Skip to main content

Advertisement

Log in

Immunological Heterogeneity of the RCC Microenvironment: Do Targeted Therapies Influence Immune Response?

  • Genitourinary Cancers (E Jonasch, Section Editor)
  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

The introduction of targeted agents has substantially improved treatment of metastatic clear-cell renal cell carcinoma (RCC). However, complete responses are rare and therapy is not curative. Moreover, information on the latest generation of potent and selective vascular endothelial growth factor receptor (VEGFR) tyrosine kinase inhibitors (TKI) suggests that a plateau has been reached in terms of efficacy. Recent data reveal that targeted agents are involved in modulating immune responses in RCC. In addition, current research adds to our understanding of how RCC escapes an effective anti-tumor response with the potential to modulate these processes by drug development. This review provides specific insight into targeted therapy induced changes in the immunological microenvironment of RCC, summarizes the available evidence, and discusses potential therapeutic implications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics, 2009. CA Cancer J Clin. 2009;59(4):225–49.

    Article  PubMed  Google Scholar 

  2. Bosetti C, Bertuccio P, Chatenoud L, Negri E, La Vecchia C, Levi F. Trends in mortality from urologic cancers in Europe, 1970–2008. Eur Urol. 2011;60(1):1–15.

    Article  PubMed  Google Scholar 

  3. Flanigan RC, Yonover PM. The role of radical nephrectomy in metastatic renal cell carcinoma. Semin Urol Oncol. 2001;19(2):98–102.

    PubMed  CAS  Google Scholar 

  4. Hutson TE, Bukowski RM, Cowey CL, Figlin R, Escudier B, Sternberg CN. Sequential use of targeted agents in the treatment of renal cell carcinoma. Crit Rev Oncol Hematol. 2010;77(1):48–62.

    Article  PubMed  Google Scholar 

  5. Vogelzang NJ, Samlowski W, Weissman A. Long-term response in primary renal cancer to sequential antiangiogenic therapy. J Clin Oncol. 2009;27(26):e106–7.

    Article  PubMed  Google Scholar 

  6. Oudard S. More than 4 years of progression-free survival in a patient with metastatic renal cell carcinoma treated sequentially with sunitinib, everolimus, sorafenib, and temsirolimus. Anticancer Res. 2010;30(12):5223–5.

    PubMed  CAS  Google Scholar 

  7. Coppin C, Kollmannsberger C, Le L, Porzsolt F, Wilt TJ. Targeted therapy for advanced renal cell cancer (RCC): a Cochrane systematic review of published randomised trials. BJU Int. 2011;108(10):1556–63.

    Article  PubMed  CAS  Google Scholar 

  8. Patard JJ, Pignot G, Escudier B, Eisen T, Bex A, Sternberg C, et al. ICUD-EAU International Consultation on Kidney Cancer 2010: treatment of metastatic disease. Eur Urol. 2011;60(4):684–90.

    Article  PubMed  Google Scholar 

  9. Bex A, Haanen J. Tilting the AXIS towards therapeutic limits in renal cancer. Lancet 2011(in press).

  10. Sanchez-Ortiz RF, Tannir N, Ahrar K, Wood CG. Spontaneous regression of pulmonary metastases from renal cell carcinoma after radio frequency ablation of primary tumor: an in situ tumor vaccine? J Urol. 2003;170(1):178–9.

    Article  PubMed  Google Scholar 

  11. Lopez-Beltran A, Scarpelli M, Montironi R, Kirkali Z. 2004 WHO classification of the renal tumors of the adults. Eur Urol. 2006;49(5):798–805.

    Article  PubMed  Google Scholar 

  12. Atzpodien J, Reitz M. Metastatic renal carcinoma long-term survivors treated with s.c. interferon-alpha and s.c. interleukin-2. Cancer Biother Radiopharm. 2005;20(4):410–6.

    Article  PubMed  CAS  Google Scholar 

  13. Klapper JA, Downey SG, Smith FO, Yang JC, Hughes MS, Kammula US, et al. High-dose interleukin-2 for the treatment of metastatic renal cell carcinoma: a retrospective analysis of response and survival in patients treated in the surgery branch at the National Cancer Institute between 1986 and 2006. Cancer. 2008;113(2):293–301.

    Article  PubMed  CAS  Google Scholar 

  14. Coppin C, Porzsolt F, Awa A, Kumpf J, Coldman A, Wilt T. Immunotherapy for advanced renal cell cancer. Cochrane Database Syst Rev. 2005;1:CD001425.

    PubMed  Google Scholar 

  15. Keller AM, Borst J. Control of peripheral T cell survival: a delicate division of labor between cytokines and costimulatory molecules. Hum Immunol. 2006;67(6):469–77.

    Article  PubMed  CAS  Google Scholar 

  16. Rabinovich GA, Gabrilovich D, Sotomayor EM. Immunosuppressive strategies that are mediated by tumor cells. Annu Rev Immunol. 2007;25:267–96.

    Article  PubMed  CAS  Google Scholar 

  17. • Lindenberg JJ, Fehres CM, van Cruijsen H, Oosterhoff D, de Gruijl TD. Cross-talk between tumor and myeloid cells: how to tip the balance in favor of antitumor immunity. Immunotherapy. 2011;3(1):77–96. An important overview of myeloid-derived suppressor cells and their function.

    Article  PubMed  CAS  Google Scholar 

  18. Denardo DG, Brennan DJ, Rexhepaj E, Ruffell B, Shiao SL, Madden SF, et al. Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discov. 2011;1:54–67.

    Article  PubMed  CAS  Google Scholar 

  19. Blank C, Kuball J, Voelkl S, Wiendl H, Becker B, Walter B, et al. Blockade of PD-L1 (B7-H1) augments human tumor-specific T cell responses in vitro. Int J Cancer. 2006;119(2):317–27.

    Article  PubMed  CAS  Google Scholar 

  20. Gajewski TF, Meng Y, Blank C, Brown I, Kacha A, Kline J, et al. Immune resistance orchestrated by the tumor microenvironment. Immunol Rev. 2006;213:131–45.

    Article  PubMed  CAS  Google Scholar 

  21. Thompson RH, Kuntz SM, Leibovich BC, Dong H, Lohse CM, Webster WS, et al. Tumor B7-H1 is associated with poor prognosis in renal cell carcinoma patients with long-term follow-up. Cancer Res. 2006;66(7):3381–5.

    Article  PubMed  CAS  Google Scholar 

  22. Crispen PL, Sheinin Y, Roth TJ, Lohse CM, Kuntz SM, Frigola X, et al. Tumor cell and tumor vasculature expression of B7-H3 predict survival in clear cell renal cell carcinoma. Clin Cancer Res. 2008;14(16):5150–7.

    Article  PubMed  CAS  Google Scholar 

  23. Krambeck AE, Thompson RH, Dong H, Lohse CM, Park ES, Kuntz SM, et al. B7-H4 expression in renal cell carcinoma and tumor vasculature: associations with cancer progression and survival. Proc Natl Acad Sci U S A. 2006;103(27):10391–6.

    Article  PubMed  CAS  Google Scholar 

  24. Yu H, Kortylewski M, Pardoll D. Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Nat Rev Immunol. 2007;7(1):41–51.

    Article  PubMed  CAS  Google Scholar 

  25. Herrmann A, Kortylewski M, Kujawski M, Zhang C, Reckamp K, Armstrong B, et al. Targeting Stat3 in the myeloid compartment drastically improves the in vivo antitumor functions of adoptively transferred T cells. Cancer Res. 2010;70(19):7455–64.

    Article  PubMed  CAS  Google Scholar 

  26. Komohara Y, Hasita H, Ohnishi K, Fujiwara Y, Suzu S, Eto M, et al. Macrophage infiltration and its prognostic relevance in clear cell renal cell carcinoma. Cancer Sci. 2011;102(7):1424–31.

    Article  PubMed  CAS  Google Scholar 

  27. Menke J, Kriegsmann J, Schimanski CC, Schwartz MM, Andreas S, Kelley VR. Autocrine CSF-1 and CSF-1 receptor co-expression promotes renal cell carcinoma growth. Cancer Res 2011(in press).

  28. Molema G, Griffioen AW. Rocking the foundations of solid tumor growth by attacking the tumor’s blood supply. Immunol Today. 1998;19(9):392–4.

    Article  PubMed  CAS  Google Scholar 

  29. Griffioen AW, Vyth-Dreese FA. Angiostasis as a way to improve immunotherapy. Thromb Haemost. 2009;101(6):1025–31.

    PubMed  CAS  Google Scholar 

  30. Kujawski M, Kortylewski M, Lee H, Herrmann A, Kay H, Yu H. Stat3 mediates myeloid cell-dependent tumor angiogenesis in mice. J Clin Invest. 2008;118(10):3367–77.

    Article  PubMed  CAS  Google Scholar 

  31. Ott PA, Adams S. Small-molecule protein kinase inhibitors and their effects on the immune system: implications for cancer treatment. Immunotherapy. 2011;3(2):213–27.

    Article  PubMed  CAS  Google Scholar 

  32. Zheng Y, Collins SL, Lutz MA, Allen AN, Kole TP, Zarek PE, et al. A role for mammalian target of rapamycin in regulating T cell activation versus anergy. J Immunol. 2007;178(4):2163–70.

    PubMed  CAS  Google Scholar 

  33. •• Ozao-Choy J, Ma G, Kao J, Wang GX, Meseck M, Sung M, et al. The novel role of tyrosine kinase inhibitor in the reversal of immune suppression and modulation of tumor microenvironment for immune-based cancer therapies. Cancer Res. 2009;69(6):2514–22. Landmark preclinical study demonstrating that c-kit ligand is required for MDSC accumulation and Treg development and that sunitinib reverses this process.

    Article  PubMed  CAS  Google Scholar 

  34. •• Ko JS, Rayman P, Ireland J, Swaidani S, Li G, Bunting KD, et al. Direct and differential suppression of myeloid-derived suppressor cell subsets by sunitinib is compartmentally constrained. Cancer Res. 2010;70(9):3526–36. Important preclinical study demonstrating MDSC suppression by sunitinib is constraint to compartments and may be regulated by GM-CSF.

    Article  PubMed  CAS  Google Scholar 

  35. Shrimali RK, Yu Z, Theoret MR, Chinnasamy D, Restifo NP, Rosenberg SA. Antiangiogenic agents can increase lymphocyte infiltration into tumor and enhance the effectiveness of adoptive immunotherapy of cancer. Cancer Res. 2010;70(15):6171–80.

    Article  PubMed  CAS  Google Scholar 

  36. Alfaro C, Suarez N, Gonzalez A, Solano S, Erro L, Dubrot J, et al. Influence of bevacizumab, sunitinib and sorafenib as single agents or in combination on the inhibitory effects of VEGF on human dendritic cell differentiation from monocytes. Br J Cancer. 2009;100(7):1111–9.

    Article  PubMed  CAS  Google Scholar 

  37. •• Gu Y, Zhao W, Meng F, Qu B, Zhu X, Sun Y, et al. Sunitinib impairs the proliferation and function of human peripheral T cell and prevents T-cell-mediated immune response in mice. Clin Immunol. 2010;135(1):55–62. In vitro study demonstrating the effect of sunitinib on human peripheral T cells.

    Article  PubMed  CAS  Google Scholar 

  38. Finke JH, Rini B, Ireland J, Rayman P, Richmond A, Golshayan A, et al. Sunitinib reverses type-1 immune suppression and decreases T-regulatory cells in renal cell carcinoma patients. Clin Cancer Res. 2008;14(20):6674–82.

    Article  PubMed  CAS  Google Scholar 

  39. Hipp MM, Hilf N, Walter S, Werth D, Brauer KM, Radsak MP, et al. Sorafenib, but not sunitinib, affects function of dendritic cells and induction of primary immune responses. Blood. 2008;111(12):5610–20.

    Article  PubMed  CAS  Google Scholar 

  40. • Busse A, Asemissen AM, Nonnenmacher A, Braun F, Ochsenreither S, Stather D, et al. Immunomodulatory effects of sorafenib on peripheral immune effector cells in metastatic renal cell carcinoma. Eur J Cancer. 2011;47(5):690–6. One of the very few studies investigating the effect of sorafenib on immune effector cells in humans with mRCC.

    Article  PubMed  CAS  Google Scholar 

  41. •• Adotevi O, Pere H, Ravel P, Haicheur N, Badoual C, Merillon N, et al. A Decrease of Regulatory T Cells Correlates With Overall Survival After Sunitinib-based Antiangiogenic Therapy in Metastatic Renal Cancer Patients. J Immunother. 2010;33(9):991–8. A study in humans with mRCC in whom sunitinib decreased Treg, which correlated with overall survival.

    Article  PubMed  CAS  Google Scholar 

  42. van Cruijsen H, van der Veldt AA, Vroling L, Oosterhoff D, Broxterman HJ, Scheper RJ, et al. Sunitinib-induced myeloid lineage redistribution in renal cell cancer patients: CD1c + dendritic cell frequency predicts progression-free survival. Clin Cancer Res. 2008;14(18):5884–92.

    Article  PubMed  Google Scholar 

  43. Ko JS, Zea AH, Rini BI, Ireland JL, Elson P, Cohen P, et al. Sunitinib mediates reversal of myeloid-derived suppressor cell accumulation in renal cell carcinoma patients. Clin Cancer Res. 2009;15(6):2148–57.

    Article  PubMed  CAS  Google Scholar 

  44. Mulder SF, Jacobs JF, Olde Nordkamp MA, Galama JM, Desar IM, Torensma R, et al. Cancer patients treated with sunitinib or sorafenib have sufficient antibody and cellular immune responses to warrant influenza vaccination. Clin Cancer Res. 2011;17(13):4541–9.

    Article  PubMed  CAS  Google Scholar 

  45. Bex A, Jonasch E, Vyth-Dreese F, de Hoog C, Dellemijn T, Griffioen AW. Presurgical bevacizumab and sunitinib induced changes in primary clear cell renal tumor tissue. J Clin Oncol 2010; 28(15s):(suppl, abstract 4607).

  46. • Desar IM, Jacobs JFM, Hulsbergen-vandeKaa CA, Oyen WJ, Mulders PF, van der Graaf WT, et al. Sorafenib reduces the percentage of tumour infiltrating regulatory T cells in renal cell carcinoma patients. Int J Cancer. 2011;129(2):507–12. One of the very few studies investigating the effect of sorafenib on immune effector cells in humans with mRCC.

    Article  PubMed  CAS  Google Scholar 

  47. •• Finke J, Ko J, Rini B, Rayman P, Ireland J, Cohen P. MDSC as a mechanism of tumor escape from sunitinib mediated anti-angiogenic therapy. Int Immunopharmacol. 2011;11(7):856–61. A study in humans building on the preclinical work on the compartmental differences of MDSC-suppression by sunitinib reported in [34••].

    Article  PubMed  CAS  Google Scholar 

  48. Griffioen AW, Damen CA, Blijham GH, Groenewegen G. Tumor angiogenesis is accompanied by a decreased inflammatory response of tumor-associated endothelium. Blood. 1996;88(2):667–73.

    PubMed  CAS  Google Scholar 

  49. Griffioen AW, Damen CA, Mayo KH, Barendsz-Janson AF, Martinotti S, Blijham GH, et al. Angiogenesis inhibitors overcome tumor induced endothelial cell anergy. Int J Cancer. 1999;80(2):315–9.

    Article  PubMed  CAS  Google Scholar 

  50. Melder RJ, Koenig GC, Witwer BP, Safabakhsh N, Munn LL, Jain RK. During angiogenesis, vascular endothelial growth factor and basic fibroblast growth factor regulate natural killer cell adhesion to tumor endothelium. Nat Med. 1996;2(9):992–7.

    Article  PubMed  CAS  Google Scholar 

  51. Folkman J. Endogenous inhibitors of angiogenesis. Harvey Lect. 1996;92:65–82.

    PubMed  Google Scholar 

  52. Dirkx AE, Oude Egbrink MG, Castermans K, van der Schaft DW, Thijssen VL, Dings RP, et al. Anti-angiogenesis therapy can overcome endothelial cell anergy and promote leukocyte-endothelium interactions and infiltration in tumors. FASEB J. 2006;20(6):621–30.

    Article  PubMed  CAS  Google Scholar 

  53. Hudes G, Carducci M, Tomczak P, Dutcher J, Figlin R, Kapoor A, et al. Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. N Engl J Med. 2007;356(22):2271–81.

    Article  PubMed  CAS  Google Scholar 

  54. Motzer RJ, Hudes G, Wilding G, Schwartz LH, Hariharan S, Kempin S, et al. Phase I trial of sunitinib malate plus interferon-alpha for patients with metastatic renal cell carcinoma. Clin Genitourin Cancer. 2009;7(1):28–33.

    Article  PubMed  CAS  Google Scholar 

  55. Negrier S, Gravis G, Perol D, Chevreau C, Delva R, Bay JO, et al. Temsirolimus and bevacizumab, or sunitinib, or interferon alfa and bevacizumab for patients with advanced renal cell carcinoma (TORAVA): a randomised phase 2 trial. Lancet Oncol. 2011;12(7):673–80.

    Article  PubMed  CAS  Google Scholar 

  56. US National Institutes of Health. Study Comparing Bevacizumab + Temsirolimus vs. Bevacizumab + Interferon-Alfa In Advanced Renal Cell Carcinoma Subjects (INTORACT). Available from: http://clinicaltrials.gov/ct2/show/NCT00631371 (Last accessed Oct 10, 2011). ClinicalTrials gov 2008.

  57. Amin A, Dudek A, Logan T, Lance RS, Holzbeierlein JM, Williams WL, et al. A phase II study testing the safety and activity of AGS-003 as an immunotherapeutic in subjects with newly diagnosed advanced stage renal cell carcinoma (RCC) in combination with sunitinib. J Clin Oncol 2010; 28(15s(suppl;abstr 4588)).

  58. Figlin RA, Nicolette CA, Amin A, Dudek A, Logan T, Lance RS, et al. Monitoring T-cell responses in a phase II study of AGS-003, an autologous dendritic cell-based therapy in patients with newly diagnosed advanced stage renal cell carcinoma in combination with sunitinib. J Clin Oncol 2011; 29((suppl; abstr 2532)).

  59. US National Institutes of Health. BMS-936558 (MDX-1106) In Subjects With Advanced/Metastatic Clear-Cell Renal Cell Carcinoma (RCC). Available from: http://clinicaltrials.gov/ct2/show/NCT01354431 (Last accessed October 10; 2011). ClinicalTrials gov 2009.

  60. US National Institutes of Health. Autologous Vaccination of Stage 4 Renal Cell Carcinoma Combined With Sunitinib (rcc). Available from: http://clinicaltrials.gov/ct2/show/NCT00890110 (Last accessed October 10; 2011). ClinicalTrials gov 2009.

  61. US National Institutes of Health. IMA901 in Patients Receiving Sunitinib for Advanced/Metastatic Renal Cell Carcinoma. Available from: http://clinicaltrials.gov/ct2/show/NCT01265901 (Last accessed October 10; 2011). ClinicalTrials gov 2010.

  62. Brahmer JR, Drake CG, Wollner I, Powderly JD, Picus J, Sharfman WH, et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol. 2010;28(19):3167–75.

    Article  PubMed  CAS  Google Scholar 

  63. Rosenberg SA, Dudley ME. Adoptive cell therapy for the treatment of patients with metastatic melanoma. Curr Opin Immunol. 2009;21(2):233–40.

    Article  PubMed  CAS  Google Scholar 

  64. Gattinoni L, Klebanoff CA, Palmer DC, Wrzesinski C, Kerstann K, Yu Z, et al. Acquisition of full effector function in vitro paradoxically impairs the in vivo antitumor efficacy of adoptively transferred CD8+ T cells. J Clin Invest. 2005;115(6):1616–26.

    Article  PubMed  CAS  Google Scholar 

  65. Figlin RA, Thompson JA, Bukowski RM, Vogelzang NJ, Novick AC, Lange P, et al. Multicenter, randomized, phase III trial of CD8(+) tumor-infiltrating lymphocytes in combination with recombinant interleukin-2 in metastatic renal cell carcinoma. J Clin Oncol. 1999;17(8):2521–9.

    PubMed  CAS  Google Scholar 

  66. Goedegebuure PS, Douville LM, Li H, Richmond GC, Schoof DD, Scavone M, et al. Adoptive immunotherapy with tumor-infiltrating lymphocytes and interleukin-2 in patients with metastatic malignant melanoma and renal cell carcinoma: a pilot study. J Clin Oncol. 1995;13(8):1939–49.

    PubMed  CAS  Google Scholar 

  67. Markel G, Cohen-Sinai T, Besser MJ, Oved K, Itzhaki O, Seidman R, et al. Preclinical evaluation of adoptive cell therapy for patients with metastatic renal cell carcinoma. Anticancer Res. 2009;29(1):145–54.

    PubMed  CAS  Google Scholar 

Download references

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel Bex.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bex, A., Etto, T., Vyth-Dreese, F. et al. Immunological Heterogeneity of the RCC Microenvironment: Do Targeted Therapies Influence Immune Response?. Curr Oncol Rep 14, 230–239 (2012). https://doi.org/10.1007/s11912-012-0229-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11912-012-0229-9

Keywords

Navigation