Skip to main content

Advertisement

Log in

The genetics of familial lymphomas

  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Whereas familial clustering of malignant lymphoma is well documented, the molecular changes underlying familial lymphoma syndromes remain unclear. An understanding of the hereditary basis of lymphoma may lead to the identification of new molecular markers for disease or novel therapeutic targets. This paper reviews the genetics of familial lymphoma, focusing on germline susceptibilities to lymphoma as well as germline susceptibilities to environmental exposures that have been linked to lymphoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Medeiros LJ, Greiner TC: Hodgkin’s disease. Cancer 1995, 75:357S-69S.

    Article  Google Scholar 

  2. Shugart YY, Hemminki K, Vaittinen P, et al.: A genetic study of Hodgkin’s lymphoma: an estimate of heritability and anticipation based on the familial cancer database in Sweden. Hum Genet 2000, 106:553–556.

    Article  PubMed  CAS  Google Scholar 

  3. Wiernik PH, Wang SQ, Hu, et al.: Age of onset evidence for anticipation in familial non-Hodgkin’s lymphoma. Br J Haematol 2000, 108:72–79.

    Article  PubMed  CAS  Google Scholar 

  4. Rabkin CS, Ward MH, Manns A, et al.: Epidemiology of non-Hodgkin’s lymphomas. In The Non-Hodgkin’s Lymphomas. Edited by Magrath IT. New York: Oxford University Press; 1997:171–186.

    Google Scholar 

  5. Linet MS, Pottern LM: Familial aggregation of hematopoietic malignancies and risk of non-Hodgkin’s lymphoma. Cancer Res 1992, 52:5468s-5473s.

    PubMed  CAS  Google Scholar 

  6. Razis DV, Diamond HD, Craver LF: Familial Hodgkin’s disease, its significance and implications. Ann Intern Med 1959, 51:933–971.

    PubMed  CAS  Google Scholar 

  7. Grufferman S, Cole P, Smith PG, et al.: Hodgkin’s disease in siblings. N Engl J Med. 1977, 296:248–250.

    Article  PubMed  CAS  Google Scholar 

  8. Mack TM, Cozen W, Shibata DK, et al.: Concordance for Hodgkin’s disease in identical twins suggesting genetic susceptibility to the young-adult form of the disease. N Engl J Med 1995, 332:413–418.

    Article  PubMed  CAS  Google Scholar 

  9. Winnett A, Thomas SJ, Brabin BJ, et al.: Familial Burkitt’s lymphoma in Papua New Guinea. Br J Cancer 1997, 75:757–761.

    PubMed  CAS  Google Scholar 

  10. Salawu L, Fatusi OA, Kemi-Rotimi F: Familial Burkitt’s lymphoma in Nigerians. Ann Trop Paediatr 1997, 17:375–379.

    PubMed  CAS  Google Scholar 

  11. Hoar SK, Blair A, Holmes F, et al.: Agricultural herbicide use and risk of lymphoma and soft tissue sarcoma. JAMA 1986, 256:1141–1147.

    Article  PubMed  CAS  Google Scholar 

  12. Zahm SH, Blair A: Pesticides and non-Hodgkin’s lymphoma. Cancer Res 1992, 52:5485S-588S.

    PubMed  CAS  Google Scholar 

  13. Chiu BC, Weisenburger DD, Zahm SH: Agricultural pesticide use, familial cancer, and risk of Non-Hodgkin lymphoma. Cancer Epidemiol Biomarkers Prev 2004, 13:525–531.

    PubMed  CAS  Google Scholar 

  14. Shugart YY, Hemminki K, Vaittinen P: Apparent anticipation and heterogeneous transmission patterns in familial Hodgkin’s and non-Hodgkin’s lymphoma: report from a study based on Swedish cancer database. Leuk Lymphoma 2001, 42:407–415.

    PubMed  CAS  Google Scholar 

  15. Hors J, Steinberg G, Andrieu JM, et al.: HLA genotypes in familial Hodgkin’s disease: excess of HLA identical affected subs. Eur J Cancer 1980, 16:809–815.

    PubMed  CAS  Google Scholar 

  16. Chakravarti A, Halloran SL, Bale SJ: Etiological heterogeneity in Hodgkin’s disease: HLA linked and unlinked determinants of susceptibility independent of histological concordance. Genet Epidemiol 1986, 6:407–415.

    Article  Google Scholar 

  17. Harty LC, Lin AY, Goldstein AM: HLA-DR, HLA-DQ, and TAP genes in familial Hodgkin disease. Blood 2002, 99:690–693. A family-based study using modern transmission disequilibrium methodology to confirm association of HLA class II loci to familial Hodgkin’s disease, particularly nodular sclerosing subtype.

    Article  PubMed  CAS  Google Scholar 

  18. Klitz W, Aldrich CL, Fildes N: Localization of predisposition to Hodgkin disease in the HLA class II region. Am J Hum Genet 1994, 54:497–505.

    PubMed  CAS  Google Scholar 

  19. Conte R, Lauria F, Zucchelli P: HLA in familial Hodgkin’s disease. J Immunogenet 1983, 10:251–255.

    Article  PubMed  CAS  Google Scholar 

  20. Shears DJ, Vassal HJ, Goodman FR: Mutation and deletion of the pseudoautosomal gene SHOX cause Leri-Weill dyschondrosteosis. Nat Genet 1998, 19:70–73.

    Article  PubMed  CAS  Google Scholar 

  21. Gokhale DA, Evans DG, Crowther D, et al.: Molecular genetic analysis of a family with a history of Hodgkin’s disease and dyschondrosteosis. Leukemia 1995, 9:826–33.

    PubMed  CAS  Google Scholar 

  22. Shears DJ, Endris V, Gokhale DA, et al.: Pseudoautosomal linkage of familial Hodgkin’s lymphoma: molecular analysis of a unique family with Leri-Weill dyschondrosteosis and Hodgkins lymphoma. Brit J Haemat 2003, 121:377–379.

    Article  PubMed  Google Scholar 

  23. Horwitz M, Wiernik PH: Pseudoautosomal linkage of Hodgkin disease. Am J Hum Genet 1999, 65:1413–1422. A sibling pair study for sex concordance and cosegregation of Hodgkin’s disease and Leri-Weill dyschondrostenosis that provides an excellent review of the literature.

    Article  PubMed  CAS  Google Scholar 

  24. Strahm B, Rittweiler K, Duffner U et al.: Recurrent B-cell non-Hodgkin’s lymphoma in two brothers with X-linked lymphoproliferative disease without evidence for Epstein-Barr virus infection. Br J Haematol 2000, 108:377–382.

    Article  PubMed  CAS  Google Scholar 

  25. Harrington DS, Weisenburger DD, Purtilo DT et al.: Malignant lymphoma in the X-linked lymphoproliferative syndrome. Cancer 1987, 59:1419–1429.

    Article  PubMed  CAS  Google Scholar 

  26. Brandau O, Schuster V, Weiss M, et al.: Epstein-Barr virus-negative boys with non-Hodgkin lymphoma are mutated in the SH2D1A gene, as are patients with X-linked lymphoproliferative disease (XLP). Hum Mol Genet 1999, 13:2407–2413.

    Article  Google Scholar 

  27. Lappalainen I, Giliani S, Franceschini R et al.: Structural basis for SH2D1A mutations in X-linked lymphoproliferative disease. Biochem Biophys Res Commun 2000, 269:124–130.

    Article  PubMed  CAS  Google Scholar 

  28. Snapper SB, Rosen FS: The Wiskott-Aldrich syndrome protein (WASP): roles in signaling and cytoskeletal organization. Annu Rev Immunol. 1999, 17:905–929.

    Article  PubMed  CAS  Google Scholar 

  29. Cotelingam JD, Witebsky FG, Hsu SM, et al.: Malignant lymphoma in patients with the Wiskott-Aldrich syndrome. Cancer Invest 1985, 6:515–522.

    Google Scholar 

  30. Cunningham-Rundles C, Lieberman P, Hellman G: Non-Hodgkin lymphoma in common variable immunodeficiency. Am J Hematol 1991, 37:69–74.

    Article  PubMed  CAS  Google Scholar 

  31. Hisamoto A, Yamane H, Hiraki A: Human herpes virus-8-negative primary effusion lymphoma in a patient with common variable immunodeficiency. Leuk Lymphoma 2003, 44:2019–2022.

    Article  PubMed  Google Scholar 

  32. Reichenberger F, Wyser C, Gonon M: Pulmonary mucosa-associated lymphoid tissue lymphoma in a patient with common variable immunodeficiency syndrome. Respiration 2001, 68:109–112.

    Article  PubMed  CAS  Google Scholar 

  33. Garcia CR, Brown NA, Schreck R: B-cell lymphoma in severe combined immunodeficiency not associated with the Epstein-Barr virus. Cancer 1987, 60:2941–2947.

    Article  PubMed  CAS  Google Scholar 

  34. Genetic susceptibility to cancer. International Commission on Radiological Protection. Ann ICRP 1998, 28:1–157.

  35. Xu Y, Ashley T, Brainerd EE et al.: Targeted disruption of ATM leads to growth retardation, chromosomal fragmentation during meiosis, immune defects, and thymic lymphoma. Genes Dev 1996, 10:2411–2422.

    PubMed  CAS  Google Scholar 

  36. Boultwood J: Ataxia telangiectasia gene mutations in leukaemia and lymphoma. J Clin Pathol 2001, 54:512–516.

    Article  PubMed  CAS  Google Scholar 

  37. Swift M, Morrell D, Massey RB: Incidence of cancer in 161 families affected by ataxia-telangiectasia. N Engl J Med 1991 325:1831–1836.

    Article  PubMed  CAS  Google Scholar 

  38. Offit K, Gilad S, Paglin S, et al.: Rare variants of ATM and risk for Hodgkin’s disease and radiation-associated breast cancers. Clin Cancer Res 2002, 8:3813–3819. A study with unanticipated results that point to some of the difficulties in determining significance of genetic associations in a heterogeneous population.

    PubMed  CAS  Google Scholar 

  39. Stankovic T, Kidd AM, Sutcliffe A et al.: ATM mutations and phenotypes in ataxia-telangiectasia families in the British Isles: expression of mutant ATM and the risk of leukemia, lymphoma, and breast cancer. Am J Hum Genet 1998, 62:334–7345.

    Article  PubMed  CAS  Google Scholar 

  40. Gronbaek K, Worm J, Ralfkiaer E: ATM mutations are associated with inactivation of the ARF-TP53 tumor suppressor pathway in diffuse large B-cell lymphoma. Blood 2002, 100:1430–1437.

    Article  PubMed  CAS  Google Scholar 

  41. Kleihues P, Schauble B, zur Hausen A, et al.: Tumors associated with p53 germline mutations: a synopsis of 91 families. Am J Pathol 1997, 150:1–13.

    PubMed  CAS  Google Scholar 

  42. Potzsch C, Schaefer HE, Lubbert M: Familial and metachronous malignant lymphoma: absence of constitutional p53 mutations. Am J Hematol 1999, 62:144–149.

    Article  PubMed  CAS  Google Scholar 

  43. Shieh SY, Ahn J, Tamai K, et al.: The human homologs of checkpoint kinases Chk1 and Cds1 (Chk2) phosphorylate p53 at multiple DNA damage-inducible sites. Genes Dev 2000, 14:289–300.

    PubMed  CAS  Google Scholar 

  44. Bell DW, Varley JM, Szydlo TE, et al.: Heterozygous germ line hCHK2 mutations in Li-Fraumeni syndrome. Science 1999, 286:2528–2531.

    Article  PubMed  CAS  Google Scholar 

  45. Lee SB, Kim SH, Bell DW, et al.: Destabilization of CHK2 by a missense mutation associated with Li-Fraumeni syndrome. Cancer Res 2001, 61:8062–8067.

    PubMed  CAS  Google Scholar 

  46. Tavor S, Takeuchi S, Tsukasaki K, et al.: Analysis of the CHK2 gene in lymphoid malignancies. Leuk Lymphoma 2001,42:517–520.

    Article  PubMed  CAS  Google Scholar 

  47. Hangaishi A, Ogawa S, Qiao Y, et al.: Mutations of Chk2 in primary hematopoietic neoplasms. Blood 2002, 99:3075–3077.

    Article  PubMed  CAS  Google Scholar 

  48. Tort F, Hernandez S, Bea S, et al.: CHK2-decreased protein expression and infrequent genetic alterations mainly occur in aggressive types of non-Hodgkin lymphomas. Blood 2002, 100:4602–4608.

    Article  PubMed  CAS  Google Scholar 

  49. Tort F, Camacho E, Bosch F, et al.: Familial lymphoid neoplasms in patients with mantle cell lymphoma familial lymphoid neoplasms in patients with mantle cell lymphoma. Haematologica 2004, 89:314–319.

    PubMed  CAS  Google Scholar 

  50. Reitmair AH, Schmits R, Ewel A, et al.: MSH2 deficient mice are viable and susceptible to lymphoid tumors. Nat Genet 1995, 11:64–70.

    Article  PubMed  CAS  Google Scholar 

  51. de Wind N, Dekker M, Berns A, et al.: Inactivation of the mouse MSH2 gene results in mismatch repair deficiency, methylation tolerance, hyperrecombination, and predisposition to cancer. Cell 1995, 82:321–330.

    Article  PubMed  Google Scholar 

  52. Lowsky R, DeCoteau JF, Reitmair AH, et al.: Defects of the mismatch repair gene MSH2 are implicated in the development of murine and human lymphoblastic lymphomas and are associated with the aberrant expression of rhombotin-2 (Lmo-2) and Tal-1 (SCL). Blood 1997, 89:2276–2282.

    PubMed  CAS  Google Scholar 

  53. de Wind N, Dekker M, Claij N: HNPCC-like cancer predisposition in mice through simultaneous loss of Msh3 and Msh6 mismatch-repair protein functions. Nat Genet 1999, 23:359–362.

    Article  PubMed  Google Scholar 

  54. Zhang S, Lloyd R, Bowden G: Thymic lymphomas arising in Msh2 deficient mice display a large increase in mutation frequency and an altered mutational spectrum. Mutat Res 2002, 500:67–74.

    PubMed  CAS  Google Scholar 

  55. Teruya-Feldstein J, Greene J, Cohen L: Analysis of mismatch repair defects in the familial occurrence of lymphoma and colorectal cancer. Leuk Lymphoma 2002, 43:1619–1626.

    Article  PubMed  CAS  Google Scholar 

  56. Grady WM, Myeroff LL, Swinler SE, et al.: Mutational inactivation of transforming growth factor beta receptor type II in microsatellite stable colon cancers. Cancer Res 1999, 59:320–324.

    PubMed  CAS  Google Scholar 

  57. Indraccolo S, Minuzzo S, Nicoletti L, et al.: Mutator phenotype in human hematopoietic neoplasms and its association with deletions disabling DNA repair genes and bcl-2 rearrangements. Blood 1999, 94:2424–2432.

    PubMed  CAS  Google Scholar 

  58. Scott S, Kimura T, Ichinohasama R, et al.: Microsatellite mutations of transforming growth factor-beta receptor type II and caspase-5 occur in human precursor T-cell lymphoblastic lymphomas/leukemias in vivo but are not associated with hMSH2 or hMLH1 promoter methylation. Leuk Res 2003, 27:23–34.

    Article  PubMed  CAS  Google Scholar 

  59. Scarisbrick JJ, Mitchell TJ, Calonje E, et al.: Microsatellite instability is associated with hypermethylation of the hMLH1 gene and reduced gene expression in mycosis fungoides. J Invest Dermatol 2003, 121:894–901.

    Article  PubMed  CAS  Google Scholar 

  60. Paz-y-Mino C, Perez JC, Fiallo BF, et al.: A polymorphism in the hMSH2 gene (gIVS12-6T `s> C) associated with non-Hodgkin lymphomas. Cancer Genet Cytogenet 2002, 133:29–33. An interesting recent association that merits confirmation.

    Article  PubMed  CAS  Google Scholar 

  61. Lowsky R, DeCoteau JF, Reitmair AH, et al.: Defects of the mismatch repair gene MSH2 are implicated in the development of murine and human lymphoblastic lymphomas and are associated with the aberrant expression of rhombotin-2 (Lmo-2) and Tal-1 (SLC). Blood 1997, 89:2276–2282.

    PubMed  CAS  Google Scholar 

  62. Weemaes CM, Hustinx TW, Scheres JM, et al.: A new chromosomal instability disorder, the Nijmegen breakage syndrome. Acta Paediatr Scand 1981, 70:557–564.

    PubMed  CAS  Google Scholar 

  63. Taalman RD, Jaspers NG, Scheres JM, et al.: Hypersensitivity to ionizing radiation, in vitro, in a new chromosomal breakage disorder, the Nijmegen breakage syndrome. Mutat Res 1983, 112:23–32.

    PubMed  CAS  Google Scholar 

  64. Varon R, Vissinga C, Platzer M, et al.: Nibrin, a novel DNA double-strand break repair protein, is mutated in Nijmegen breakage syndrome. Cell 1998, 93:467–476.

    Article  PubMed  CAS  Google Scholar 

  65. Carney JP, Maser RS, Olivares H, et al.: The hMre11/hRad50 protein complex and Nijmegen breakage syndrome: linkage of double-strand break repair to the cellular DNA damage response. Cell 1998, 93:477–486.

    Article  PubMed  CAS  Google Scholar 

  66. Seidemann K, Henze G, Beck JD, et al.: Non-Hodgkin’s lymphoma in pediatric patients with chromosomal breakage syndromes (AT and NBS): experience from the BFM trials. Ann Oncol 2000, 11(Suppl):41–45.

    Article  Google Scholar 

  67. Soucek P, Gut I, Trneny M, et al.: Multiplex single-tube screening for mutations in the Nijmegen Breakage Syndrome (NBS1) gene in Hodgkin’s and non-Hodgkin’s lymphoma patients of Slavic origin. Eur J Hum Genet 2003, 11:416–419.

    Article  PubMed  CAS  Google Scholar 

  68. Cerosaletti KM, Morrison VA, Sabath DE, et al.: Mutations and molecular variants of the NBS1 gene in non-Hodgkin lymphoma. Genes Chromosomes Cancer 2002, 35:282–286.

    Article  PubMed  CAS  Google Scholar 

  69. German J: Bloom syndrome, a Mendelian prototype of somatic mutational disease. Medicine 1993, 72:393–406.

    Article  PubMed  CAS  Google Scholar 

  70. Ellis NA, Groden J, Ye TZ, et al.: The Bloom’s syndrome gene product is homologous to RecQ helicases. Cell 1995, 83:655–666.

    Article  PubMed  CAS  Google Scholar 

  71. Goss KH, Risinger MA, Kordich JJ, et al.: Enhanced tumor formation in mice heterozygous for Blm mutation. Science 2002, 297:2051–2053.

    Article  PubMed  CAS  Google Scholar 

  72. Kaneko H, Inoue R, Fukao T, et al.: Two Japanese siblings with Bloom syndrome gene mutation and B-cell lymphoma. Leuk Lymphoma 1997, 27:539–542.

    PubMed  CAS  Google Scholar 

  73. Robson M, Dabney MK, Rosenthal G, et al.: Prevalence of recurring BRCA mutations among Ashkenazi Jewish women with breast cancer. Genet Test 1997, 1:47–51.

    PubMed  CAS  Google Scholar 

  74. Yossepowitch O, Olvera N, Satagopan JM, et al.: BRCA1 and BRCA2 germline mutations in lymphoma patients. Leuk Lymphoma 2003, 44:127–131.

    Article  PubMed  CAS  Google Scholar 

  75. Lenardo M, Chan KM, Hornung F, et al.: Mature T lymphocyte apoptosis, immune regulation in a dynamic and unpredictable antigenic environment. Annu Rev Immunol 1999, 17:221–253.

    Article  PubMed  CAS  Google Scholar 

  76. Fisher GH, Rosenberg FJ, Straus SE: Dominant interfering Fas gene mutations impair apoptosis in a human autoimmune lymphoproliferative syndrome. Cell 1995, 81:935–946.

    Article  PubMed  CAS  Google Scholar 

  77. Straus SE Jaffe ES Puck JM et al.: The development of lymphomas in families with autoimmune lymphoproliferative syndrome with germline Fas mutations and defective lymphocyte apoptosis. Blood 2001, 98:194–200. A review of the best-studied germline genetic model for inherited lymphoma susceptibility.

    Article  PubMed  CAS  Google Scholar 

  78. Baumler C, Duan F, Onel K, et al.: Differential recruitment of caspase 8 to cFlip confers sensitivity or resistance to Fasmediated apoptosis in a subset of familial lymphoma patients. Leuk Res 2003, 27:841–851. An attempt to expand the role of Fas-mediated apoptosis defects to non-syndromic familial lymphoid cancers.

    Article  PubMed  CAS  Google Scholar 

  79. Catassi C, Fabiani E, Corrao G, et al.: Risk of non-Hodgkin lymphoma in celiac disease. JAMA 2002, 287:1413–1419. A key reference paper derived from a multicenter case-control study.

    Article  PubMed  Google Scholar 

  80. Tighe MR, Hall MA, Barbado M, et al.: HLA class II alleles associated with celiac disease susceptibility in a southern European population. Tissue Antigens 1992, 40:90–97.

    Article  PubMed  CAS  Google Scholar 

  81. Howell WM, Leung ST, Jones DB, et al.: HLA-DRB, -DQA, and -DQB polymorphism in celiac disease and enteropathyassociated T-cell lymphoma: common features and additional risk factors for malignancy. Hum Immunol 1995, 43:29–37.

    Article  PubMed  CAS  Google Scholar 

  82. Baecklund E, Sundstrom C, Ekbom A, et al.: Lymphoma subtypes in patients with rheumatoid arthritis: increased proportion of diffuse large B cell lymphoma. Arthritis Rheum 2003, 48:1543–1550.

    Article  PubMed  Google Scholar 

  83. Baecklund E, Ekbom A, Sparen P, et al.: Disease activity and risk of lymphoma in patients with rheumatoid arthritis: nested case-control study. BMJ 1998, 317:180–181.

    PubMed  CAS  Google Scholar 

  84. Mellemkjaer L, Andersen V, Linet MS, et al.: Non-Hodgkin’s lymphoma and other cancers among a cohort of patients with systemic lupus erythematosus. Arthritis Rheum 1997, 40:761–768.

    Article  PubMed  CAS  Google Scholar 

  85. Bjornadal L, Lofstrom B, Yin L, et al.: Increased cancer incidence in a Swedish cohort of patients with systemic lupus erythematosus. Scand J Rheumatol 2002, 31:66–71.

    Article  PubMed  Google Scholar 

  86. Berliner S, Shoenfeld Y, Sidi Y, et al.: Systemic lupus erythematosus and lymphoma: a family study. Scand J Rheumatol 1983, 12:310–314.

    PubMed  CAS  Google Scholar 

  87. Xu Y, Wiernik PH: Systemic lupus erythematosus and B-cell hematologic neoplasm. Lupus 2001, 12:841–850.

    Article  Google Scholar 

  88. Kassan SS, Thomas TL, Moutsopoulos HM, et al.: Increased risk of lymphoma in sicca syndrome. Ann Intern Med 1978, 89:888–892.

    PubMed  CAS  Google Scholar 

  89. Voulgarelis M, Dafni UG, Isenberg DA, et al.: Malignant lymphoma in primary Sjogren’s syndrome: a multicenter, retrospective, clinical study by the European Concerted Action on Sjogren’s Syndrome. Arthritis Rheum 1999, 42:1765–1772.

    Article  PubMed  CAS  Google Scholar 

  90. Tapinos NI, Polihronis M, Moutsopoulos HM: Lymphoma development in Sjogren’s syndrome, novel p53 mutations. Arthritis Rheum 1999, 42:1466–1472.

    Article  PubMed  CAS  Google Scholar 

  91. Hall CH Jr, Shamma M: Primary intestinal lymphoma complicating Crohn’s disease. J Clin Gastroenterol 2003, 36:332–336.

    Article  PubMed  Google Scholar 

  92. Watanabe N, Sugimoto N, Matsushita A: Association of intestinal malignant lymphoma and ulcerative colitis. Intern Med 2003, 42:1183–1187.

    PubMed  Google Scholar 

  93. P, Sarmanova J, Kristensen VN, et al.: Genetic polymorphisms of biotransformation enzymes in patients with Hodgkin’s and non-Hodgkin’s lymphomas. Int Arch Occup Environ Health 2002, 75:S86-S92.

    Article  CAS  Google Scholar 

  94. Sarmanova J, Benesova K, Gut I, et al.: Genetic polymorphisms of biotransformation enzymes in patients with Hodgkin’s and non-Hodgkin’s lymphomas. Hum Mol Genet 2001, 12:1265–1273. Along with the article by Kerridge et al. [95], this paper is representative of the emerging literature associating lymphoid neoplasms with xenobiotic gene polymorphisms.

    Article  Google Scholar 

  95. Kerridge I, Lincz L, Scorgie F: Association between xenobiotic gene polymorphisms and non-Hodgkin’s lymphoma risk. Br J Haematol 2002, 118:477–481. Representative of the emerging literature associating lymphoid neoplasms with xenobiotic gene polymorphisms. This study is based on small numbers (169 cases).

    Article  PubMed  CAS  Google Scholar 

  96. Rollinson S, Levene AP, Mensah FK, et al.: Gastric marginal zone lymphoma is associated with polymorphisms in genes involved in inflammatory response and antioxidative capacity. Blood 2003, 102:1007–1011.

    Article  PubMed  CAS  Google Scholar 

  97. Skibola CF, Smith MT, Hubbard A, et al.: Polymorphisms in the thymidylate synthase and serine hydroxymethyltransferase genes and risk of adult acute lymphocytic leukemia. Blood 2002, 15:3786–3791.

    Article  Google Scholar 

  98. Hishida A, Matsuo K, Hamajima N, et al.: Associations between polymorphisms in the thymidylate synthase and serine hydroxymethyltransferase genes and susceptibility to malignant lymphoma. Haematologica 2003, 88:159–166.

    PubMed  CAS  Google Scholar 

  99. Rees LE, Wood NA, Gillespie KM: The interleukin-10-1082 G/A polymorphism: allele frequency in different populations and functional significance. Cell Mol Life Sci 2002, 59:560–569.

    Article  PubMed  CAS  Google Scholar 

  100. Cunningham LM, Chapman C, Dunstan R, et al.: Polymorphisms in the interleukin 10 gene promoter are associated with susceptibility to aggressive non-Hodgkin’s lymphoma. Leuk Lymphoma 2003, 44:251–255.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siddiqui, R., Onel, K., Facio, F. et al. The genetics of familial lymphomas. Curr Oncol Rep 6, 380–387 (2004). https://doi.org/10.1007/s11912-004-0064-8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11912-004-0064-8

Keywords

Navigation