Skip to main content

Advertisement

Log in

The role and target potential of protein tyrosine phosphatases in cancer

  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Protein tyrosine phosphatases (PTPases) are attractive targets for developing novel cancer therapeutics. Activated via gain-of-function point mutations or overexpression, several PTPases have been identified as critical oncogenic molecules in human malignancies that may be targeted with small chemical inhibitors as a therapeutic strategy. Tumor suppressor PTPases have also been discovered as contributing factors in cancer development that may be targeted via intervention of downstream signaling events for therapeutic purposes. In addition, PTPases have been identified as key negative regulators of cytokines or immune cells. Targeting these negative PTPases may improve the efficacy of cytokine therapy and immunotherapy, which currently have modest response rates and limited survival benefit. Inhibitors of selective PTPases have demonstrated significant preclinical antitumor activity, leading to early-phase clinical trials. Further research and development could lead to PTPase-targeted cancer therapeutics in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Baselga J: Targeting tyrosine kinases in cancer: the second wave. Science 2006, 312:1175–1178.

    Article  PubMed  CAS  Google Scholar 

  2. Tonks NK: Protein tyrosine phosphatases: from genes, to function, to disease. Nat Rev Mol Cell Biol 2006, 7:833–846.

    Article  PubMed  CAS  Google Scholar 

  3. Tiganis T, Bennett AM: Protein tyrosine phosphatase function: the substrate perspective. Biochem J 2007, 402:1–15.

    Article  PubMed  CAS  Google Scholar 

  4. Myers MP, Stolarov JP, Eng C, et al.: P-TEN, the tumor suppressor from human chromosome 10q23, is a dualspecificity phosphatase. Proc Natl Acad Sci U S A 1997, 94:9052–9057.

    Article  PubMed  CAS  Google Scholar 

  5. Rudolph J: Cdc25 phosphatases: structure, specificity, and mechanism. Biochemistry 2007, 46:3595–3604.

    Article  PubMed  CAS  Google Scholar 

  6. Boutros R, Lobjois V, Ducommun B: CDC25 phosphatases in cancer cells: key players? Good targets? Nat Rev Cancer 2007, 7:495–507.

    Article  PubMed  CAS  Google Scholar 

  7. Galaktionov K, Lee AK, Eckstein J, et al.: CDC25 phosphatases as potential human oncogenes. Science 1995, 269:1575–1577.

    Article  PubMed  CAS  Google Scholar 

  8. Ray D, Terao Y, Fuhrken PG, et al.: Deregulated CDC25A expression promotes mammary tumorigenesis with genomic instability. Cancer Res 2007, 67:984–991.

    Article  PubMed  CAS  Google Scholar 

  9. Yao Y, Slosberg ED, Wang L, et al.: Increased susceptibility to carcinogen-induced mammary tumors in MMTV-Cdc25B transgenic mice. Oncogene 1999, 18:5159–5166.

    Article  PubMed  CAS  Google Scholar 

  10. Ferguson AM, White LS, Donovan PJ, Piwnica-Worms H: Normal cell cycle and checkpoint responses in mice and cells lacking Cdc25B and Cdc25C protein phosphatases. Mol Cell Biol 2005, 25:2853–2860.

    Article  PubMed  CAS  Google Scholar 

  11. Owens DM, Keyse SM: Differential regulation of MAP kinase signalling by dual-specificity protein phosphatases. Oncogene 2007, 26:3203–3213.

    Article  PubMed  CAS  Google Scholar 

  12. Zhao Q, Wang X, Nelin LD, et al.: MAP kinase phosphatase 1 controls innate immune responses and suppresses endotoxic shock. J Exp Med 2006, 203:131–140.

    Article  PubMed  CAS  Google Scholar 

  13. Hammer M, Mages J, Dietrich H, et al.: Dual specificity phosphatase 1 (DUSP1) regulates a subset of LPS-induced genes and protects mice from lethal endotoxin shock. J Exp Med 2006, 203:15–20.

    Article  PubMed  CAS  Google Scholar 

  14. Wang HY, Cheng Z, Malbon CC: Overexpression of mitogenactivated protein kinase phosphatases MKP1, MKP2 in human breast cancer. Cancer Lett 2003, 191:229–237.

    Article  PubMed  CAS  Google Scholar 

  15. Magi-Galluzzi C, Mishra R, Fiorentino M, et al.: Mitogenactivated protein kinase phosphatase 1 is overexpressed in prostate cancers and is inversely related to apoptosis. Lab Invest 1997, 76:37–51.

    PubMed  CAS  Google Scholar 

  16. Magi-Galluzzi C, Montironi R, Cangi MG, et al.: Mitogenactivated protein kinases and apoptosis in PIN. Virchows Arch 1998, 432:407–413.

    Article  PubMed  CAS  Google Scholar 

  17. Denkert C, Schmitt WD, Berger S, et al.: Expression of mitogen-activated protein kinase phosphatase-1 (MKP-1) in primary human ovarian carcinoma. Int J Cancer 2002, 102:507–513.

    Article  PubMed  CAS  Google Scholar 

  18. Liao Q, Guo J, Kleeff J, et al.: Down-regulation of the dual-specificity phosphatase MKP-1 suppresses tumorigenicity of pancreatic cancer cells. Gastroenterology 2003, 124:1830–1845.

    Article  PubMed  CAS  Google Scholar 

  19. Mizuno R, Oya M, Shiomi T, et al.: Inhibition of MKP-1 expression potentiates JNK related apoptosis in renal cancer cells. J Urol 2004, 172:723–727.

    Article  PubMed  CAS  Google Scholar 

  20. Srikanth S, Franklin CC, Duke RC, Kraft RS: Human DU145 prostate cancer cells overexpressing mitogen-activated protein kinase phosphatase-1 are resistant to Fas ligand-induced mitochondrial perturbations and cellular apoptosis. Mol Cell Biochem 1999, 199:169–181.

    Article  PubMed  CAS  Google Scholar 

  21. Small GW, Shi YY, Higgins LS, Orlowski RZ: Mitogen-activated protein kinase phosphatase-1 is a mediator of breast cancer chemoresistance. Cancer Res 2007, 67:4459–4466.

    Article  PubMed  CAS  Google Scholar 

  22. Wang Z, Xu J, Zhou JY, et al.: Mitogen-activated protein kinase phosphatase-1 is required for cisplatin resistance. Cancer Res 2006, 66:8870–8877.

    Article  PubMed  CAS  Google Scholar 

  23. Liu Y, Shepherd EG, Nelin LD: MAPK phosphatases: regulating the immune response. Nat Rev Immunol 2007, 7:202–212.

    Article  PubMed  CAS  Google Scholar 

  24. Dickinson RJ, Keyse SM: Diverse physiological functions for dual-specificity MAP kinase phosphatases. J Cell Sci 2006, 119:4607–4615.

    Article  PubMed  CAS  Google Scholar 

  25. Diamond RH, Cressman DE, Laz TM, et al.: PRL-1, a unique nuclear protein tyrosine phosphatase, affects cell growth. Mol Cell Biol 1994, 14:3752–3762.

    PubMed  CAS  Google Scholar 

  26. Zeng Q, Hong W, Tan YH: Mouse PRL-2 and PRL-3, two potentially prenylated protein tyrosine phosphatases homologous to PRL-1. Biochem Biophys Res Commun 1998, 244:421–427.

    Article  PubMed  CAS  Google Scholar 

  27. Bessette DC, Wong PC, Pallen CJ: PRL-3: a metastasis-associated phosphatase in search of a function. Cells Tissues Organs 2007, 185:232–236.

    Article  PubMed  CAS  Google Scholar 

  28. Stephens BJ, Han H, Gokhale V, Von Hoff DD: PRL phosphatases as potential molecular targets in cancer. Mol Cancer Ther 2005, 4:1653–1661.

    Article  PubMed  CAS  Google Scholar 

  29. Saha S, Bardelli A, Buckhaults P, et al.: A phosphatase associated with metastasis of colorectal cancer. Science 2001, 294:1343–1346.

    Article  PubMed  CAS  Google Scholar 

  30. Bardelli A, Saha S, Sager JA, et al.: PRL-3 expression in metastatic cancers. Clin Cancer Res 2003, 9:5607–5615.

    PubMed  CAS  Google Scholar 

  31. Peng L, Ning J, Meng L, Shou C: The association of the expression level of protein tyrosine phosphatase PRL-3 protein with liver metastasis and prognosis of patients with colorectal cancer. J Cancer Res Clin Oncol 2004, 130:521–526.

    Article  PubMed  CAS  Google Scholar 

  32. Polato F, Codegoni A, Fruscio R, et al.: PRL-3 phosphatase is implicated in ovarian cancer growth. Clin Cancer Res 2005, 11:6835–6839.

    Article  PubMed  CAS  Google Scholar 

  33. Miskad UA, Semba S, Kato H, Yokozaki H: Expression of PRL-3 phosphatase in human gastric carcinomas: close correlation with invasion and metastasis. Pathobiology 2004, 71:176–184.

    Article  PubMed  CAS  Google Scholar 

  34. Radke I, Gotte M, Kersting C, et al.: Expression and prognostic impact of the protein tyrosine phosphatases PRL-1, PRL-2, and PRL-3 in breast cancer. Br J Cancer 2006, 95:347–354.

    Article  PubMed  CAS  Google Scholar 

  35. Yagi T, Morimoto A, Eguchi M, et al.: Identification of a gene expression signature associated with pediatric AML prognosis. Blood 2003, 102:1849–1856.

    Article  PubMed  CAS  Google Scholar 

  36. Schwering I, Brauninger A, Distler V, et al.: Profiling of Hodgkin’s lymphoma cell line L1236 and germinal center B cells: identification of Hodgkin’s lymphoma-specific genes. Mol Med 2003, 9:85–95.

    PubMed  CAS  Google Scholar 

  37. Wang Q, Holmes DI, Powell SM, et al.: Analysis of stromalepithelial interactions in prostate cancer identifies PTPCAAX2 as a potential oncogene. Cancer Lett 2002, 175:63–69.

    Article  PubMed  CAS  Google Scholar 

  38. Wang J, Kirby CE, Herbst R: The tyrosine phosphatase PRL-1 localizes to the endoplasmic reticulum and the mitotic spindle and is required for normal mitosis. J Biol Chem 2002, 277:46659–46668.

    Article  PubMed  CAS  Google Scholar 

  39. Han H, Bearss DJ, Browne LW, et al.: Identification of differentially expressed genes in pancreatic cancer cells using cDNA microarray. Cancer Res 2002, 62:2890–2896.

    PubMed  CAS  Google Scholar 

  40. Werner SR, Lee PA, DeCamp MW, et al.: Enhanced cell cycle progression and down regulation of p21(Cip1/Waf1) by PRL tyrosine phosphatases. Cancer Lett 2003, 202:201–211.

    Article  PubMed  CAS  Google Scholar 

  41. Cates CA, Michael RL, Stayrook KR, et al.: Prenylation of oncogenic human PTP (CAAX) protein tyrosine phosphatases. Cancer Lett 1996, 110:49–55.

    Article  PubMed  CAS  Google Scholar 

  42. Zeng Q, Dong JM, Guo K, et al.: PRL-3 and PRL-1 promote cell migration, invasion, and metastasis. Cancer Res 2003, 63:2716–2722.

    PubMed  CAS  Google Scholar 

  43. Wu X, Zeng H, Zhang X, et al.: Phosphatase of regenerating liver-3 promotes motility and metastasis of mouse melanoma cells. Am J Pathol 2004, 164:2039–2054.

    PubMed  CAS  Google Scholar 

  44. Li Z, Zhan W, Wang Z, et al.: Inhibition of PRL-3 gene expression in gastric cancer cell line SGC7901 via microRNA suppressed reduces peritoneal metastasis. Biochem Biophys Res Commun 2006, 348:229–237.

    Article  PubMed  CAS  Google Scholar 

  45. Kato H, Semba S, Miskad UA, et al.: High expression of PRL-3 promotes cancer cell motility and liver metastasis in human colorectal cancer: a predictive molecular marker of metachronous liver and lung metastases. Clin Cancer Res 2004, 10:7318–7328.

    Article  PubMed  CAS  Google Scholar 

  46. Neel BG, Gu H, Pao L: The ’shp’ing news: SH2 domaincontaining tyrosine phosphatases in cell signaling. Trends Biochem Sci 2003, 28:284–293.

    Article  PubMed  CAS  Google Scholar 

  47. Shi ZQ, Lu W, Feng GS: The Shp-2 tyrosine phosphatase has opposite effects in mediating the activation of extracellular signal-regulated and c-Jun NH2-terminal mitogen-activated protein kinases. J Biol Chem 1998, 273:4904–4908.

    Article  PubMed  CAS  Google Scholar 

  48. Tartaglia M, Mehler EL, Goldberg R, et al.: Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome. Nat Genet 2001, 29:465–468.

    Article  PubMed  CAS  Google Scholar 

  49. Tartaglia M, Kalidas K, Shaw A, et al.: PTPN11 mutations in Noonan syndrome: molecular spectrum, genotype-phenotype correlation, and phenotypic heterogeneity. Am J Hum Genet 2002, 70:1555–1563.

    Article  PubMed  CAS  Google Scholar 

  50. Araki T, Mohi MG, Ismat FA, et al.: Mouse model of Noonan syndrome reveals cell type-and gene dosage-dependent effects of Ptpn11 mutation. Nat Med 2004, 10:849–857.

    Article  PubMed  CAS  Google Scholar 

  51. Tartaglia M, Gelb BD: Germ-line and somatic PTPN11 mutations in human disease. Eur J Med Genet 2005, 48:81–96.

    Article  PubMed  Google Scholar 

  52. Xu R, Yu Y, Zheng S, et al.: Overexpression of Shp2 tyrosine phosphatase is implicated in leukemogenesis in adult human leukemia. Blood 2005, 106:3142–3149.

    Article  PubMed  CAS  Google Scholar 

  53. Martinelli S, Carta C, Flex E, et al.: Activating PTPN11 mutations play a minor role in pediatric and adult solid tumors. Cancer Genet Cytogenet 2006, 166:124–132.

    Article  PubMed  CAS  Google Scholar 

  54. Su WP, Tu IH, Hu SW, et al.: HER-2/neu raises SHP-2, stops IFN-gamma anti-proliferation in bladder cancer. Biochem Biophys Res Commun 2007, 356:181–186.

    Article  PubMed  CAS  Google Scholar 

  55. Saxton TM, Henkemeyer M, Gasca S, et al.: Abnormal mesoderm patterning in mouse embryos mutant for the SH2 tyrosine phosphatase Shp-2. EMBO J 1997, 16:2352–2364.

    Article  PubMed  CAS  Google Scholar 

  56. Qu CK, Yu WM, Azzarelli B, et al.: Biased suppression of hematopoiesis and multiple developmental defects in chimeric mice containing Shp-2 mutant cells. Mol Cell Biol 1998, 18:6075–6082.

    PubMed  CAS  Google Scholar 

  57. Atkins MB: Cytokine-based therapy and biochemotherapy for advanced melanoma. Clin Cancer Res 2006, 12:2353s–2358s.

    Article  PubMed  CAS  Google Scholar 

  58. Borden EC: Review: Milstein Award lecture: interferons and cancer: where from here? J Interferon Cytokine Res 2005, 25:511–527.

    Article  PubMed  CAS  Google Scholar 

  59. Adachi M, Fischer EH, Ihle J, et al.: Mammaliam SH2-containing protein tyrosine phosphatases. Cell 1996, 85:15.

    Article  PubMed  CAS  Google Scholar 

  60. Yi TL, Cleveland JL, Ihle JN: Protein tyrosine phosphatase containing SH2 domains: characterization, preferential expression in hematopoietic cells, and localization to human chromosome 12p12–p13. Mol Cell Biol 1992, 12:836–846.

    PubMed  CAS  Google Scholar 

  61. Shultz LD, Schweitzer PA, Rajan TV, et al.: Mutations at the murine motheaten locus are within the hematopoietic cell protein-tyrosine phosphatase (Hcph) gene. Cell 1993, 73:1445–1454.

    Article  PubMed  CAS  Google Scholar 

  62. Shultz LD, Rajan TV, Greiner DL: Severe defects in immunity and hematopoiesis caused by SHP-1 protein-tyrosine-phosphatase deficiency. Trends Biotechnol 1997, 15:302–307.

    Article  PubMed  CAS  Google Scholar 

  63. David M, Chen HE, Goelz S, et al.: Differential regulation of the alpha/beta interferon-stimulated Jak/Stat pathway by the SH2 domain-containing tyrosine phosphatase SHPTP1. Mol Cell Biol 1995, 15:7050–7058.

    PubMed  CAS  Google Scholar 

  64. Migone TS, Cacalano NA, Taylor N, et al.: Recruitment of SH2-containing protein tyrosine phosphatase SHP-1 to the interleukin 2 receptor; loss of SHP-1 expression in human T-lymphotropic virus type I-transformed T cells. Proc Natl Acad Sci U S A 1998, 95:3845–3850.

    Article  PubMed  CAS  Google Scholar 

  65. Zhang ZY: Protein tyrosine phosphatases: structure and function, substrate specificity, and inhibitor development. Annu Rev Pharmacol Toxicol 2002, 42:209–234.

    Article  PubMed  CAS  Google Scholar 

  66. Klingmüller U, Lorenz U, Cantley LC, et al.: Specific recruitment of SH-PTP1 to the erythropoietin receptor causes inactivation of JAK2 and termination of proliferative signals. Cell 1995, 80:729–738.

    Article  PubMed  Google Scholar 

  67. Jiao H, Berrada K, Yang W, et al.: Direct association and dephosphorylation of Jak2 kinase by SH2 domain-containing protein tyrosine phosphatase SHP-1. Mol Cell Biol 1996, 16:6985–6992.

    PubMed  CAS  Google Scholar 

  68. Ihle JN, Thierfelder W, Teglund S, et al.: Signaling by the cytokine receptor superfamily. Ann N Y Acad Sci 1998, 865:1–9.

    Article  PubMed  CAS  Google Scholar 

  69. Jiao H, Yang W, Berrada K, et al.: Macrophages from motheaten and viable motheaten mutant mice show increased proliferative response to GM-CSF: detection of potential HCP substrates in GM-CSF signal transduction. Exp Hematol 1997, 25:592–600.

    PubMed  CAS  Google Scholar 

  70. Pani G, Fischer KD, Mlinaric-Rascan I, Siminovitch KA: Signaling capacity of the T cell antigen receptor is negatively regulated by the PTP1C tyrosine phosphatase. J Exp Med 1996, 184:839–852.

    Article  PubMed  CAS  Google Scholar 

  71. Burshtyn DN, Scharenberg AM, Wagtmann N, et al.: Recruitment of tyrosine phosphatase HCP by the killer cell inhibitor receptor. Immunity 1996, 4:77–85.

    Article  PubMed  CAS  Google Scholar 

  72. Nakayama K, Takahashi K, Shultz LD, et al.: Abnormal development and differentiation of macrophages and dendritic cells in viable motheaten mutant mice deficient in haematopoietic cell phosphatase. Int J Exp Pathol 1997, 78:245–257.

    Article  PubMed  CAS  Google Scholar 

  73. Johnson KG, LeRoy FG, Borysiewicz LK, Matthews RJ: TCR signaling thresholds regulating T cell development and activation are dependent upon SHP-1. J Immunol 1999, 162:3802–3813.

    PubMed  CAS  Google Scholar 

  74. Carter JD, Neel BG, Lorenz U: The tyrosine phosphatase SHP-1 influences thymocyte selection by setting TCR signaling thresholds. Int Immunol 1999, 11:1999–2014.

    Article  PubMed  CAS  Google Scholar 

  75. Coggeshall KM, Nakamura K, Phee H: How do inhibitory phosphatases work? Mol Immunol 2002, 39:521–529.

    Article  PubMed  CAS  Google Scholar 

  76. Bryceson YT, March ME, Ljunggren HG, Long EO: Activation, coactivation, and costimulation of resting human natural killer cells. Immunol Rev 2006, 214:73–91.

    Article  PubMed  CAS  Google Scholar 

  77. Yu WM, Wang S, Keegan AD, et al.: Abnormal Th1 cell differentiation and IFN-gamma production in T lymphocytes from motheaten viable mice mutant for Src homology 2 domain-containing protein tyrosine phosphatase-1. J Immunol 2005, 174:1013–1019.

    PubMed  CAS  Google Scholar 

  78. Van Zant G, Shultz L: Hematologic abnormalities of the immunodeficient mouse mutant, viable motheaten (mev). Exp Hematol 1989, 17:81–87.

    PubMed  Google Scholar 

  79. Tapley P, Shevde NK, Schweitzer PA, et al.: Increased G-CSF responsiveness of bone marrow cells from hematopoietic cell phosphatase deficient viable motheaten mice. Exp Hematol 1997, 25:122–131.

    PubMed  CAS  Google Scholar 

  80. Matthews RJ, Bowne DB, Flores E, Thomas ML: Characterization of hematopoietic intracellular protein tyrosine phosphatases: description of a phosphatase containing an SH2 domain and another enriched in proline-, glutamic acid-, serine-, and threonine-rich sequences. Mol Cell Biol 1992, 12:2396–2405.

    PubMed  CAS  Google Scholar 

  81. Cohen S, Dadi H, Shaoul E, et al.: Cloning and characterization of a lymphoid-specific, inducible human protein tyrosine phosphatase, Lyp. Blood 1999, 93:2013–2024.

    PubMed  CAS  Google Scholar 

  82. Hasegawa K, Martin F, Huang G, et al.: PEST domainenriched tyrosine phosphatase (PEP) regulation of effector/memory T cells. Science 2004, 303:685–689.

    Article  PubMed  CAS  Google Scholar 

  83. Becker Y: Molecular immunological approaches to biotherapy of human cancers: a review, hypothesis and implications. Anticancer Res 2006, 26:1113–1134.

    PubMed  CAS  Google Scholar 

  84. Han S, Williams S, Mustelin T: Cytoskeletal protein tyrosine phosphatase PTPH1 reduces T cell antigen receptor signaling. Eur J Immunol 2000, 30:1318–1325.

    Article  PubMed  CAS  Google Scholar 

  85. Bauler TJ, Hughes ED, Arimura Y, et al.: Normal TCR signal transduction in mice that lack catalytically active PTPN3 protein tyrosine phosphatase. J Immunol 2007, 178:3680–3688.

    PubMed  CAS  Google Scholar 

  86. Ostman A, Böhmer FD: Regulation of receptor tyrosine kinase signaling by protein tyrosine phosphatases. Trends Cell Biol 2001, 11:258–266.

    Article  PubMed  CAS  Google Scholar 

  87. Wang Z, Shen D, Parsons DW, et al.: Mutational analysis of the tyrosine phosphatome in colorectal cancers. Science 2004, 304:1164–1166.

    Article  PubMed  CAS  Google Scholar 

  88. Zhang X, Guo A, Yu J, et al.: Identification of STAT3 as a substrate of receptor protein tyrosine phosphatase T. Proc Natl Acad Sci U S A 2007, 104:4060–4064.

    Article  PubMed  CAS  Google Scholar 

  89. Sansal I, Sellers WR: The biology and clinical relevance of the PTEN tumor suppressor pathway. J Clin Oncol 2004, 22:2954–2963.

    Article  PubMed  CAS  Google Scholar 

  90. Brezak MC, Quaranta M, Contour-Galcera MO, et al.: Inhibition of human tumor cell growth in vivo by an orally bioavailable inhibitor of CDC25 phosphatases. Mol Cancer Ther 2005, 4:1378–1387.

    Article  PubMed  CAS  Google Scholar 

  91. Kar S, Wang M, Yao W, et al.: PM-20, a novel inhibitor of Cdc25A, induces extracellular signal-regulated kinase 1/2 phosphorylation and inhibits hepatocellular carcinoma growth in vitro and in vivo. Mol Cancer Ther 2006, 5:1511–1519.

    Article  PubMed  CAS  Google Scholar 

  92. Pathak MK, Dhawan D, Lindner DJ, et al.: Pentamidine is an inhibitor of PRL phosphatases with anticancer activity. Mol Cancer Ther 2002, 1:1255–1264.

    PubMed  CAS  Google Scholar 

  93. Fox KR, Sansom CE, Stevens MF: Footprinting studies on the sequence-selective binding of pentamidine to DNA. FEBS Lett 1990, 266:150–154.

    Article  PubMed  CAS  Google Scholar 

  94. Ahn JH, Kim SJ, Park WS, et al.: Synthesis and biological evaluation of rhodanine derivatives as PRL-3 inhibitors. Bioorg Med Chem Lett 2006, 16:2996–2999.

    Article  PubMed  CAS  Google Scholar 

  95. Choi SK, Oh HM, Lee SK, et al.: Biflavonoids inhibited phosphatase of regenerating liver-3 (PRL-3). Nat Prod Res 2006, 20:341–346.

    Article  PubMed  CAS  Google Scholar 

  96. Lazo JS, Skoko JJ, Werner S, et al.: Structurally unique inhibitors of human mitogen-activated protein kinase phosphatase-1 identified in a pyrrole carboxamide library. J Pharmacol Exp Ther 2007, 322:940–947.

    Article  PubMed  CAS  Google Scholar 

  97. Pathak MK, Yi T: Sodium stibogluconate is a potent inhibitor of protein tyrosine phosphatases and augments cytokine responses in hemopoietic cell lines. J Immunol 2001, 167:3391–3397.

    PubMed  CAS  Google Scholar 

  98. Yi T, Pathak MK, Lindner DJ, et al.: Anticancer activity of sodium stibogluconate in synergy with IFNs. J Immunol 2002, 169:5978–5985.

    PubMed  CAS  Google Scholar 

  99. Fan K, Zhou M, Pathak MK, et al.: Sodium stibogluconate interacts with IL-2 in anti-Renca tumor action via a T cell-dependent mechanism in connection with induction of tumor-infiltrating macrophages. J Immunol 2005, 175:7003–7008.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taolin Yi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yi, T., Lindner, D. The role and target potential of protein tyrosine phosphatases in cancer. Curr Oncol Rep 10, 114–121 (2008). https://doi.org/10.1007/s11912-008-0019-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11912-008-0019-6

Keywords

Navigation