453–60. https://doi.org/10.1038/s41416-020-0786-x. A subanalysis assessing cardiac outcomes in patients receiving either adjuvant lapatinib alone or lapatinib/trastuzumab combination. Reported cardiac events were not significant between the two treatment arms and the addition of lapatinib to trastuzumab did not appear to substantially increase the incidence of cardiac events.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Van Cutsem E, Köhne CH, Hitre E, et al. Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N Engl J Med. 2009;360(14):1408–17. https://doi.org/10.1056/NEJMoa0805019.

    Article  PubMed  Google Scholar 

  89. Sobrero AF, Maurel J, Fehrenbacher L, et al. EPIC: phase III trial of cetuximab plus irinotecan after fluoropyrimidine and oxaliplatin failure in patients with metastatic colorectal cancer. J Clin Oncol. 2008;26(14):2311–9. https://doi.org/10.1200/JCO.2007.13.1193.

    Article  CAS  PubMed  Google Scholar 

  90. Cunningham D, Humblet Y, Siena S, et al. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med. 2004;351(4):337–45. https://doi.org/10.1056/NEJMoa033025.

    Article  CAS  PubMed  Google Scholar 

  91. Bonner JA, Harari PM, Giralt J, et al. Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N Engl J Med. 2006;354(6):567–78. https://doi.org/10.1056/NEJMoa053422.

    Article  CAS  PubMed  Google Scholar 

  92. Jonker DJ, O’Callaghan CJ, Karapetis CS, et al. Cetuximab for the treatment of colorectal cancer. N Engl J Med. 2007;357(20):2040–8. https://doi.org/10.1056/NEJMoa071834.

    Article  CAS  PubMed  Google Scholar 

  93. Bossi P, Miceli R, Locati LD, et al. A randomized, phase 2 study of cetuximab plus cisplatin with or without paclitaxel for the first-line treatment of patients with recurrent and/or metastatic squamous cell carcinoma of the head and neck. Ann Oncol. 2017;28(11):2820–6. https://doi.org/10.1093/annonc/mdx439.

    Article  CAS  PubMed  Google Scholar 

  94. Rogers JE. Patient considerations in metastatic colorectal cancer - role of panitumumab. Onco Targets Ther. 2017;10:2033–44. https://doi.org/10.2147/OTT.S115430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. U.S. Food and Drug Administration (2011). CAPRELSA® (vandetanib) Tablets, [Online]. https://www.accessdata.fda.gov/drugsatfda_docs/label/2014/022405s007lbl.pdf. Accessed 9/1/2021].

  96. Koene RJ, Prizment AE, Blaes A, et al. Shared risk factors in cardiovascular disease and cancer. Circulation. 2016;133:1104–14. https://doi.org/10.1161/CIRCULATIONAHA.115.020406.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Zamorano JL, Lancellotti P, Rodriguez Munoz D, et al. 2016 ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines: the task force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC). Eur Heart J. 2016;37:2768–801. https://doi.org/10.1093/eurheartj/ehw211.

    Article  PubMed  Google Scholar 

  98. Armenian SH, Lacchetti C, Barac A, et al. Prevention and monitoring of cardiac dysfunction in survivors of adult cancers: American Society of Clinical Oncology Clinical Practice Guideline. J Clin Oncol. 2017;35:893–911. https://doi.org/10.1200/JCO.2016.70.5400.

    Article  PubMed  Google Scholar 

  99. Alexandre J, Cautela J, Ederhy S, et al. Cardiovascular toxicity related to cancer treatment: a pragmatic approach to the American and European Cardio-Oncology Guidelines. J Am Heart Assoc. 2020;9:e018403. https://doi.org/10.1161/JAHA.120.018403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Curigliano G, Lenihan D, Fradley M, et al. Management of cardiac disease in cancer patients throughout oncological treatment: ESMO consensus recommendations. Ann Oncol. 2020;31:171–90. https://doi.org/10.1016/j.annonc.2019.10.023. Updated ESMO consensus recommendations for patients who should receive screening EKG, echocardiogram for structural assessment, and patients who are candidates for primary prevention.

    Article  CAS  PubMed  Google Scholar 

  101. Dent SF, Kikuchi R, Kondapalli L, et al. Optimizing cardiovascular health in patients with cancer: a practical review of risk assessment, monitoring, and prevention of cancer treatment-related cardiovascular toxicity. Am Soc Clin Oncol Educ Book. 2020;40:1–15. https://doi.org/10.1200/EDBK_286019.

    Article  PubMed  Google Scholar 

  102. Cohen JB, Geara AS, Hogan JJ, Townsend RR. Hypertension in cancer patients and survivors: epidemiology, diagnosis, and management. JACC CardioOncol. 2019;1:238–51. https://doi.org/10.1016/j.jaccao.2019.11.009.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Stamler J, Wentworth D, Neaton JD. Is relationship between serum cholesterol and risk of premature death from coronary heart disease continuous and graded? Findings in 356,222 primary screenees of the Multiple Risk Factor Intervention Trial (MRFIT). JAMA. 1986;256:2823–8.

    Article  CAS  PubMed  Google Scholar 

  104. Shaten BJ, Kuller LH, Kjelsberg MO, et al. Lung cancer mortality after 16 years in MRFIT participants in intervention and usual-care groups. Multiple Risk Factor Intervention Trial. Ann Epidemiol. 1997;7:125–36. https://doi.org/10.1016/s1047-2797(96)00123-8.

    Article  CAS  PubMed  Google Scholar 

  105. Arnett DK, Blumenthal RS, Albert MA, et al. 2019 ACC/AHA Guideline on the primary prevention of cardiovascular disease: executive summary. J Am Coll Cardiol. 2019;74:1376–414. https://doi.org/10.1161/CIR.0000000000000677.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Seidman A, Hudis C, Pierri MK, et al. Cardiac dysfunction in the trastuzumab clinical trials experience. J Clin Oncol. 2002;20:1215–21. https://doi.org/10.1200/JCO.2002.20.5.1215.

    Article  CAS  PubMed  Google Scholar 

  107. Trachtenberg BH, Landy DC, Franco VI, et al. Anthracycline-associated cardiotoxicity in survivors of childhood cancer. Pediatr Cardiol. 2011;32:342–53.

    Article  PubMed  Google Scholar 

  108. Armenian S, Bhatia S. Predicting and preventing anthracycline-related cardiotoxicity. Am Soc Clin Oncol Educ Book. 2018;38:3–12. https://doi.org/10.1007/s00246-010-9878-3.

    Article  PubMed  Google Scholar 

  109. Salem JE, Manouchehri A, Moey M, et al. Cardiovascular toxicities associated with immune checkpoint inhibitors: an observational, retrospective, pharmacovigilance study. Lancet Oncol. 2018;19:1579–89. https://doi.org/10.1016/S1470-2045(18)30608-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Touyz RM, Herrmann J. Cardiotoxicity with vascular endothelial growth factor inhibitor therapy. NPJ Precision Oncology 2018; 2. https://doi.org/10.1038/s41698-018-0056-z.

  111. Drobni ZD, Alvi RM, Taron J, et al. Association between immune checkpoint inhibitors with cardiovascular events and atherosclerotic plaque. Circulation. 2020;142:2299–311. https://doi.org/10.1161/CIRCULATIONAHA.120.049981.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Chitturi KR, Xu J, Araujo-Gutierrez R, et al. Immune checkpoint inhibitor-related adverse cardiovascular events in patients with lung cancer. JACC: CardioOncology. 2019;1:182–92. https://doi.org/10.1016/j.jaccao.2019.11.013.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Darby SC, Ewertz M, McGale P, et al. Risk of ischemic heart disease in women after radiotherapy for breast cancer. N Engl J Med. 2013;368:987–98. https://doi.org/10.1056/NEJMoa1209825.

    Article  CAS  PubMed  Google Scholar 

  114. Gujral DM, Cleator SJ, Bhattacharyya S. Cardiac safety evaluation in cancer clinical trials. Eur J Cancer. 2018;103:143–6. https://doi.org/10.1016/j.ejca.2018.07.141.

    Article  PubMed  Google Scholar 

  115. Lancellotti P, Suter TM, Lopez-Fernandez T, et al. Cardio-oncology services: rationale, organization, and implementation. Eur Heart J. 2019;40:1756–63. https://doi.org/10.1093/eurheartj/ehy453.

    Article  PubMed  Google Scholar 

  116. Alexandre J, Salem JE, Moslehi J, et al. Identification of anticancer drugs associated with atrial fibrillation: analysis of the WHO pharmacovigilance database. Eur Heart J Cardiovasc Pharmacother. 2021;7:312–20. https://doi.org/10.1093/ehjcvp/pvaa037.

    Article  PubMed  Google Scholar 

  117. Steffel J, Verhamme P, Potpara TS, et al. The 2018 European Heart Rhythm Association Practical Guide on the use of non-vitamin K antagonist oral anticoagulants in patients with atrial fibrillation. Eur Heart J. 2018;39:1330–93. https://doi.org/10.1093/eurheartj/ehy136.

    Article  CAS  PubMed  Google Scholar 

  118. Sondergaard L, Wong YH, Reddy VY, et al. Propensity-matched comparison of oral anticoagulation versus antiplatelet therapy after left atrial appendage closure with WATCHMAN. JACC Cardiovasc Interv. 2019;12:1055–63. https://doi.org/10.1016/j.jcin.2019.04.004.

    Article  PubMed  Google Scholar 

  119. Pudil R, Mueller C, Celutkiene J, et al. Role of serum biomarkers in cancer patients receiving cardiotoxic cancer therapies: a position statement from the Cardio-Oncology Study Group of the Heart Failure Association and the Cardio-Oncology Council of the European Society of Cardiology. Eur J Heart Fail. 2020;22:1966–83. https://doi.org/10.1002/ejhf.2017.

    Article  CAS  PubMed  Google Scholar 

  120. Plana JC, Galderisi M, Barac A, et al. Expert consensus for multimodality imaging evaluation of adult patients during and after cancer therapy: a report from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2014;27:911–39. https://doi.org/10.1016/j.echo.2014.07.012.

    Article  PubMed  Google Scholar 

  121. Voigt JU, Pedrizzetti G, Lysyansky P, et al. Definitions for a common standard for 2D speckle tracking echocardiography: consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging. J Am Soc Echocardiogr. 2015;28:183–93. https://doi.org/10.1093/ehjci/jeu184.

    Article  PubMed  Google Scholar 

  122. Liu JE, Barac A, Thavendiranathan P, Scherrer-Crosbie M. Strain imaging in cardio-oncology. JACC: CardioOncology. 2020;2:677–89. https://doi.org/10.1016/j.jaccao.2020.10.011.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Porta-Sanchez A, Gilbert C, Spears D et al. Incidence, diagnosis, and management of QT prolongation induced by cancer therapies: a systematic review. J Am Heart Assoc 2017; 6. https://doi.org/10.1161/JAHA.117.007724.

  124. Harries I, Liang K, Williams M, et al. Magnetic resonance imaging to detect cardiovascular effects of cancer therapy: JACC CardioOncology state-of-the-art review. JACC CardioOncol. 2020;2:270–92. https://doi.org/10.1016/j.jaccao.2020.04.011.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Detrano R, Guerci AD, Carr JJ, et al. Coronary calcium as a predictor of coronary events in four racial or ethnic groups. N Engl J Med. 2008;358:1336–45. https://doi.org/10.1056/NEJMoa072100.

    Article  CAS  PubMed  Google Scholar 

  126. Iliescu CA, Grines CL, Herrmann J, et al. SCAI Expert consensus statement: evaluation, management, and special considerations of cardio-oncology patients in the cardiac catheterization laboratory (endorsed by the Cardiological Society of India, and sociedad Latino Americana de Cardiologia intervencionista). Catheter Cardiovasc Interv. 2016;87:E202–23. https://doi.org/10.1002/ccd.26379.

    Article  PubMed  Google Scholar 

  127. Celutkiene J, Pudil R, Lopez-Fernandez T, et al. Role of cardiovascular imaging in cancer patients receiving cardiotoxic therapies: a position statement on behalf of the Heart Failure Association (HFA), the European Association of Cardiovascular Imaging (EACVI) and the Cardio-Oncology Council of the European Society of Cardiology (ESC). Eur J Heart Fail. 2020;22:1504–24. https://doi.org/10.1002/ejhf.1957.

    Article  CAS  PubMed  Google Scholar 

  128. Biersmith MA, Tong MS, Guha A, et al. Multimodality cardiac imaging in the era of emerging cancer therapies. J Am Heart Assoc. 2020;9:e013755. https://doi.org/10.1161/JAHA.119.013755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Lynce F, Barac A, Geng X, et al. Prospective evaluation of the cardiac safety of HER2-targeted therapies in patients with HER2-positive breast cancer and compromised heart function: the SAFE-HEaRt study. Breast Cancer Res Treat. 2019;175:595–603. https://doi.org/10.1007/s10549-019-05191-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Hiranuma O, Uchino J, Yamada T, et al. Rationale and design of a phase II trial of osimertinib combined with bevacizumab in patients with untreated epidermal growth factor receptor-mutated non-small-cell lung cancer and malignant pleural and/or pericardial effusion (SPIRAL II Study). Clin Lung Cancer. 2019;20:e402–6. https://doi.org/10.1016/j.cllc.2019.02.016.

    Article  CAS  PubMed  Google Scholar 

  131. Chiabrando JG, Bonaventura A, Vecchie A, et al. Management of acute and recurrent pericarditis: JACC state-of-the-art review. J Am Coll Cardiol. 2020;75:76–92. https://doi.org/10.1016/j.jacc.2019.11.021.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barry H. Trachtenberg.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical collection on Cardio-oncology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chitturi, K.R., Burns, E.A., Muhsen, I.N. et al. Cardiovascular Risks with Epidermal Growth Factor Receptor (EGFR) Tyrosine Kinase Inhibitors and Monoclonal Antibody Therapy. Curr Oncol Rep 24, 475–491 (2022). https://doi.org/10.1007/s11912-022-01215-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11912-022-01215-1

Keywords

Navigation