Skip to main content

Advertisement

Log in

Molecular Targeted Therapy Approaches for BRAF Wild-Type Melanoma

  • Melanoma (RJ Sullivan, Section Editor)
  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Patients with metastatic melanoma have historically had dismal outcomes. The last several years has seen the emergence of effective immune and targeted therapies for metastatic melanoma. Targeted therapies have primarily impacted the 40–50 % of patients with BRAF V600 mutated melanoma. The remainder of patients with advanced melanoma harbor a wide spectrum of mutations other than BRAF V600 that are associated with unique pathophysiological, prognostic, and therapeutic implications. The treatment of this subset of patients is a challenging problem. In recent years, preclinical and early clinical studies have suggested that inhibitors of mitogen activated protein kinase (MAPK) pathway and parallel signaling networks may have activity in treatment of BRAF V600 wild-type (WT) melanoma. In this review, we will discuss available and developing therapies for BRAF WT patients with metastatic melanoma, particularly focusing on molecular targeted options for various genetically defined melanoma subsets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Howlader N. SEER cancer statistics review, 1975–2012. Bethesda: National Cancer Institute; 2015. Available from: http://seer.cancer.gov/csr/1975_2012/.

    Google Scholar 

  2. Tsao H, Atkins MB, Sober AJ. Management of cutaneous melanoma. N Engl J Med. 2004;351(10):998–1012.

    Article  CAS  PubMed  Google Scholar 

  3. Chapman PB et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med. 2011;364(26):2507–16.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Hauschild A et al. Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet. 2012;380(9839):358–65.

    Article  CAS  PubMed  Google Scholar 

  5. Flaherty KT et al. Improved survival with MEK inhibition in BRAF-mutated melanoma. N Engl J Med. 2012;367(2):107–14.

    Article  CAS  PubMed  Google Scholar 

  6. Exploring the pathway: the RAS/RAF/MEK/ERK pathway in cancer: combination therapies and overcoming feedback in ASCO Daily News. 2015.

  7. Platz A et al. Human cutaneous melanoma; a review of NRAS and BRAF mutation frequencies in relation to histogenetic subclass and body site. Mol Oncol. 2008;1(4):395–405.

    Article  PubMed  Google Scholar 

  8. Rosenberg SA et al. Treatment of 283 consecutive patients with metastatic melanoma or renal cell cancer using high-dose bolus interleukin 2. JAMA. 1994;271(12):907–13.

    Article  CAS  PubMed  Google Scholar 

  9. Atkins MB et al. High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J Clin Oncol. 1999;17(7):2105–16.

    CAS  PubMed  Google Scholar 

  10. Schwartzentruber DJ. Guidelines for the safe administration of high-dose interleukin-2. J Immunother. 2001;24(4):287–93.

    Article  CAS  PubMed  Google Scholar 

  11. Hodi FS et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711–23.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Robert C et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med. 2011;364(26):2517–26.

    Article  CAS  PubMed  Google Scholar 

  13. Topalian SL et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366(26):2443–54.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Hamid O et al. Safety and tumor responses with lambrolizumab (Anti-PD-1) in melanoma. N Engl J Med. 2013;369(2):134–44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Robert C et al. Anti-programmed-death-receptor-1 treatment with pembrolizumab in ipilimumab-refractory advanced melanoma: a randomised dose-comparison cohort of a phase 1 trial. Lancet. 2014;384(9948):1109–17.

    Article  CAS  PubMed  Google Scholar 

  16. Weber J. Phase I/II trial of PD-1 antibody nivolumab with peptide vaccine in patients naive to or that failed ipilimumab, in ASCO Annual Meeting. 2013.

  17. Larkin J et al. Efficacy and safety of nivolumab in patients with BRAF V600 mutant and BRAF wild-type advanced melanoma: a pooled analysis of 4 clinical trials. JAMA Oncol. 2015;1(4):433–40.

    Article  PubMed  Google Scholar 

  18. Andtbacka RH et al. Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J Clin Oncol. 2015;33(25):2780–8.

    Article  PubMed  Google Scholar 

  19. Curtin JA et al. Distinct sets of genetic alterations in melanoma. N Engl J Med. 2005;353(20):2135–47.

    Article  CAS  PubMed  Google Scholar 

  20. Lovly CM et al. Routine multiplex mutational profiling of melanomas enables enrollment in genotype-driven therapeutic trials. PLoS One. 2012;7(4):e35309.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Devitt B et al. Clinical outcome and pathological features associated with NRAS mutation in cutaneous melanoma. Pigment Cell Melanoma Res. 2011;24(4):666–72.

    Article  CAS  PubMed  Google Scholar 

  22. Jakob JA et al. NRAS mutation status is an independent prognostic factor in metastatic melanoma. Cancer. 2012;118(16):4014–23.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Carlino MS et al. Correlation of BRAF and NRAS mutation status with outcome, site of distant metastasis and response to chemotherapy in metastatic melanoma. Br J Cancer. 2014;111(2):292–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Joseph RW et al. Correlation of NRAS mutations with clinical response to high-dose IL-2 in patients with advanced melanoma. J Immunother. 2012;35(1):66–72.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Johnson DB et al. Impact of NRAS mutations for patients with advanced melanoma treated with immune therapies. Cancer Immunol Res. 2015;3(3):288–95.

    Article  CAS  PubMed  Google Scholar 

  26. Ascierto PA et al. MEK162 for patients with advanced melanoma harbouring NRAS or Val600 BRAF mutations: a non-randomised, open-label phase 2 study. Lancet Oncol. 2013;14(3):249–56. This is the first study to identify an active targeted therapy for NRAS mutant melanoma.

    Article  CAS  PubMed  Google Scholar 

  27. Falchook GS et al. Activity of the oral MEK inhibitor trametinib in patients with advanced melanoma: a phase 1 dose-escalation trial. Lancet Oncol. 2012;13(8):782–9. This study describes the activity of trametinib in a small number of other melanomas outside of the BRAF V600 mutant cohort.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Zimmer L et al. Phase I expansion and pharmacodynamic study of the oral MEK inhibitor RO4987655 (CH4987655) in selected patients with advanced cancer with RAS-RAF mutations. Clin Cancer Res. 2014;20(16):4251–61.

    Article  CAS  PubMed  Google Scholar 

  29. Hatzivassiliou G et al. Mechanism of MEK inhibition determines efficacy in mutant KRAS- versus BRAF-driven cancers. Nature. 2013;501(7466):232–6. This pre-clinical study supports the use of MEK inhibitors in various RAS mutant cancers.

    Article  CAS  PubMed  Google Scholar 

  30. Hodis E et al. A landscape of driver mutations in melanoma. Cell. 2012;150(2):251–63.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Krauthammer M et al. Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma. Nat Genet. 2012;44(9):1006–14.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Sheppard KE, McArthur GA. The cell-cycle regulator CDK4: an emerging therapeutic target in melanoma. Clin Cancer Res. 2013;19(19):5320–8.

    Article  CAS  PubMed  Google Scholar 

  33. Young RJ et al. Loss of CDKN2A expression is a frequent event in primary invasive melanoma and correlates with sensitivity to the CDK4/6 inhibitor PD0332991 in melanoma cell lines. Pigment Cell Melanoma Res. 2014;27(4):590–600.

    Article  CAS  PubMed  Google Scholar 

  34. Kwong LN et al. Oncogenic NRAS signaling differentially regulates survival and proliferation in melanoma. Nat Med. 2012;18(10):1503–10. This preclinical study provides the rationale for combining MEK and CDK4/6 inhibition in NRAS mutant melanoma.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Sosman J. A phase 1b/2 study of LEE011 in combination with binimetinib (MEK162) in patients with NRAS-mutant melanoma: early encouraging clinical activity, in ASCO Annual Meeting. 2014.

  36. Roberts PJ et al. Combined PI3K/mTOR and MEK inhibition provides broad antitumor activity in faithful murine cancer models. Clin Cancer Res. 2012;18(19):5290–303.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Posch C et al. Combined targeting of MEK and PI3K/mTOR effector pathways is necessary to effectively inhibit NRAS mutant melanoma in vitro and in vivo. Proc Natl Acad Sci U S A. 2013;110(10):4015–20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Fedorenko IV et al. Beyond BRAF: where next for melanoma therapy? Br J Cancer. 2015;112(2):217–26.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Johnson DB, Puzanov I. Treatment of NRAS-mutant melanoma. Curr Treat Options Oncol. 2015;16(4):15.

    Article  PubMed  Google Scholar 

  40. Curtin JA et al. Somatic activation of KIT in distinct subtypes of melanoma. J Clin Oncol. 2006;24(26):4340–6.

    Article  CAS  PubMed  Google Scholar 

  41. Beadling C et al. KIT gene mutations and copy number in melanoma subtypes. Clin Cancer Res. 2008;14(21):6821–8.

    Article  CAS  PubMed  Google Scholar 

  42. Slipicevic A, Herlyn M. KIT in melanoma: many shades of gray. J Investig Dermatol. 2015;135(2):337–8.

    Article  CAS  PubMed  Google Scholar 

  43. Carvajal RD et al. KIT as a therapeutic target in metastatic melanoma. JAMA. 2011;305(22):2327–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Druker BJ et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med. 2001;344(14):1031–7.

    Article  CAS  PubMed  Google Scholar 

  45. Demetri GD et al. Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N Engl J Med. 2002;347(7):472–80.

    Article  CAS  PubMed  Google Scholar 

  46. Wyman K et al. Multicenter phase II trial of high-dose imatinib mesylate in metastatic melanoma: significant toxicity with no clinical efficacy. Cancer. 2006;106(9):2005–11.

    Article  CAS  PubMed  Google Scholar 

  47. Guo J et al. Phase II, open-label, single-arm trial of imatinib mesylate in patients with metastatic melanoma harboring c-Kit mutation or amplification. J Clin Oncol. 2011;29(21):2904–9.

    Article  CAS  PubMed  Google Scholar 

  48. Hodi FS et al. Imatinib for melanomas harboring mutationally activated or amplified KIT arising on mucosal, acral, and chronically sun-damaged skin. J Clin Oncol. 2013;31(26):3182–90. This phase II study demonstrates the activity of imatinib in KIT-altered subsets of melanoma.

    Article  CAS  PubMed  Google Scholar 

  49. Woodman SE et al. Activity of dasatinib against L576P KIT mutant melanoma: molecular, cellular, and clinical correlates. Mol Cancer Ther. 2009;8(8):2079–85.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Quintas-Cardama A et al. Complete response of stage IV anal mucosal melanoma expressing KIT Val560Asp to the multikinase inhibitor sorafenib. Nat Clin Pract Oncol. 2008;5(12):737–40.

    Article  CAS  PubMed  Google Scholar 

  51. Minor DR et al. Sunitinib therapy for melanoma patients with KIT mutations. Clin Cancer Res. 2012;18(5):1457–63.

    Article  CAS  PubMed  Google Scholar 

  52. Carvajal RD et al. Phase II study of nilotinib in melanoma harboring KIT alterations following progression to prior KIT inhibition. Clin Cancer Res. 2015;21(10):2289–96.

    Article  CAS  PubMed  Google Scholar 

  53. Houben R et al. Constitutive activation of the Ras-Raf signaling pathway in metastatic melanoma is associated with poor prognosis. J Carcinog. 2004;3(1):6.

    Article  PubMed Central  PubMed  Google Scholar 

  54. Long GV et al. Prognostic and clinicopathologic associations of oncogenic BRAF in metastatic melanoma. J Clin Oncol. 2011;29(10):1239–46.

    Article  PubMed  Google Scholar 

  55. Klein O et al. BRAF inhibitor activity in V600R metastatic melanoma. Eur J Cancer. 2013;49(5):1073–9.

    Article  CAS  PubMed  Google Scholar 

  56. McArthur GA et al. Safety and efficacy of vemurafenib in BRAF(V600E) and BRAF(V600K) mutation-positive melanoma (BRIM-3): extended follow-up of a phase 3, randomised, open-label study. Lancet Oncol. 2014;15(3):323–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Trudel S et al. The clinical response to vemurafenib in a patient with a rare BRAFV600DK601del mutation-positive melanoma. BMC Cancer. 2014;14:727.

    Article  PubMed Central  PubMed  Google Scholar 

  58. Parakh S et al. Response to MAPK pathway inhibitors in BRAF V600M-mutated metastatic melanoma. J Clin Pharm Ther. 2015;40(1):121–3.

    Article  CAS  PubMed  Google Scholar 

  59. Greaves WO et al. Frequency and spectrum of BRAF mutations in a retrospective, single-institution study of 1112 cases of melanoma. J Mol Diagn. 2013;15(2):220–6.

    Article  CAS  PubMed  Google Scholar 

  60. Dahlman KB et al. BRAF(L597) mutations in melanoma are associated with sensitivity to MEK inhibitors. Cancer Discov. 2012;2(9):791–7. This study showed the dramatic activity of MEK inhibition in a patient with BRAF L597 mutated melanoma.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Menzies AM et al. Clinical activity of the MEK inhibitor trametinib in metastatic melanoma containing BRAF kinase fusion. Pigment Cell Melanoma Res. 2015;28(5):607–10. This study shows the activity of trametinib in patients with BRAF fusions.

    Article  PubMed  Google Scholar 

  62. Bowyer SE et al. Activity of trametinib in K601E and L597Q BRAF mutation-positive metastatic melanoma. Melanoma Res. 2014;24(5):504–8.

    Article  CAS  PubMed  Google Scholar 

  63. Kim KB et al. Phase II study of the MEK1/MEK2 inhibitor Trametinib in patients with metastatic BRAF-mutant cutaneous melanoma previously treated with or without a BRAF inhibitor. J Clin Oncol. 2013;31(4):482–9.

    Article  CAS  PubMed  Google Scholar 

  64. Hutchinson KE et al. BRAF fusions define a distinct molecular subset of melanomas with potential sensitivity to MEK inhibition. Clin Cancer Res. 2013;19(24):6696–702.

    Article  CAS  PubMed  Google Scholar 

  65. Genomic classification of cutaneous melanoma. Cell. 2015;161(7):1681–96.

  66. Nissan MH et al. Loss of NF1 in Cutaneous Melanoma Is Associated with RAS Activation and MEK Dependence. Cancer Res. 2014;74(8):2340–50.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Ranzani M et al. BRAF/NRAS wild-type melanoma, NF1 status and sensitivity to trametinib. Pigment Cell Melanoma Res. 2015;28(1):117–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Bishop KD, Olszewski AJ. Epidemiology and survival outcomes of ocular and mucosal melanomas: a population-based analysis. Int J Cancer. 2014;134(12):2961–71.

    Article  CAS  PubMed  Google Scholar 

  69. Chang AE, Karnell LH, Menck HR. The National Cancer Data Base report on cutaneous and noncutaneous melanoma: a summary of 84,836 cases from the past decade. The American College of Surgeons Commission on Cancer and the American Cancer Society. Cancer. 1998;83(8):1664–78.

    Article  CAS  PubMed  Google Scholar 

  70. Gragoudas ES et al. Survival of patients with metastases from uveal melanoma. Ophthalmology. 1991;98(3):383–9. discussion 390.

    Article  CAS  PubMed  Google Scholar 

  71. Diener-West M et al. Development of metastatic disease after enrollment in the COMS trials for treatment of choroidal melanoma: Collaborative Ocular Melanoma Study Group Report No. 26. Arch Ophthalmol. 2005;123(12):1639–43.

    Article  PubMed  Google Scholar 

  72. Rietschel P et al. Variates of survival in metastatic uveal melanoma. J Clin Oncol. 2005;23(31):8076–80.

    Article  PubMed  Google Scholar 

  73. Augsburger JJ, Correa ZM, Shaikh AH. Effectiveness of treatments for metastatic uveal melanoma. Am J Ophthalmol. 2009;148(1):119–27.

    Article  PubMed  Google Scholar 

  74. Albert DM, Ryan LM, Borden EC. Metastatic ocular and cutaneous melanoma: a comparison of patient characteristics and prognosis. Arch Ophthalmol. 1996;114(1):107–8.

    Article  CAS  PubMed  Google Scholar 

  75. Singh AD, Bergman L, Seregard S. Uveal melanoma: epidemiologic aspects. Ophthalmol Clin N Am. 2005;18(1):75–84. viii.

    Article  Google Scholar 

  76. Van Raamsdonk CD et al. Frequent somatic mutations of GNAQ in uveal melanoma and blue naevi. Nature. 2009;457(7229):599–602.

    Article  PubMed Central  PubMed  Google Scholar 

  77. Van Raamsdonk CD et al. Mutations in GNA11 in uveal melanoma. N Engl J Med. 2010;363(23):2191–9.

    Article  PubMed Central  PubMed  Google Scholar 

  78. Luke JJ et al. Clinical activity of ipilimumab for metastatic uveal melanoma: a retrospective review of the Dana-Farber Cancer Institute, Massachusetts General Hospital, Memorial Sloan-Kettering Cancer Center, and University Hospital of Lausanne experience. Cancer. 2013;119(20):3687–95.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Maio M et al. Efficacy and safety of ipilimumab in patients with pre-treated, uveal melanoma. Ann Oncol. 2013;24(11):2911–5.

    Article  CAS  PubMed  Google Scholar 

  80. Carvajal RD et al. Effect of selumetinib vs chemotherapy on progression-free survival in uveal melanoma: a randomized clinical trial. JAMA. 2014;311(23):2397–405. This is the first study to show improved clinical outcomes in uveal melanoma.

    Article  PubMed Central  PubMed  Google Scholar 

  81. Ho AL et al. Impact of combined mTOR and MEK inhibition in uveal melanoma is driven by tumor genotype. PLoS One. 2012;7(7):e40439.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Shtivelman E et al. Pathways and therapeutic targets in melanoma. Oncotarget. 2014;5(7):1701–52.

    Article  PubMed Central  PubMed  Google Scholar 

  83. Wu X et al. The protein kinase C inhibitor enzastaurin exhibits antitumor activity against uveal melanoma. PLoS One. 2012;7(1):e29622.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Yu FX et al. Mutant Gq/11 promote uveal melanoma tumorigenesis by activating YAP. Cancer Cell. 2014;25(6):822–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Feng X et al. Hippo-independent activation of YAP by the GNAQ uveal melanoma oncogene through a trio-regulated rho GTPase signaling circuitry. Cancer Cell. 2014;25(6):831–45.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Hurwitz H et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med. 2004;350(23):2335–42.

    Article  CAS  PubMed  Google Scholar 

  87. Miller KD. E2100: a phase III trial of paclitaxel versus paclitaxel/bevacizumab for metastatic breast cancer. Clin Breast Cancer. 2003;3(6):421–2.

    Article  CAS  PubMed  Google Scholar 

  88. Sandler A et al. Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med. 2006;355(24):2542–50.

    Article  CAS  PubMed  Google Scholar 

  89. Brychtova S et al. The role of vascular endothelial growth factors and their receptors in malignant melanomas. Neoplasma. 2008;55(4):273–9.

    CAS  PubMed  Google Scholar 

  90. Liu B et al. Melanoma cell lines express VEGF receptor KDR and respond to exogenously added VEGF. Biochem Biophys Res Commun. 1995;217(3):721–7.

    Article  CAS  PubMed  Google Scholar 

  91. Danielsen T, Rofstad EK. VEGF, bFGF and EGF in the angiogenesis of human melanoma xenografts. Int J Cancer. 1998;76(6):836–41.

    Article  CAS  PubMed  Google Scholar 

  92. Ugurel S et al. Increased serum concentration of angiogenic factors in malignant melanoma patients correlates with tumor progression and survival. J Clin Oncol. 2001;19(2):577–83.

    CAS  PubMed  Google Scholar 

  93. von Moos R et al. First-line temozolomide combined with bevacizumab in metastatic melanoma: a multicentre phase II trial (SAKK 50/07). Ann Oncol. 2012;23(2):531–6.

    Article  Google Scholar 

  94. Kim KB et al. BEAM: a randomized phase II study evaluating the activity of bevacizumab in combination with carboplatin plus paclitaxel in patients with previously untreated advanced melanoma. J Clin Oncol. 2012;30(1):34–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  95. Algazi AP et al. The combination of axitinib followed by paclitaxel/carboplatin yields extended survival in advanced BRAF wild-type melanoma: results of a clinical/correlative prospective phase II clinical trial. Br J Cancer. 2015;112(8):1326–31.

    Article  CAS  PubMed  Google Scholar 

  96. Rose AA et al. Glycoprotein nonmetastatic B is an independent prognostic indicator of recurrence and a novel therapeutic target in breast cancer. Clin Cancer Res. 2010;16(7):2147–56.

    Article  CAS  PubMed  Google Scholar 

  97. Williams MD et al. GPNMB expression in uveal melanoma: a potential for targeted therapy. Melanoma Res. 2010;20(3):184–90.

    CAS  PubMed  Google Scholar 

  98. Ott PA et al. Phase I/II study of the antibody-drug conjugate glembatumumab vedotin in patients with advanced melanoma. J Clin Oncol. 2014;32(32):3659–66. This study shows activity of an antibody-drug conjugate in melanoma.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romany A. N. Johnpulle.

Ethics declarations

Conflict of Interest

Romany A. N. Johnpulle declares that she has no conflict of interest.

Douglas B. Johnson has received compensation from Genoptix and Bristol-Myers Squibb for service on advisory boards.

Jeffrey A. Sosman has received compensation from Merck for service as a consultant, and has received research funding from Bristol-Myers Squibb and Novartis.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Melanoma

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johnpulle, R.A.N., Johnson, D.B. & Sosman, J.A. Molecular Targeted Therapy Approaches for BRAF Wild-Type Melanoma. Curr Oncol Rep 18, 6 (2016). https://doi.org/10.1007/s11912-015-0485-6

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11912-015-0485-6

Keywords

Navigation