Skip to main content

Advertisement

Log in

Her-2 targeted therapy: Beyond breast cancer and trastuzumab

Current Oncology Reports Aims and scope Submit manuscript

Abstract

Her-2 is a validated therapeutic target in breast cancer. The two critical questions that remain regarding Her-2 targeting concern 1) the relevance of Her-2 inhibition in other malignancies and 2) the ability of novel agents to achieve greater Her-2 inhibition than trastuzumab. The contribution of cell signaling effects and immunologic mechanisms to the effect of trastuzumab in vivo remains poorly understood. Thus, the preclinical data that support the greater efficacy of novel Her-2 antibodies or small molecule tyrosine kinase inhibitors remain to be validated in clinical trials. In this review, we discuss the evidence from recent trastuzumab clinical trials as a point of departure for consideration of novel Her-2 targeted therapies. Preliminary results from early clinical trials suggest that Her-2 tyrosine kinase inhibitors may extend the population for which this strategy offers therapeutic effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References and Recommended Reading

  1. Pegram MD, Lopez A, Konecny G, Slamon DJ: Trastuzumab and chemotherapeutics: drug interactions and synergies. Semin Oncol 2000, 27:21–25, discussion 92–100.

    PubMed  CAS  Google Scholar 

  2. Lemoine NR, Staddon S, Dickson C, et al.: Absence of activating transmembrane mutations in the c-erbB-2 proto-oncogene in human breast cancer. Oncogene 1990, 5:237–239.

    PubMed  CAS  Google Scholar 

  3. Natali PG, Nicotra MR, Bigotti A, et al.: Expression of the p185 encoded by HER2 oncogene in normal and transformed human tissues. Int J Cancer 1990, 45:457–461.

    Article  PubMed  CAS  Google Scholar 

  4. Holbro T, Beerli RR, Maurer F, et al.: The ErbB2/ErbB3 heterodimer functions as an oncogenic unit: ErbB2 requires ErbB3 to drive breast tumor cell proliferation. Proc Natl Acad Sci U S A 2003, 100:8933–8938.

    Article  PubMed  CAS  Google Scholar 

  5. Hudelist G, Singer CF, Manavi M, et al.: Co-expression of ErbB-family members in human breast cancer: Her-2/neu is the preferred dimerization candidate in nodal-positive tumors. Breast Cancer Res Treat 2003, 80:353–361.

    Article  PubMed  CAS  Google Scholar 

  6. Harari D, Yarden Y: Molecular mechanisms underlying ErbB2/HER2 action in breast cancer. Oncogene 2000, 19:6102–6114.

    Article  PubMed  CAS  Google Scholar 

  7. Zhou BP, Hung MC: Dysregulation of cellular signaling by HER2/neu in breast cancer. Semin Oncol 2003, 30:38–48.

    Article  PubMed  CAS  Google Scholar 

  8. Petit AM, Rak J, Hung MC, et al.: Neutralizing antibodies against epidermal growth factor and ErbB-2/neu receptor tyrosine kinases down-regulate vascular endothelial growth factor production by tumor cells in vitro and in vivo: angiogenic implications for signal transduction therapy of solid tumors. Am J Pathol 1997, 151:1523–1530.

    PubMed  CAS  Google Scholar 

  9. Slamon DJ, Clark GM, Wong SG, et al.: Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 1987, 235:177–182.

    Article  PubMed  CAS  Google Scholar 

  10. Anonymous: Clinical laboratory assays for HER-2/neu amplification and overexpression: quality assurance, standardization, and proficiency testing. Arch Pathol Lab Med 2002, 26:803–808.

    Google Scholar 

  11. Sliwkowski MX, Lofgren JA, Lewis GD, et al.: Nonclinical studies addressing the mechanism of action of trastuzumab (Herceptin). Semin Oncol 1999, 26:60–70.

    PubMed  CAS  Google Scholar 

  12. Baselga J, Norton L, Albanell J, et al.: Recombinant humanized anti-HER2 antibody (Herceptin) enhances the antitumor activity of paclitaxel and doxorubicin against HER2/neu overexpressing human breast cancer xenografts. Cancer Res 1998, 58:2825–2831.

    PubMed  CAS  Google Scholar 

  13. Pegram MD, Slamon DJ: Combination therapy with trastuzumab (Herceptin) and cisplatin for chemoresistant metastatic breast cancer: evidence for receptor-enhanced chemosensitivity. Semin Oncol 1999, 26:89–95.

    PubMed  CAS  Google Scholar 

  14. Pegram MD, Konecny GE, O’Callaghan C, et al.: Rational combinations of trastuzumab with chemotherapeutic drugs used in the treatment of breast cancer. J Natl Cancer Inst 2004, 96:739–749.

    Article  PubMed  CAS  Google Scholar 

  15. Peterson G, Barnes S: Genistein inhibits both estrogen and growth factor-stimulated proliferation of human breast cancer cells. Cell Growth Differ 1996, 7:1345–1351.

    PubMed  CAS  Google Scholar 

  16. Reddy KB, Mangold GL, Tandon AK, et al.: Inhibition of breast cancer cell growth in vitro by a tyrosine kinase inhibitor. Cancer Res 1992, 52:3636–3641.

    PubMed  CAS  Google Scholar 

  17. Zhang L, Lau YK, Xi L, et al.: Tyrosine kinase inhibitors, emodin and its derivative repress HER-2/neu-induced cellular transformation and metastasis-associated properties. Oncogene 1888, 16:2855–2863.

    Article  CAS  Google Scholar 

  18. Pegram MD, Reese DM: Combined biological therapy of breast cancer using monoclonal antibodies directed against HER2/neu protein and vascular endothelial growth factor. Semin Oncol 2002, 29:29–37.

    PubMed  CAS  Google Scholar 

  19. Johnston SR, Martin LA, Head J, et al.: Aromatase inhibitors: combinations with fulvestrant or signal transduction inhibitors as a strategy to overcome endocrine resistance. J Steroid Biochem Mol Biol 2005, 95:173–181.

    Article  PubMed  CAS  Google Scholar 

  20. Jones A: Combining trastuzumab (Herceptin) with hormonal therapy in breast cancer: what can be expected and why? Ann Oncol 2003, 14:1697–1704.

    Article  PubMed  CAS  Google Scholar 

  21. Slamon DJ, Leyland-Jones B, Shak S, et al.: Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 2001, 344:783–792.

    Article  PubMed  CAS  Google Scholar 

  22. Mohsin SK, Weiss HL, Gutierrez MC, et al.: Neoadjuvant trastuzumab induces apoptosis in primary breast cancers. J Clin Oncol 2005, 23:2460–2468. The most thorough investigation of trastuzumab mechanism of action in vivo.

    Article  PubMed  CAS  Google Scholar 

  23. Hussain M, Petrylak D, Dunn R, et al.: Trastuzumab (T), paclitaxel (P), carboplatin (C), and gemcitabine (G) in advanced HER2-positive urothelial carcinoma: results of a multi-center phase II NCI Trial [abstract]. J Clin Oncol Proc ASCO 2005, 23:4507.

    Google Scholar 

  24. Clamon G, Herndon J, Kern J, et al.: for the Cancer and Leukemia Group B: Lack of trastuzumab activity in nonsmall cell lung carcinoma with overexpression of erb-B2. Cancer 2005, 103:1670–1675.

    Article  PubMed  CAS  Google Scholar 

  25. Zinner RG, Glisson BS, Fossella FV, et al.: Trastuzumab in combination with cisplatin and gemcitabine in patients with Her2-overexpressing, untreated, advanced non-small cell lung cancer: report of a phase II trial and findings regarding optimal identification of patients with Her2-overexpressing disease. Lung Cancer 2004, 44:99–110.

    Article  PubMed  Google Scholar 

  26. Yeon C, Slamon D, Patel R, et al.: Clinical benefit of trastuzumab among patients with Her-2 positive metastatic breast cancer not achieving objective responses when treated with trastuzumab plus chemotherapy [abstract]. J Clin Oncol Proc ASCO 2204, 23:680.

    Google Scholar 

  27. Ziada A, Barqawi A, Glode LM, et al.: The use of trastuzumab in the treatment of hormone refractory prostate cancer: phase II trial. Prostate 2004, 60:332–337.

    Article  PubMed  CAS  Google Scholar 

  28. Lara PN Jr, Chee KG, Longmate J, et al.: Trastuzumab plus docetaxel in HER-2/neu-positive prostate carcinoma: final results from the California Cancer Consortium Screening and Phase II Trial. Cancer 2004, 100:2125–2131.

    Article  PubMed  CAS  Google Scholar 

  29. Jackson JG, St Clair P, Sliwkowski MX, Brattain MG: Blockade of epidermal growth factor- or heregulin-dependent ErbB2 activation with the anti-ErbB2 monoclonal antibody 2C4 has divergent downstream signaling and growth effects. Cancer Res 2004, 64:2601–2609. Intriguing preclinical analysis of the different effects among various Her-2 antibodies in cell signaling.

    Article  PubMed  CAS  Google Scholar 

  30. Gordon MS, Matei D, Aghajanian C, et al.: Clinical activity of pertuzumab (rhuMab 2C4) in advanced, refractory or recurrent ovarian cancer (OC), and the role of HER2 activation status [abstract]. J Clin Oncol Proc ASCO 2003, 23:5051.

    Google Scholar 

  31. Xia W, Gerard CM, Liu L, et al.: Combining lapatinib (GW572016), a small molecule inhibitor of ErbB1 and ErbB2 tyrosine kinases, with therapeutic anti-ErbB2 antibodies enhances apoptosis of ErbB2-overexpressing breast cancer cells. Oncogene 2005, 15:6213–6221. Preclinical evidence to support the combination of Her2 targeted antibodies with Her-2 tyrosine kinase inhibitors.

    Article  CAS  Google Scholar 

  32. Burris HA III, Hurwitz HI, Dees EC, et al.: Phase I safety, pharmacokinetics, and clinical activity study of lapatinib (GW572016), a reversible dual inhibitor of epidermal growth factor receptor tyrosine kinases, in heavily pretreated patients with metastatic carcinomas. J Clin Oncol 2005, 23:5305–5313. Epub 2005 Jun 13.

    Article  PubMed  CAS  Google Scholar 

  33. Spector NL, Xia W, Burris H III, et al.: Study of the biologic effects of lapatinib, a reversible inhibitor of ErbB1 and ErbB2 tyrosine kinases, on tumor growth and survival pathways in patients with advanced malignancies. J Clin Oncol. 2005, 23:2502–2512. Epub 2005 Jan 31. The definitive report of the cellular impact of lapatinib on tumor cells in vivo.

    Article  PubMed  CAS  Google Scholar 

  34. Blackwell KL, Kaplan EH, Franco SX, et al.: A phase II, open-label, multicenter study of GW572016 in patients with trastuzumab-refractory metastatic breast cancer [abstract]. J Clin Oncol Proc ASCO 2004, 22:3006.

    Google Scholar 

  35. Nagata Y, Lan KH, Zhou X, et al.: PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer Cell 2004, 6:117–127.

    Article  PubMed  CAS  Google Scholar 

  36. Fields AL, Rinaldi DA, Henderson CA, et al.: An Open-label multicenter phase II study of oral lapatinib (GW572016) as single agent, second-line therapy in patients with metastatic colorectal cancer [abstract]. J Clin Oncol Proc ASCO 2005, 23:3583.

    Google Scholar 

  37. Midgley R, Flaherty KT, Haller DG, et al.: Phase I study of GW572016 (lapatinib), a dual kinase inhibitor, in combination with irinotecan (IR), 5-fluorouracil (FU) and leucovorin (LV) [abstract]. J Clin Oncol Proc ASCO 2005 23:3086.

    Google Scholar 

  38. Lakhai WS, Beijnen JH, Den Boer SS, et al.: Phase I trial to determine the safety and tolerability of GW572016 in combination with oxaliplatin (OX)/5-fluorouracil (5-FU)/leucovorin (LV) [FOLFOX4] in patients with solid tumors [abstract]. J Clin Oncol Proc ASCO 2004, 22:2044.

    Google Scholar 

  39. Machiels J-P, Wülfing C, Richel DJ, et al.: A single arm, multicenter, open-label phase II study of orally administered GW572016 as single-agent, second-line treatment of patients with locally advanced or metastatic transitional cell carcinoma of the urothelial tract. Interim analysis [abstract]. J Clin Oncol 2004 Proc ASCO 2004, 22:4615.

    Google Scholar 

  40. Calvo E, Tolcher AW, Hammond LA, et al.: Administration of CI-1033, an irreversible pan-erbB tyrosine kinase inhibitor, is feasible on a 7-day on, 7-day off schedule: a phase I pharmacokinetic and food effect study. Clin Cancer Res 2004, 10:7112–7120.

    Article  PubMed  CAS  Google Scholar 

  41. Nemunaitis J, Eiseman I, Cunningham C, et al.: Phase 1 clinical and pharmacokinetics evaluation of oral CI-1033 in patients with refractory cancer. Clin Cancer Res 2005, 11:3846–3853.

    Article  PubMed  CAS  Google Scholar 

  42. Simon GR, Olson S, Garrett CR, et al.: Phase I pharmacokinetic (PK) and safety study of intravenous (IV) CI-1033 in patients with advanced solid tumors [abstract]. J Clin Oncol Proc ASCO 2004, 22:3057.

    Google Scholar 

  43. Campos S, Hamid O, Seiden MV, et al.: Multicenter, randomized phase II trial of oral CI-1033 for previously treated advanced ovarian cancer. J Clin Oncol 2005, 23:5597–5604. An important negative result regarding the use of CI-1033 as a single agent for the treatment of advanced ovarian cancer.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flaherty, K.T., Brose, M.S. Her-2 targeted therapy: Beyond breast cancer and trastuzumab. Curr Oncol Rep 8, 90–95 (2006). https://doi.org/10.1007/s11912-006-0042-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11912-006-0042-4

Keywords

Navigation