Skip to main content

Advertisement

Log in

Childhood Acute Leukemias in Developing Nations: Successes and Challenges

  • Pediatric Oncology (KL Davis, Section Editor)
  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Acute leukemias represent a tremendous threat to public health around the globe and the main cause of death due to disease in scholar age children from developing nations. Here, we review their current status in Mexico, as a paradigm of study, and the major challenges to control systemic diseases like childhood cancer.

Recent Findings

A unique molecular epidemiology, late/low precision diagnosis, limited access to treatment, toxicity associated with therapy, continuous exposure to environmental risk factors, and the high frequency of early relapses are some of the factors cooperating to low rates of survival in low-to-medium-income countries. Deliberative dialogues and exhaustive programs have emerged as promising means of advancing evidence-informed policy, by providing a structured forum for key stakeholders to integrate scientific and pragmatic knowledge about complex health concerns.

Summary

A system-wide strategy based on the comprehensive leukemia identity is essential for a meaningful decline in early childhood mortality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. WHO 2020: Regional Office for the Americas of the World Health Organization 525 Twenty-third Street, N.W., Washington, D.C. 20037, United States of America, 2020.

  2. International Agency for Research on Cancer. GLOBOCAN: estimated cancer incidence, mortality and prevalence worldwide in 2018. Lyon, France: IARC; 2018 http://globocan.iarc.fr/.

  3. Steliarova-Foucher E, Colombet M, Ries LAG, Moreno F, Dolya A, Bray F, et al. International incidence of childhood cancer, 2001–10: a population-based registry study. Lancet Oncol. 2017;18:719–31.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Steliarova-Foucher E. How can global incidence estimates support childhood cancer control? Lancet Oncol. 2019;20:460–1.

    Article  PubMed  Google Scholar 

  5. Gupta S, Rivera-Luna R, Ribeiro RC, Howard SC. Pediatric oncology as the next global child health priority: the need for national childhood cancer strategies in low- and middle-income countries. PLoS Med. 2014;11:e1001656.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Rivera-Luna R, Zapata-Tarres M, Shalkow-Klincovstein J, Velasco-Hidalgo L, Olaya-Vargas A, Finkelstein-Mizrahi N, et al. The burden of childhood cancer in Mexico: implications for low- and middle-income countries. Pediatr. Blood Cancer. 2017;64.

  7. Stiller CA. Global burden of childhood cancer: growing, but controllable. Lancet Oncol. 2019;20:1184–5.

    Article  PubMed  Google Scholar 

  8. Núñez-Enríquez JC, Bárcenas-López DA, Hidalgo-Miranda A, Jiménez-Hernández E, Bekker-Méndez VC, Flores-Lujano J, et al. Gene expression profiling of acute lymphoblastic leukemia in children with very early relapse. Arch Med Res. 2016;47:644–55.

    Article  PubMed  Google Scholar 

  9. Allemani C, Matsuda T, Di Carlo V, Harewood R, Matz M, Nikšić M, et al. Global surveillance of trends in cancer survival 2000–14 (CONCORD-3): analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries. Lancet. 2018;391:1023–75.

    Article  PubMed  PubMed Central  Google Scholar 

  10. • Quiroz E, Aldoss I, Pullarkat V, Rego E, Marcucci G, Douer D. The emerging story of acute lymphoblastic leukemia among the Latin American population – biological and clinical implications. Blood Rev. 2019;33:98–105 This review article discusses the most recent studies on unique molecular epidemiology, genetics and environmental risk factors in Latin American ALL patients, as a paradigmatic high-risk population.

    Article  PubMed  Google Scholar 

  11. Phillips SM, Padgett LS, Leisenring WM, Stratton KK, Bishop K, Krull KR, et al. Survivors of childhood cancer in the United States: prevalence and burden of morbidity. Cancer Epidemiol Biomarkers Prev. 2015;24:653–63.

    Article  PubMed  PubMed Central  Google Scholar 

  12. • Bhakta N, Force LM, Allemani C, Atun R, Bray F, Coleman MP, et al. Childhood cancer burden: a review of global estimates. Lancet Oncol. 2019;20:e42–53 In this propositive analysis, authors emphasize the importance of an urgent global diagnosis of the childhood cancer burden and the need of standardized metrics. These simple actions will help stakeholders to develop plans for national and institutional cancer programs.

    Article  PubMed  Google Scholar 

  13. Ribeiro RC, Antillon F, Pedrosa F, Pui CH. Global pediatric oncology: lessons from partnerships between high-income countries and low- to mid-income countries. J. Clin. Oncol. 2016;34:53–61.

    Article  CAS  PubMed  Google Scholar 

  14. Howlader N, Noone AM, Krapcho M, Miller D, Brest A, Yu M, et al. SEER cancer statistics review, 1975-2016. Natl. Cancer Inst. 2019.

  15. Enciso J, Balandrán JC, Pelayo R. The pathological complexity of childhood cancer: acute leukemias as a paradigm of study. In: Miramontes O, Alvarez-Buylla E, editors. Cancer, a complex Disease. Copit-arXives; 2018.

  16. Welner RS, Pelayo R, Kincade PW. Evolving views on the genealogy of B cells. Nat Rev Immunol. 2008;8:95–106.

    Article  CAS  PubMed  Google Scholar 

  17. Balandrán JC, Purizaca J, Enciso J, Dozal D, Sandoval A, Jiménez-Hernández E, et al. Pro-inflammatory-related loss of CXCL12 niche promotes acute lymphoblastic leukemic progression at the expense of normal lymphopoiesis. Front Immunol. 2017;7:666.

    Article  PubMed  PubMed Central  Google Scholar 

  18. • Enciso J, Mendoza L, Alvarez-Buylla E, Pelayo R. Dynamical modeling predicts an inflammation-inducible CXCR7+ B cell precursor with potential implications in lymphoid blockage pathologies. PeerJ Press. 2020;8:e9902 By computational modeling approaches, this work infers an inflammation-inducible B cell precursor endowed with abnormal functional phenotypes, compatible with leukemia initiating cells and presumably able to develop within emergent inflammatory niches.

    Article  Google Scholar 

  19. • Baccin C, Al-Sabah J, Velten L, Helbling PM, Grünschläger F, Hernández-Malmierca P, et al. Combined single-cell and spatial transcriptomics reveal the molecular, cellular and spatial bone marrow niche organization. Nat Cell Biol. 2020;22:38–48 By using transcriptomics single cell profiles, this work describes unique professional cytokine-secreting stromal cells creating stage-specific micro-niches, crucial for maintenance, cell cycling, or differentiation of all lymphoid and myeloid developing cells.

    Article  CAS  PubMed  Google Scholar 

  20. Pelayo R, Welner R, Perry SS, Huang J, Baba Y, Yokota T, et al. Lymphoid progenitors and primary routes to becoming cells of the immune system. Curr. Opin. Immunol. 2005;17:100–7.

    Article  CAS  PubMed  Google Scholar 

  21. •• Beneforti L, Dander E, Bresolin S, Bueno C, Acunzo D, Bertagna M, et al. Pro-inflammatory cytokines favor the emergence of ETV6-RUNX1-positive pre-leukemic cells in a model of mesenchymal niche. Br J Haematol. 2020;190:262–73 This work highlights the role of inflammation as onco-promoter in ETV6-RUNX1 ALL. Transformation of pre-leukemic cells is facilitated by cooperation between IL6/TNFα/ILβ pro-inflammatory cytokines and stromal microenvironment.

    Article  CAS  PubMed  Google Scholar 

  22. Chiarini F, Lonetti A, Evangelisti C, Buontempo F, Orsini E, Evangelisti C, et al. Advances in understanding the acute lymphoblastic leukemia bone marrow microenvironment: From biology to therapeutic targeting. Biochim Biophys Acta. 1863;2016:449–63.

    Google Scholar 

  23. Vilchis-Ordoñez A, Ramírez-Ramírez D, Pelayo R. The triad inflammation-microenvironment-tumor initiating cells in leukemia progression. Curr Opin Physiol. 2020;

  24. Ebinger S, Özdemir EZ, Ziegenhain C, Tiedt S, Castro Alves C, Grunert M, et al. Characterization of rare, dormant, and therapy-resistant cells in acute lymphoblastic leukemia. Cancer Cell. 2016;30:849–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Colmone A, Amorim M, Pontier A, Wang S, Jablonski E, Sipkins DA. Leukemic cells create bone marrow niches that disrupt the behavior of normal hematopoietic progenitor cells. Science. 2008;322:1861–5.

    Article  CAS  PubMed  Google Scholar 

  26. Enciso J, Mendoza L, Pelayo R. Normal vs. Malignant hematopoiesis: the complexity of acute leukemia through systems biology. Front Genet. 2015;6:290.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Enciso J, Mayani H, Mendoza L, Pelayo R. Modeling the pro-inflammatory tumor microenvironment in acute lymphoblastic leukemia predicts a breakdown of hematopoietic-mesenchymal communication networks. Front Physiol. 2016;7:349.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ramírez-Ramírez D, Padilla-Castañeda S, Galán-Enríquez CS, Vadillo E, Prieto-Chávez JL, Jiménez-Hernández E, et al. CRTAM + NK cells endowed with suppressor properties arise in leukemic bone marrow. J Leukoc Biol. 2019

  29. Boer JM, Steeghs EMP, Marchante JRM, Boeree A, Beaudoin JJ, Beverloo HB, et al. Tyrosine kinase fusion genes in pediatric BCR-ABL1-like acute lymphoblastic leukemia. Oncotarget. 2017;8:4618–28.

    Article  PubMed  Google Scholar 

  30. Reyes-León A, Juárez-Velázquez R, Medrano-Hernández A, Cuenca-Roldán T, Salas-Labadía C, Navarrete-Meneses MDP, et al. Expression of Ik6 and Ik8 isoforms and their association with relapse and death in Mexican children with acute lymphoblastic leukemia. PLoS One. 2015;10:e0130756.

    Article  PubMed  PubMed Central  Google Scholar 

  31. • Juárez-Avendaño G, Luna-Silva NC, Chargoy-Vivaldo E, Juárez-Martínez LA, Martínez-Rangel MN, Zárate-Ortiz N, et al. Poor prognosis biomolecular factors are highly frequent in childhood acute leukemias from Oaxaca, Mexico. Technol Cancer Res Treat. 2020;19:1533033820928436 Authors analyzed 218 pediatric leukemia cases from one of the most vulnerable and poorest States of Mexico and reported very high frequencies of poor prognosis cases, associated to BCR-ABL rearrangements in B-ALL. Moreover, a substantial increase of AML cases was recorded.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Balandrán JC, Vadillo E, Dozal D, Reyes-López A, Sandoval-Cabrera A, Laffont-Ortiz MD, et al. Analysis of normal hematopoietic stem and progenitor cell contents in childhood acute leukemia bone marrow. Arch Med Res. 2016;47:629–43.

    Article  PubMed  Google Scholar 

  33. Jaime-Pérez JC, López-Razo ON, García-Arellano G, Pinzón-Uresti MA, Jiménez-Castillo RA, González-Llano O, et al. Results of treating childhood acute lymphoblastic leukemia in a low-middle income country: 10 year experience in Northeast Mexico. Arch Med Res. 2016;47:668–76.

    Article  PubMed  Google Scholar 

  34. Jaime-Pérez JC, Treviño-Reyna G, Aguilar-Calderón P, Cantú-Rodríguez OG, Marfil-Rivera LJ, Gómez-Almaguer D. Contributions of a regional approach to document hematologic disease in Mexico: a 10-year experience in an open population. Hematology. 2018;23:803–9.

    Article  PubMed  Google Scholar 

  35. Muñoz-Aguirre P, Huerta-Gutierrez R, Zamora S, Vega-Vega L, Hernandez-Avila JE, Morales-Carmona E, et al. Health coverage for people without social security in Mexico: a retrospective cohort to assess childhood acute lymphoblastic leukaemia survival. medRxiv. 2020.

  36. Pérez-Cuevas R, Doubova SV, Zapata-Tarres M, Flores-Hernández S, Frazier L, Rodríguez-Galindo C, et al. Scaling up cancer care for children without medical insurance in developing countries: the case of Mexico. Pediatr Blood Cancer. 2013;60:196–203.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Schraw JM, Peckham-Gregory EC, Rabin KR, Scheurer ME, Lupo PJ, Oluyomi A. Area deprivation is associated with poorer overall survival in children with acute lymphoblastic leukemia. Pediatr Blood Cancer. 2020;23:e28525.

    Google Scholar 

  38. Bona K, Blonquist TM, Neuberg DS, Silverman LB, Wolfe J. Impact of socioeconomic status on timing of relapse and overall survival for children treated on Dana-Farber Cancer Institute ALL Consortium Protocols (2000-2010). Pediatr Blood Cancer. 2016;63:1012–8.

    Article  PubMed  Google Scholar 

  39. Wang L, Bhatia S, Gomez SL, Yasui Y. Differential inequality trends over time in survival among U.S. children with acute lymphoblastic leukemia by race/ethnicity, age at diagnosis, and sex. Cancer Epidemiol Biomarkers Prev. 2015;24:1781–8.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Reyes-León A, Ramírez-Martínez M, Fernández-García D, Amaro-Muñoz D, Velázquez-Aragón JA, Salas-Labadía C, et al. Variants in ARID5B gene are associated with the development of acute lymphoblastic leukemia in Mexican children. Ann Hematol. 2019;98:2379–88.

    Article  PubMed  Google Scholar 

  41. • Shoag JM, Barredo JC, Lossos IS, Pinheiro PS. Acute lymphoblastic leukemia mortality in Hispanic Americans. Leuk Lymphoma. 2020;2:1–8 Higher mortality in Hispanics is usually associated to more frequent incidence of high-risk molecular markers with native ancestry. This interesting epidemiologic study is the first demonstration of a clear difference in mortality from ALL in Hispanics on a population basis.

    Google Scholar 

  42. González-León M, Fernández-Gárate JE, Rascón-Pacheco RA, Valladares-Aranda MÁ, Dávila-Torres J, Borja-Aburto VH. The burden of disease of cancer in the Mexican social security institute. Salud Publica Mex. 2016;58:132–41.

    Article  PubMed  Google Scholar 

  43. Greaves M. A causal mechanism for childhood acute lymphoblastic leukaemia. Nat Rev Cancer. 2018;18:471–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hernández AF, Menéndez P. Linking pesticide exposure with pediatric leukemia: potential underlying mechanisms. Int. J. Mol. Sci. 2016;29:17–461.

    Google Scholar 

  45. Castresana GP, Roldán EC, Suastegui WAG, Perales JLM, Montalvo AC, Silva AH. Evaluation of health risks due to heavy metals in a rural population exposed to Atoyac River pollution in Puebla, Mexico. Water. 2019;11:277.

    Article  CAS  Google Scholar 

  46. Bailey HD, Infante-Rivard C, Metayer C, Clavel J, Lightfoot T, Kaatsch P, et al. Home pesticide exposures and risk of childhood leukemia: findings from the childhood leukemia international consortium. Int J Cancer. 2015;105:999–1013.

    Google Scholar 

  47. Infante-Rivard C, Olson E, Jacques L, Ayotte P. Drinking water contaminants and childhood leukemia. Epidemiology. 2001;12:13–9.

    Article  CAS  PubMed  Google Scholar 

  48. Popkin BM, Corvalan C, Grummer-Strawn LM. Dynamics of the double burden of malnutrition and the changing nutrition reality. Lancet. 2020;395(10217):65–74.

    Article  PubMed  Google Scholar 

  49. Núñez-Enríquez JC, Gil-Hernández AE, Jiménez-Hernández E, Fajardo-Gutiérrez A, Medina-Sansón A, Flores-Lujano J, et al. Overweight and obesity as predictors of early mortality in Mexican children with acute lymphoblastic leukemia: a multicenter cohort study. BMC Cancer. 2019;19:708.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Pramanik R, Sheng X, Ichihara B, Heisterkamp N, Mittelman SD. Adipose tissue attracts and protects acute lymphoblastic leukemia cells from chemotherapy. Leuk Res. 2013;37:503–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hemmati S, Haque T, Gritsman K. Inflammatory signaling pathways in preleukemic and leukemic stem cells. Front. Oncol. 2017;7:265.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Hernández-Cordero S, Cuevas-Nasu L, Morán-Ruán MC, Méndez-Gómez Humarán I, Ávila-Arcos MA, Rivera-Dommarco JA. Overweight and obesity in Mexican children and adolescents during the last 25 years. Nutr Diabetes. 2017;7:e247.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Wen Y, Jin R, Chen H. Interactions between gut microbiota and acute childhood leukemia. Front. Microbiol. 2019;10:1300.

    Article  PubMed  PubMed Central  Google Scholar 

  54. • Doubova SV, Knaul FM, Borja-Aburto VH, Garcia-Saíso S, Zapata-Tarres M, Gonzalez-Leon M, et al. Access to paediatric cancer care treatment in Mexico: responding to health system challenges and opportunities. Health Policy Plan. 2020;35:291–301 By conducting an exhaustive data analysis from pediatric cancer care institutions in Mexico, this interesting work discusses progress, gaps and current challenges to achieve an effective universal health coverage aimed to reduce mortality rates in Mexican children.

    Article  PubMed  Google Scholar 

  55. Arriaga-Pizano L, Ramírez-Ramírez D, Prieto-Chávez J, Pelayo R, Ruiz-Argüelles A. Reporte de la primera reunión nacional de consenso para la inmunofenotipificación de leucemias agudas. Gac Med Mex. 2019;155:20–9.

    PubMed  Google Scholar 

  56. Theunissen P, Mejstrikova E, Sedek L, Van Der Sluijs-Gelling AJ, Gaipa G, Bartels M, et al. Standardized flow cytometry for highly sensitive MRD measurements in B-cell acute lymphoblastic leukemia. Blood. 2017;

  57. Flores-Montero J, Sanoja-Flores L, Paiva B, Puig N, García-Sánchez O, Böttcher S, et al. Next Generation Flow for highly sensitive and standardized detection of minimal residual disease in multiple myeloma. Leukemia. 2017;129:347–57.

    Google Scholar 

  58. Waanders E, Gu Z, Dobson SM, Antić Ž, Crawford JC, Ma X, et al. Mutational landscape and patterns of clonal evolution in relapsed pediatric acute lymphoblastic leukemia. Blood Cancer Discov. 2020;1:96–111.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Sánchez R, Ayala R, Martínez-López J. Minimal residual disease monitoring with next- generation sequencing methodologies in hematological malignancies. Int. J. Mol. Sci. 2019;20:2832.

    Article  PubMed Central  Google Scholar 

  60. Kohlmann A, Schoch C, Schnittger S, Dugas M, Hiddenmann W, Kern W, et al. Pediatric acute lymphoblastic leukemia (ALL) gene expression signatures classify an independent cohort of adult ALL patients. Leukemia. 2004;18:63–71.

    Article  CAS  PubMed  Google Scholar 

  61. Staal FJT, van der Burg M, Wessels LFA, Barendregt BH, Baert MRM, van den Burg CMM, et al. DNA microarrays for comparison of gene expression profiles between diagnosis and relapse in precursor-B acute lymphoblastic leukemia: choice of technique and purification influence the identification of potential diagnostic markers. Leukemia. 2003;17:1324–32.

    Article  CAS  PubMed  Google Scholar 

  62. Ross ME, Zhou X, Song G, Shurtleff SA, Girtman K, Williams WK, et al. Classification of pediatric acute lymphoblastic leukemia by gene expression profiling. Blood. 2003;102:2951–9.

    Article  CAS  PubMed  Google Scholar 

  63. Bendall SC, Davis KL, Amir EAD, Tadmor MD, Simonds EF, Chen TJ, et al. Single-cell trajectory detection uncovers progression and regulatory coordination in human b cell development. Cell. 2014;157:714–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. •• Good Z, Sarno J, Jager A, Samusik N, Aghaeepour N, Simonds EF, et al. Single-cell developmental classification of B cell precursor acute lymphoblastic leukemia at diagnosis reveals predictors of relapse. Nat Med. 2018;24:474–83 This elegant cytomics work highlighted a hidden relapse-developmental stage at B-ALL debut by using mass cytometry and machine learning tools. A novel malignant differentiation mapping algorithm, the 'developmentally dependent predictor of relapse' (DDPR), is presented as a strategy for more accurate risk stratification and outcome prediction.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. le Viseur C, Hotfilder M, Bomken S, Wilson K, Rottgers S, Schrauder A, et al. In childhood acute lymphoblastic leukemia, blasts at different stages of immunophenotypic maturation have stem cell properties. Cancer Cell. 2008;14:47–58.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Elder A, Bomken S, Wilson I, Blair HJ, Cockell S, Ponthan F, et al. Abundant and equipotent founder cells establish and maintain acute lymphoblastic leukaemia. Leukemia. 2017;31:2577–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kumar B, Garcia M, Weng L, Jung X, Murakami JL, Hu X, et al. Acute myeloid leukemia transforms the bone marrow niche into a leukemia-permissive microenvironment through exosome secretion. Leukemia. 2018;32:575–87.

    Article  CAS  PubMed  Google Scholar 

  68. •• Velázquez-Avila M, Balandrán JC, Ramírez-Ramírez D, Velázquez-Avila M, Sandoval A, Felipe-López A, et al. High cortactin expression in B-cell acute lymphoblastic leukemia is associated with increased transendothelial migration and bone marrow relapse. Leukemia. 2019;33:1337–48 High expression levels of cortactin were related to drug-resistant high-risk groups and bone marrow relapse in B-ALL. Moreover, cortactin may regulate positioning of quiescent drug-resistant primitive leukemic cells in BM and function as biomarker to identify patients susceptible to relapse in B-ALL.

    Article  PubMed  Google Scholar 

  69. van den Berk LCJ, van der Veer A, Willemse ME, Theeuwes MJGA, Luijendijk MW, Tong WH, et al. Disturbed CXCR4/CXCL12 axis in paediatric precursor B-cell acute lymphoblastic leukaemia. Br J Haematol. 2014;166:240–9.

    Article  PubMed  Google Scholar 

  70. Pal D, Blair HJ, Elder A, Dormon K, Rennie KJ, Coleman DJL, et al. Long-term in vitro maintenance of clonal abundance and leukaemia-initiating potential in acute lymphoblastic leukaemia. Leukemia. 2016;30:1691–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Neal JT, Li X, Zhu J, Giangarra V, Grzeskowiak CL, Ju J, et al. Organoid modeling of the tumor immune microenvironment Cell. 2018;175:1972-1988.e16.

  72. de Barros APDN, Takiya CM, Garzoni LR, Leal-Ferreira ML, Dutra HS, Chiarini LB, et al. Osteoblasts and bone marrow mesenchymal stromal cells control hematopoietic stem cell migration and proliferation in 3D in vitro model. PLoS One. 2010;5:e9093.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Pinho S, Lacombe J, Hanoun M, Mizoguchi T, Bruns I, Kunisaki Y, et al. PDGFRα and CD51 mark human nestin+ sphere-forming mesenchymal stem cells capable of hematopoietic progenitor cell expansion. J Exp Med. 2013;210:1351–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Jaiswal S, Jamieson CHM, Pang WW, Park CY, Chao MP, Majeti R, et al. CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis. Cell. 2009;138:271–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Davis KL, Agarwal AM, Verma AR. Checkpoint inhibition in pediatric hematologic malignancies. Pediatr Hematol Oncol. 2017;34:379–94.

    Article  CAS  PubMed  Google Scholar 

  76. Davila ML, Riviere I, Wang X, Bartido S, Park J, Curran K, et al. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci Transl Med. 2014;6(224):224ra25.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Franquiz MJ, Short NJ. Blinatumomab for the treatment of adult B-cell acute lymphoblastic leukemia: toward a new era of targeted immunotherapy. Biol. Targets Ther. 2020;14:23–34.

    Article  CAS  Google Scholar 

  78. Lee DW, Kochenderfer JN, Stetler-Stevenson M, Cui YK, Delbrook C, Feldman SA, et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet. 2015;385:517–28.

    Article  CAS  PubMed  Google Scholar 

  79. Fousek K, Watanabe J, Joseph SK, George A, An X, Byrd TT, et al. CAR T-cells that target acute B-lineage leukemia irrespective of CD19 expression. Leukemia. 2020;10.1038/s41375-020-0792-2

  80. Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DM, Bunin NJ, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. 2014;371:1507–17.

    Article  PubMed  PubMed Central  Google Scholar 

  81. • Karol SE, Pui C-H. Personalized therapy in pediatric high-risk B-cell acute lymphoblastic leukemia. Ther Adv Hematol. 2020;11:2040620720927575 A worldwide leader group in leukemias discusses global oncology proposes to improve survival in high-risk B cell acute lymphoblastic leukemias based on MRD stratification and genomics, from a new integrative perspective.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Due to space constraints, a large number of relevant contributions to childhood acute leukemias could not be discussed, unfortunately.

Funding

Our research in leukemia is supported by the National Council of Science and Technology CONACYT PRONAII 302941 and by the Mexican Institute of Social Security (FIS/IMSS/PROT/G18/1828) to RP.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Roberto Rivera-Luna or Rosana Pelayo.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Pediatric Oncology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zapata-Tarrés, M., Balandrán, J.C., Rivera-Luna, R. et al. Childhood Acute Leukemias in Developing Nations: Successes and Challenges. Curr Oncol Rep 23, 56 (2021). https://doi.org/10.1007/s11912-021-01043-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11912-021-01043-9

Keywords

Navigation