Skip to main content
Log in

Neural Control of REM Sleep and Motor Atonia: Current Perspectives

  • Review
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Since the formal discovery of rapid eye movement (REM) sleep in 1953, we have gained a vast amount of knowledge regarding the specific populations of neurons, their connections, and synaptic mechanisms regulating this stage of sleep and its accompanying features. This article discusses REM sleep circuits and their dysfunction, specifically emphasizing recent studies using conditional genetic tools.

Recent Findings

Sublaterodorsal nucleus (SLD) in the dorsolateral pons, especially the glutamatergic subpopulation in this region (SLDGlut), are shown to be indispensable for REM sleep. These neurons appear to be single REM generators in the rodent brain and may initiate and orchestrate all REM sleep events, including cortical and hippocampal activation and muscle atonia through distinct pathways. However, several cell groups in the brainstem and hypothalamus may influence SLDGlut neuron activity, thereby modulating REM sleep timing, amounts, and architecture. Damage to SLDGlut neurons or their projections involved in muscle atonia leads to REM behavior disorder, whereas the abnormal activation of this pathway during wakefulness may underlie cataplexy in narcolepsy.

Summary

Despite some opposing views, it has become evident that SLDGlut neurons are the sole generators of REM sleep and its associated characteristics. Further research should prioritize a deeper understanding of their cellular, synaptic, and molecular properties, as well as the mechanisms that trigger their activation during cataplexy and make them susceptible in RBD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Sullivan SS, Carskadon MA, Dement WC, Jackson CL. In Principles and Practice of Sleep Medicine Vol 1 (eds M. H. Kryger, T. Roth, C. A. Goldstein, & W. C. Dement) Ch. 2, 16–26 Elsevier. 2022.

  2. Iber C, PD SA-I. Das AASM-Manual Zum Scoring Von Schlaf und Assoziierten Ereignissen: Regeln. Technologie und Technische Spezifikationen: Dietrich Steinkopff. 2008.

  3. Siegel JM. In: Principles and Practice of Sleep Medicine Vol. 1 (eds M. H. Kryger, T. Roth, C. A. Goldstein, & W.C. dement) Ch. 8, 68–86. Elsevier. 2022.

  4. Zielinski MR, McKenna JT, McCarley RW. Functions and mechanisms of sleep. AIMS Neurosci. 2016;3:67–104. https://doi.org/10.3934/Neuroscience.2016.1.67.

    Article  PubMed  Google Scholar 

  5. Kroeger D, Vetrivelan R. To sleep or not to sleep - effects on memory in normal aging and disease. Aging Brain. 2023;3:100068. https://doi.org/10.1016/j.nbas.2023.100068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jouvet M. Neurophysiology of the states of sleep. Physiol Rev. 1967;47:117–77. https://doi.org/10.1152/physrev.1967.47.2.117.

    Article  CAS  PubMed  Google Scholar 

  7. Aguirre-Mardones C, et al. Prevalence and timeline of nonmotor symptoms in idiopathic rapid eye movement sleep behavior disorder. J Neurol. 2015;262:1568–78.

    Article  PubMed  Google Scholar 

  8. Rayan A, et al. Sleep scoring in rodents: criteria, automatic approaches and outstanding issues. European J Neurosci n/a. https://doi.org/10.1111/ejn.15884

  9. Mander BA, Winer JR, Walker MP. Sleep and human aging. Neuron. 2017;94:19–36. https://doi.org/10.1016/j.neuron.2017.02.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lai YY, Siegel JM. In: Rapid eye movement sleep. (eds B.N. Mallick & S. Inoue) 69–90. Narosa Publishing House. 1998.

  11. Jouvet M. Paradoxical sleep mechanisms. Sleep. 1994;17:S77–83. https://doi.org/10.1093/sleep/17.suppl_8.S77.

    Article  CAS  PubMed  Google Scholar 

  12. Jouvet M. Paradoxical sleep–a study of its nature and mechanisms. Prog Brain Res. 1965;18:20–62. https://doi.org/10.1016/s0079-6123(08)63582-7.

    Article  CAS  PubMed  Google Scholar 

  13. Aserinsky E, Kleitman N. Regularly occurring periods of eye motility, and concomitant phenomena, during sleep. Science. 1953;118:273–4. https://doi.org/10.1126/science.118.3062.273.

    Article  CAS  PubMed  Google Scholar 

  14. Maranci JB, et al. Eye movement patterns correlate with overt emotional behaviours in rapid eye movement sleep. Sci Rep. 2022;12:1770. https://doi.org/10.1038/s41598-022-05905-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Masset L, et al. The dynamics of emotional behaviors in rapid eye movement sleep. Sleep. 2022;46. https://doi.org/10.1093/sleep/zsac285

  16. Vetrivelan R, Lu J. In: Rapid-eye-movement sleep behavior disorder. (eds Schenck C., Högl B., & Videnovic A.) 559–577. Springer. 2019.

  17. Vetrivelan R, Chang C, Lu J. Muscle tone regulation during REM sleep: neural circuitry and clinical significance. Arch Ital Biol. 2011;149:348–66. https://doi.org/10.4449/aib.v149i4.1272.

    Article  CAS  PubMed  Google Scholar 

  18. Simor P, van der Wijk G, Nobili L, Peigneux P. The microstructure of REM sleep: why phasic and tonic? Sleep Med Rev. 2020;52:101305. https://doi.org/10.1016/j.smrv.2020.101305.

    Article  PubMed  Google Scholar 

  19. Sánchez-López A, Escudero M. Tonic and phasic components of eye movements during REM sleep in the rat. Eur J Neurosci. 2011;33:2129–38. https://doi.org/10.1111/j.1460-9568.2011.07702.x.

    Article  PubMed  Google Scholar 

  20. Jouvet M. Research on the neural structures and responsible mechanisms in different phases of physiological sleep. Arch Ital Biol. 1962;100:125–206.

    CAS  PubMed  Google Scholar 

  21. Bremer F. Cerveau, “isolé” et physiologie du sommeil. C R Soc Biol (Paris). 1935;118:1235–42.

    Google Scholar 

  22. Villablanca JR, de Andres I, Olmstead CE. Sleep-waking states develop independently in the isolated forebrain and brain stem following early postnatal midbrain transection in cats. Neuroscience. 2001;106:717–31. https://doi.org/10.1016/s0306-4522(01)00329-3.

    Article  CAS  PubMed  Google Scholar 

  23. Foutz AS, Ternaux JP, Puizillout JJ. Sleep stages of the “encephale isole” preparation: II. Paradoxical stages. Their triggering by afferent baroceptive stimulation. Electroencephalogr Clin Neurophysiol. 1974;37:577–88. https://doi.org/10.1016/0013-4694(74)90071-6.

    Article  CAS  PubMed  Google Scholar 

  24. Puizillout JJ, Ternaux JP, Foutz AS, Fernandez G. Sleep stages in “encephale isole” preparations: I. Triggering of ponto-geniculo-occipital spikes and slow-wave sleep. The role of the nuclei of the raphe. Electroencephalogr Clin Neurophysiol. 1974;37:561–76. https://doi.org/10.1016/0013-4694(74)90070-4.

    Article  CAS  PubMed  Google Scholar 

  25. Siegel JM, Nienhuis R, Tomaszewski KS. REM sleep signs rostral to chronic transections at the pontomedullary junction. Neurosci Lett. 1984;45:241–6. https://doi.org/10.1016/0304-3940(84)90233-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Webster HH, Friedman L, Jones BE. Modification of paradoxical sleep following transections of the reticular formation at the pontomedullary junction. Sleep. 1986;9:1–23. https://doi.org/10.1093/sleep/9.1.1.

    Article  CAS  PubMed  Google Scholar 

  27. Siegel JM, Tomaszewski KS, Nienhuis R. Behavioral states in the chronic medullary and midpontine cat. Electroencephalogr Clin Neurophysiol. 1986;63:274–88. https://doi.org/10.1016/0013-4694(86)90095-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Vanni-Mercier G, Sakai K, Lin JS, Jouvet M. Mapping of cholinoceptive brainstem structures responsible for the generation of paradoxical sleep in the cat. Arch Ital Biol. 1989;127:133–64.

    CAS  PubMed  Google Scholar 

  29. Vanni-Mercier G, Sakai K, Lin JS, Jouvet M. Carbachol microinjections in the mediodorsal pontine tegmentum are unable to induce paradoxical sleep after caudal pontine and prebulbar transections in the cat. Neurosci Lett. 1991;130:41–5. https://doi.org/10.1016/0304-3940(91)90222-f.

    Article  CAS  PubMed  Google Scholar 

  30. Carli G, Zanchetti A. A study of pontine lesions suppressing deep sleep in the cat. Arch Ital Biol. 1965;103:751–88.

    CAS  PubMed  Google Scholar 

  31. Webster HH, Jones BE. Neurotoxic lesions of the dorsolateral pontomesencephalic tegmentum-cholinergic cell area in the cat. II. Effects upon sleep-waking states. Brain Res. 1988;458:285–302. https://doi.org/10.1016/0006-8993(88)90471-4.

    Article  CAS  PubMed  Google Scholar 

  32. Jouvet M. The role of monoamines and acetylcholine-containing neurons in the regulation of the sleep-waking cycle. Ergeb Physiol. 1972;64:166–307. https://doi.org/10.1007/3-540-05462-6_2.

    Article  CAS  PubMed  Google Scholar 

  33. Friedman L, Jones BE. Study of sleep-wakefulness states by computer graphics and cluster analysis before and after lesions of the pontine tegmentum in the cat. Electroencephalogr Clin Neurophysiol. 1984;57:43–56. https://doi.org/10.1016/0013-4694(84)90007-5.

    Article  CAS  PubMed  Google Scholar 

  34. Friedman L, Jones BE. Computer graphics analysis of sleep-wakefulness state changes after pontine lesions. Brain Res Bull. 1984;13:53–68. https://doi.org/10.1016/0361-9230(84)90008-x.

    Article  CAS  PubMed  Google Scholar 

  35. Jouvet M, Delorme F. Locus coeruleus et sommeil paradoxal. CR Seances Soc Biol. 1965;159:895–9.

    Google Scholar 

  36. Henley K, Morrison AR. A re-evaluation of the effects of lesions of the pontine tegmentum and locus coeruleus on phenomena of paradoxical sleep in the cat. Acta Neurobiol Exp. 1974;34:215–32.

    CAS  Google Scholar 

  37. Hendricks JC, Morrison AR, Mann GL. Different behaviors during paradoxical sleep without atonia depend on pontine lesion site. Brain Res. 1982;239:81–105. https://doi.org/10.1016/0006-8993(82)90835-6.

    Article  CAS  PubMed  Google Scholar 

  38. Shouse MN, Siegel JM. Pontine regulation of REM sleep components in cats: integrity of the pedunculopontine tegmentum (PPT) is important for phasic events but unnecessary for atonia during REM sleep. Brain Res. 1992;571:50–63. https://doi.org/10.1016/0006-8993(92)90508-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Schenck CH, Bundlie SR, Ettinger MG, Mahowald MW. Chronic behavioral disorders of human REM sleep: a new category of parasomnia. Sleep. 1986;9:293–308. https://doi.org/10.1093/sleep/9.2.293.

    Article  CAS  PubMed  Google Scholar 

  40. Sanford LD, et al. Sleep patterning and behaviour in cats with pontine lesions creating REM without atonia. J Sleep Res. 1994;3:233–40. https://doi.org/10.1111/j.1365-2869.1994.tb00136.x.

    Article  CAS  PubMed  Google Scholar 

  41. Boissard R, et al. The rat ponto-medullary network responsible for paradoxical sleep onset and maintenance: a combined microinjection and functional neuroanatomical study. Eur J Neurosci. 2002;16:1959–73. https://doi.org/10.1046/j.1460-9568.2002.02257.x.

    Article  PubMed  Google Scholar 

  42. Lu J, Sherman D, Devor M, Saper CB. A putative flip-flop switch for control of REM sleep. Nature. 2006;441:589–94. https://doi.org/10.1038/nature04767.

    Article  CAS  PubMed  Google Scholar 

  43. Vetrivelan R, Fuller PM, Tong Q, Lu J. Medullary circuitry regulating rapid eye movement sleep and motor atonia. J Neurosci. 2009;29:9361–9. https://doi.org/10.1523/JNEUROSCI.0737-09.2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Weber F, et al. Control of REM sleep by ventral medulla GABAergic neurons. Nature. 2015;526:435–8. https://doi.org/10.1038/nature14979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Stucynski JA, Schott AL, Baik J, Chung S, Weber F. Regulation of REM sleep by inhibitory neurons in the dorsomedial medulla. Curr Biol : CB. 2022;32:37-50.e36. https://doi.org/10.1016/j.cub.2021.10.030.

    Article  CAS  PubMed  Google Scholar 

  46. Schott AL, Baik J, Chung S, Weber F. A medullary hub for controlling REM sleep and pontine waves. Nat Commun. 2023;14:3922. https://doi.org/10.1038/s41467-023-39496-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. •• Fan FF, Vetrivelan R, Yang Y, Guo ZN, Lu J. Role of pontine sub-laterodorsal tegmental nucleus (SLD) in rapid eye movement (REM) sleep, cataplexy, and emotion. CNS Neurosci Ther. 2023;29:1192–1196. https://doi.org/10.1111/cns.14074. This article reports that the selective ablation of SLDGlut neurons in orexin knockout mice leads to complete loss of REM sleep and significantly reduces both spontaneous and emotional cataplexy.

  48. •• Wen YJ, et al. Pontine control of rapid eye movement sleep and fear memory. CNS Neurosci Ther. 2023;29:1602–1614. https://doi.org/10.1111/cns.14123. This article reports that the selective ablation of SLDGlut neurons in mice leads to complete loss of REM sleep for several months.

  49. Sapin E, et al. Localization of the brainstem GABAergic neurons controlling paradoxical (REM) sleep. PLoS One. 2009;4:e4272. https://doi.org/10.1371/journal.pone.0004272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Clement O, Sapin E, Berod A, Fort P, Luppi PH. Evidence that neurons of the sublaterodorsal tegmental nucleus triggering paradoxical (REM) sleep are glutamatergic. Sleep. 2011;34:419–23. https://doi.org/10.1093/sleep/34.4.419.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Cox J, Pinto L, Dan Y. Calcium imaging of sleep-wake related neuronal activity in the dorsal pons. Nat Commun. 2016;7:10763. https://doi.org/10.1038/ncomms10763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Valencia Garcia S, et al. Genetic inactivation of glutamate neurons in the rat sublaterodorsal tegmental nucleus recapitulates REM sleep behaviour disorder. Brain. 2017;140:414–28. https://doi.org/10.1093/brain/aww310.

    Article  PubMed  Google Scholar 

  53. Torontali ZA, Fraigne JJ, Sanghera P, Horner R, Peever J. The sublaterodorsal tegmental nucleus functions to couple brain state and motor activity during REM sleep and wakefulness. Curr Biol : CB. 2019;29:3803-3813 e3805. https://doi.org/10.1016/j.cub.2019.09.026.

    Article  CAS  PubMed  Google Scholar 

  54. Krenzer M, et al. Brainstem and spinal cord circuitry regulating REM sleep and muscle atonia. PLoS One. 2011;6:e24998. https://doi.org/10.1371/journal.pone.0024998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Petitjean F, Sakai K, Blondaux C, Jouvet M. Hypersomnie par lésion isthmique chez le chat. II. Etude neurophysiologique et pharmacologique. Brain Res. 1975;88:439–53.

    Article  CAS  PubMed  Google Scholar 

  56. Sastre JP, Buda C, Kitahama K, Jouvet M. Importance of the ventrolateral region of the periaqueductal gray and adjacent tegmentum in the control of paradoxical sleep as studied by muscimol microinjections in the cat. Neuroscience. 1996;74:415–26.

    Article  CAS  PubMed  Google Scholar 

  57. Kaur S, et al. Hypocretin-2 saporin lesions of the ventrolateral periaquaductal gray (vlPAG) increase REM sleep in hypocretin knockout mice. PLoS One. 2009;4:e6346. https://doi.org/10.1371/journal.pone.0006346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Boissard R, Fort P, Gervasoni D, Barbagli B, Luppi PH. Localization of the GABAergic and non-GABAergic neurons projecting to the sublaterodorsal nucleus and potentially gating paradoxical sleep onset. Eur J Neurosci. 2003;18:1627–39. https://doi.org/10.1046/j.1460-9568.2003.02861.x.

    Article  PubMed  Google Scholar 

  59. •• Chen ZK, et al. A cluster of mesopontine GABAergic neurons suppresses REM sleep and curbs cataplexy. Cell Discov. 2022;8:115. https://doi.org/10.1038/s41421-022-00456-5. This article revealed that the midbrain GABAergic projections to the SLD can suppress REM sleep and cataplexy.

  60. Hayashi Y, et al. Cells of a common developmental origin regulate REM/non-REM sleep and wakefulness in mice. Science. 2015;350:957–61. https://doi.org/10.1126/science.aad1023.

    Article  CAS  PubMed  Google Scholar 

  61. •• Weber F, et al. Regulation of REM and Non-REM sleep by periaqueductal GABAergic neurons. Nat Commun. 2018;9:354. https://doi.org/10.1038/s41467-017-02765-w. This article revealed the activity dynamics of vlPAG GABA neurons and explained the mechanisms of REM transition and termination.

  62. Gagliardi C, Absi G, Vetrivelan R. Rapid eye movement (REM) sleep regulation by GABAergic neurons in the ventrolateral periaqueductal grayin mice. Sleep. 2018;41:A26.

    Article  Google Scholar 

  63. Crochet S, Onoe H, Sakai K. A potent non-monoaminergic paradoxical sleep inhibitory system: a reverse microdialysis and single-unit recording study. Eur J Neurosci. 2006;24:1404–12. https://doi.org/10.1111/j.1460-9568.2006.04995.x.

    Article  PubMed  Google Scholar 

  64. Blanco-Centurion C, Vidal-Ortiz A, Sato T, Shiromani PJ. Activity of GABA neurons in the zona incerta and ventral lateral periaqueductal grey is biased towards sleep. Sleep. 2023;46. https://doi.org/10.1093/sleep/zsac306

  65. •• Grace KP, Horner RL. A focal inactivation and computational study of ventrolateral periaqueductal gray and deep mesencephalic reticular nucleus involvement in sleep state switching and bistability. eNeuro. 2020;7.https://doi.org/10.1523/ENEURO.0451-19.2020. Using computer simulation models and pharmacological data, this article described the potential interaction between REM-on and REM-off neurons within the midbrain REM-off region.

  66. Luppi PH, et al. Brainstem mechanisms of paradoxical (REM) sleep generation. Pflugers Arch. 2012;463:43–52. https://doi.org/10.1007/s00424-011-1054-y.

    Article  CAS  PubMed  Google Scholar 

  67. Ramaligam V, Chen MC, Saper CB, Lu J. Perspectives on the rapid eye movement sleep switch in rapid eye movement sleep behavior disorder. Sleep Med. 2013;14:707–13. https://doi.org/10.1016/j.sleep.2013.03.017.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Matsuzaki M. Differential effects of sodium butyrate and physostigmine upon the activities of para-sleep in acute brain stem preparations. Brain Res. 1969;13:247–65. https://doi.org/10.1016/0006-8993(69)90285-6.

    Article  CAS  PubMed  Google Scholar 

  69. Aston-Jones G, Bloom FE. Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle. J Neurosci. 1981;1:876–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Takahashi K, Kayama Y, Lin JS, Sakai K. Locus coeruleus neuronal activity during the sleep-waking cycle in mice. Neuroscience. 2010;169:1115–26. https://doi.org/10.1016/j.neuroscience.2010.06.009.

    Article  CAS  PubMed  Google Scholar 

  71. Carter ME, et al. Tuning arousal with optogenetic modulation of locus coeruleus neurons. Nat Neurosci. 2010;13:1526–33. https://doi.org/10.1038/nn.2682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Adamantidis AR, Zhang F, Aravanis AM, Deisseroth K, de Lecea L. Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature. 2007;450:420–4. https://doi.org/10.1038/nature06310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Naganuma F, et al. Lateral hypothalamic neurotensin neurons promote arousal and hyperthermia. PLoS Biol. 2019;17:e3000172. https://doi.org/10.1371/journal.pbio.3000172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Steriade M, Datta S, Pare D, Oakson G, Curro Dossi RC. Neuronal activities in brain-stem cholinergic nuclei related to tonic activation processes in thalamocortical systems. J Neurosci. 1990;10:2541–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Saito H, Sakai K, Jouvet M. Discharge patterns of the nucleus parabrachialis lateralis neurons of the cat during sleep and waking. Brain Res. 1977;134:59–72.

    Article  CAS  PubMed  Google Scholar 

  76. Eban-Rothschild A, Rothschild G, Giardino WJ, Jones JR, de Lecea L. VTA dopaminergic neurons regulate ethologically relevant sleep-wake behaviors. Nat Neurosci. 2016;19:1356–66. https://doi.org/10.1038/nn.4377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Chen J, et al. Control of emotion and wakefulness by neurotensinergic neurons in the parabrachial nucleus. Neurosci Bull. 2023;39:589–601. https://doi.org/10.1007/s12264-022-00994-8.

    Article  CAS  PubMed  Google Scholar 

  78. Wang RF, et al. Control of wakefulness by lateral hypothalamic glutamatergic neurons in male mice. J Neurosc Res. 2021;99:1689–703. https://doi.org/10.1002/jnr.24828.

    Article  CAS  Google Scholar 

  79. Xu Q, et al. Medial parabrachial nucleus is essential in controlling wakefulness in rats. Front Neurosci. 2021;15:645877. https://doi.org/10.3389/fnins.2021.645877.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Anaclet C, et al. Basal forebrain control of wakefulness and cortical rhythms. Nat Commun. 2015;6:8744. https://doi.org/10.1038/ncomms9744.

    Article  CAS  PubMed  Google Scholar 

  81. Anaclet C, et al. Genetic activation, inactivation, and deletion reveal a limited and nuanced role for somatostatin-containing basal forebrain neurons in behavioral state control. J Neurosci. 2018;38:5168–81. https://doi.org/10.1523/jneurosci.2955-17.2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Xu M, et al. Basal forebrain circuit for sleep-wake control. Nat Neurosci. 2015;18:1641–7. https://doi.org/10.1038/nn.4143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Venner A, Broadhurst RY, Sohn LT, Todd WD, Fuller PM. Selective activation of serotoninergic dorsal raphe neurons facilitates sleep through anxiolysis. Sleep. 2020;43. https://doi.org/10.1093/sleep/zsz231

  84. Moriya R, et al. Optogenetic activation of DRN 5-HT neurons induced active wakefulness, not quiet wakefulness. Brain Res Bull. 2021;177:129–42. https://doi.org/10.1016/j.brainresbull.2021.09.019.

    Article  CAS  PubMed  Google Scholar 

  85. Kaur S, et al. Role of serotonergic dorsal raphe neurons in hypercapnia-induced arousals. Nat Commun. 2020;11:2769. https://doi.org/10.1038/s41467-020-16518-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Blanco-Centurion C, et al. Dynamic network activation of hypothalamic MCH neurons in REM sleep and exploratory behavior. J Neurosci. 2019;39:4986–98. https://doi.org/10.1523/JNEUROSCI.0305-19.2019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Sun Y, Liu M. Hypothalamic MCH neuron activity dynamics during cataplexy of narcolepsy. eNeuro. 2020;7. https://doi.org/10.1523/ENEURO.0017-20.2020

  88. Izawa S, et al. REM sleep-active MCH neurons are involved in forgetting hippocampus-dependent memories. Science. 2019;365:1308–13. https://doi.org/10.1126/science.aax9238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Hassani OK, Lee MG, Jones BE. Melanin-concentrating hormone neurons discharge in a reciprocal manner to orexin neurons across the sleep-wake cycle. Proc Natl Acad Sci U S A. 2009;106:2418–22. https://doi.org/10.1073/pnas.0811400106.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Vetrivelan R, et al. Melanin-concentrating hormone neurons specifically promote rapid eye movement sleep in mice. Neuroscience. 2016;336:102–13. https://doi.org/10.1016/j.neuroscience.2016.08.046.

    Article  CAS  PubMed  Google Scholar 

  91. Bandaru SS, Khanday MA, Ibrahim N, Naganuma F, Vetrivelan R. Sleep-wake control by melanin-concentrating hormone (MCH) neurons: a review of recent findings. Curr Neurol Neurosci Reports. 2020;20:55. https://doi.org/10.1007/s11910-020-01075-x.

    Article  CAS  Google Scholar 

  92. Naganuma F, Bandaru SS, Absi G, Chee MJ, Vetrivelan R. Melanin-concentrating hormone neurons promote rapid eye movement sleep independent of glutamate release. Brain Struct Funct. 2019;224:99–110. https://doi.org/10.1007/s00429-018-1766-2.

    Article  CAS  PubMed  Google Scholar 

  93. Kroeger D, Bandaru SS, Madara JC, Vetrivelan R. Ventrolateral periaqueductal gray mediates rapid eye movement sleep regulation by melanin-concentrating hormone neurons. Neuroscience. 2019;406:314–24. https://doi.org/10.1016/j.neuroscience.2019.03.020.

    Article  CAS  PubMed  Google Scholar 

  94. Naganuma F, et al. Melanin-concentrating hormone neurons contribute to dysregulation of rapid eye movement sleep in narcolepsy. Neurobiol Dis. 2018;120:12–20. https://doi.org/10.1016/j.nbd.2018.08.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Varin C, Luppi PH, Fort P. Melanin-concentrating hormone-expressing neurons adjust slow-wave sleep dynamics to catalyze paradoxical (REM) sleep. Sleep. 2018;41. https://doi.org/10.1093/sleep/zsy068

  96. Jego S, et al. Optogenetic identification of a rapid eye movement sleep modulatory circuit in the hypothalamus. Nat Neurosci. 2013;16:1637–43. https://doi.org/10.1038/nn.3522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Bittencourt JC. Anatomical organization of the melanin-concentrating hormone peptide family in the mammalian brain. Gen Comp Endocrinol. 2011;172:185–97. https://doi.org/10.1016/j.ygcen.2011.03.028.

    Article  CAS  PubMed  Google Scholar 

  98. Lagos P, Monti JM, Jantos H, Torterolo P. Microinjection of the melanin-concentrating hormone into the lateral basal forebrain increases REM sleep and reduces wakefulness in the rat. Life Sci. 2012;90:895–9. https://doi.org/10.1016/j.lfs.2012.04.019.

    Article  CAS  PubMed  Google Scholar 

  99. Lagos P, Torterolo P, Jantos H, Chase MH, Monti JM. Effects on sleep of melanin-concentrating hormone (MCH) microinjections into the dorsal raphe nucleus. Brain Res. 2009;1265:103–10. https://doi.org/10.1016/j.brainres.2009.02.010.

    Article  CAS  PubMed  Google Scholar 

  100. Adamantidis A, de Lecea L. Physiological arousal: a role for hypothalamic systems. Cell Mol Life Sci. 2008;65:1475–88. https://doi.org/10.1007/s00018-008-7521-8.

    Article  CAS  PubMed  Google Scholar 

  101. Mileykovskiy BY, Kiyashchenko LI, Siegel JM. Behavioral correlates of activity in identified hypocretin/orexin neurons. Neuron. 2005;46:787–98. https://doi.org/10.1016/j.neuron.2005.04.035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Lee MG, Hassani OK, Jones BE. Discharge of identified orexin/hypocretin neurons across the sleep-waking cycle. J Neurosci. 2005;25:6716–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Feng H, et al. Orexin signaling modulates synchronized excitation in the sublaterodorsal tegmental nucleus to stabilize REM sleep. Nat Commun. 2020;11:3661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Mochizuki T, et al. Behavioral state instability in orexin knock-out mice. J Neurosci. 2004;24:6291–300. https://doi.org/10.1523/JNEUROSCI.0586-04.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Willie JT, et al. Distinct narcolepsy syndromes in Orexin receptor-2 and Orexin null mice: molecular genetic dissection of Non-REM and REM sleep regulatory processes. Neuron. 2003;38:715–30. https://doi.org/10.1016/s0896-6273(03)00330-1.

    Article  CAS  PubMed  Google Scholar 

  106. Hara J, et al. Genetic ablation of orexin neurons in mice results in narcolepsy, hypophagia, and obesity. Neuron. 2001;30:345–54. https://doi.org/10.1016/s0896-6273(01)00293-8.

    Article  CAS  PubMed  Google Scholar 

  107. Chemelli RM, et al. Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell. 1999;98:437–51. https://doi.org/10.1016/s0092-8674(00)81973-x.

    Article  CAS  PubMed  Google Scholar 

  108. Clark EL, Baumann CR, Cano G, Scammell TE, Mochizuki T. Feeding-elicited cataplexy in orexin knockout mice. Neuroscience. 2009;161:970–7. https://doi.org/10.1016/j.neuroscience.2009.04.007.

    Article  CAS  PubMed  Google Scholar 

  109. Espana RA, McCormack SL, Mochizuki T, Scammell TE. Running promotes wakefulness and increases cataplexy in orexin knockout mice. Sleep. 2007;30:1417–25. https://doi.org/10.1093/sleep/30.11.1417.

    Article  PubMed  PubMed Central  Google Scholar 

  110. McCarley RW. Mechanisms and models of REM sleep control. Arch Ital Biol. 2004;142:429–67.

    CAS  PubMed  Google Scholar 

  111. Luppi PH, et al. Paradoxical (REM) sleep genesis: the switch from an aminergic-cholinergic to a GABAergic-glutamatergic hypothesis. J Physiol Paris. 2006;100:271–83. https://doi.org/10.1016/j.jphysparis.2007.05.006.

    Article  CAS  PubMed  Google Scholar 

  112. Lu J, Jhou TC, Saper CB. Identification of wake-active dopaminergic neurons in the ventral periaqueductal gray matter. J Neurosci. 2006;26:193–202. https://doi.org/10.1523/JNEUROSCI.2244-05.2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Deurveilher S, Hennevin E. Lesions of the pedunculopontine tegmental nucleus reduce paradoxical sleep (PS) propensity: evidence from a short-term PS deprivation study in rats. Eur J Neurosci. 2001;13:1963–76. https://doi.org/10.1046/j.0953-816x.2001.01562.x.

    Article  CAS  PubMed  Google Scholar 

  114. Blanco-Centurion C, Gerashchenko D, Shiromani PJ. Effects of saporin-induced lesions of three arousal populations on daily levels of sleep and wake. J Neurosci. 2007;27:14041–8. https://doi.org/10.1523/JNEUROSCI.3217-07.2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Kroeger D, et al. Cholinergic, glutamatergic, and GABAergic neurons of the pedunculopontine tegmental nucleus have distinct effects on sleep/wake behavior in mice. J Neurosci. 2017;37:1352–66. https://doi.org/10.1523/JNEUROSCI.1405-16.2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. McCarley RW, Hobson JA. Neuronal excitability modulation over the sleep cycle: a structural and mathematical model. Science. 1975;189:58–60. https://doi.org/10.1126/science.1135627.

    Article  CAS  PubMed  Google Scholar 

  117. Wu MF, et al. Activity of dorsal raphe cells across the sleep-waking cycle and during cataplexy in narcoleptic dogs. J Physiol. 2004;554:202–15. https://doi.org/10.1113/jphysiol.2003.052134.

    Article  CAS  PubMed  Google Scholar 

  118. Wu MF, et al. Locus coeruleus neurons: cessation of activity during cataplexy. Neuroscience. 1999;91:1389–99. https://doi.org/10.1016/s0306-4522(98)00600-9.

    Article  CAS  PubMed  Google Scholar 

  119. Chang CH, Chen MC, Lu J. Effect of antidepressant drugs on the vmPFC-limbic circuitry. Neuropharmacology. 2015;92:116–24. https://doi.org/10.1016/j.neuropharm.2015.01.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Chang CH, Chen MC, Qiu MH, Lu J. Ventromedial prefrontal cortex regulates depressive-like behavior and rapid eye movement sleep in the rat. Neuropharmacology. 2014;86:125–32. https://doi.org/10.1016/j.neuropharm.2014.07.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Chase MH, Soja PJ, Morales FR. Evidence that glycine mediates the postsynaptic potentials that inhibit lumbar motoneurons during the atonia of active sleep. J Neurosci. 1989;9:743–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Chase MH, Morales FR. The atonia and myoclonia of active (REM) sleep. Ann Rev Psychol. 1990;41:557–84. https://doi.org/10.1146/annurev.ps.41.020190.003013.

    Article  CAS  Google Scholar 

  123. Kohlmeier KA, Lopez-Rodriguez F, Chase MH. Strychnine blocks inhibitory postsynaptic potentials elicited in masseter motoneurons by sensory stimuli during carbachol-induced motor atonia. Neuroscience. 1997;78:1195–202. https://doi.org/10.1016/s0306-4522(96)00627-6.

    Article  CAS  PubMed  Google Scholar 

  124. Yamuy J, Fung SJ, Xi M, Morales FR, Chase MH. Hypoglossal motoneurons are postsynaptically inhibited during carbachol-induced rapid eye movement sleep. Neuroscience. 1999;94:11–5. https://doi.org/10.1016/s0306-4522(99)00355-3.

    Article  CAS  PubMed  Google Scholar 

  125. Lai YY, Siegel JM. Medullary regions mediating atonia. J Neurosci. 1988;8:4790–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Schenkel E, Siegel JM. REM sleep without atonia after lesions of the medial medulla. Neurosci Lett. 1989;98:159–65. https://doi.org/10.1016/0304-3940(89)90503-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Hajnik T, Lai YY, Siegel JM. Atonia-related regions in the rodent pons and medulla. J Neurophysiol. 2000;84:1942–8. https://doi.org/10.1152/jn.2000.84.4.1942.

    Article  CAS  PubMed  Google Scholar 

  128. Siegel JM. In: The physiologic nature of sleep. (eds P.L. Parmeggiani & R.A. Velluti) 281–302. Imperial College. 2005.

  129. •• Uchida S, et al. A discrete glycinergic neuronal population in the ventromedial medulla that induces muscle atonia during REM sleep and cataplexy in mice. J Neurosci. 2021;41:1582–1596. https://doi.org/10.1523/JNEUROSCI.0688-20.2020. This study confirmed the importance of GABA/Glycienrgic neurons in the ventromedial medulla and their connectivity with the SLD and motor neurons in orchestrating REM atonia and cataplexy.

  130. Chen MC, et al. Ventral medullary control of rapid eye movement sleep and atonia. Exp Neurol. 2017;290:53–62. https://doi.org/10.1016/j.expneurol.2017.01.002.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Valencia Garcia S, Luppi PH, Fort P. A particular medullary-spinal inhibitory pathway is recruited for the expression of muscle atonia during REM sleep. J Exp Neurosci. 2018;12:1179069518808744. https://doi.org/10.1177/1179069518808744.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Holstege JC. The ventro-medial medullary projections to spinal motoneurons: ultrastructure, transmitters and functional aspects. Prog Brain Res. 1996;107:159–81. https://doi.org/10.1016/s0079-6123(08)61864-6.

    Article  CAS  PubMed  Google Scholar 

  133. Holmes CJ, Jones BE. Importance of cholinergic, GABAergic, serotonergic and other neurons in the medial medullary reticular formation for sleep-wake states studied by cytotoxic lesions in the cat. Neuroscience. 1994;62:1179–200. https://doi.org/10.1016/0306-4522(94)90352-2.

    Article  CAS  PubMed  Google Scholar 

  134. Holstege JC, Bongers CM. A glycinergic projection from the ventromedial lower brainstem to spinal motoneurons. An ultrastructural double labeling study in rat. Brain Res. 1991;566:308–15. https://doi.org/10.1016/0006-8993(91)91715-d.

    Article  CAS  PubMed  Google Scholar 

  135. Valencia Garcia S, et al. Ventromedial medulla inhibitory neuron inactivation induces REM sleep without atonia and REM sleep behavior disorder. Nat Commun. 2018;9:504. https://doi.org/10.1038/s41467-017-02761-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Dergacheva O, et al. GABA and glycine neurons from the ventral medullary region inhibit hypoglossal motoneurons. Sleep. 2020;43.https://doi.org/10.1093/sleep/zsz301

  137. Brooks PL, Peever JH. Glycinergic and GABA(A)-mediated inhibition of somatic motoneurons does not mediate rapid eye movement sleep motor atonia. J Neurosci. 2008;28:3535–45. https://doi.org/10.1523/JNEUROSCI.5023-07.2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Brooks PL, Peever JH. Unraveling the mechanisms of REM sleep atonia. Sleep. 2008;31:1492–7. https://doi.org/10.1093/sleep/31.11.1492.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Kubin L, Kimura H, Tojima H, Davies RO, Pack AI. Suppression of hypoglossal motoneurons during the carbachol-induced atonia of REM sleep is not caused by fast synaptic inhibition. Brain Res. 1993;611:300–12. https://doi.org/10.1016/0006-8993(93)90517-q.

    Article  CAS  PubMed  Google Scholar 

  140. Morrison JL, et al. Role of inhibitory amino acids in control of hypoglossal motor outflow to genioglossus muscle in naturally sleeping rats. J Physiol. 2003;552:975–91. https://doi.org/10.1113/jphysiol.2003.052357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Fenik VB, Davies RO, Kubin L. Noradrenergic, serotonergic and GABAergic antagonists injected together into the XII nucleus abolish the REM sleep-like depression of hypoglossal motoneuronal activity. J Sleep Res. 2005;14:419–29. https://doi.org/10.1111/j.1365-2869.2005.00461.x.

    Article  PubMed  Google Scholar 

  142. Kubin L, Davies RO, Pack AI. Control of upper airway motoneurons during REM sleep. News Physiol Sci. 1998;13:91–7. https://doi.org/10.1152/physiologyonline.1998.13.2.91.

    Article  PubMed  Google Scholar 

  143. Kodama T, Lai YY, Siegel JM. Changes in inhibitory amino acid release linked to pontine-induced atonia: an in vivo microdialysis study. J Neurosci. 2003;23:1548–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Travers JB, Norgren R. Afferent projections to the oral motor nuclei in the rat. J Comp Neurol. 1983;220:280–98. https://doi.org/10.1002/cne.902200303.

    Article  CAS  PubMed  Google Scholar 

  145. Travers JB, Yoo JE, Chandran R, Herman K, Travers SP. Neurotransmitter phenotypes of intermediate zone reticular formation projections to the motor trigeminal and hypoglossal nuclei in the rat. J Comp Neurol. 2005;488:28–47. https://doi.org/10.1002/cne.20604.

    Article  CAS  PubMed  Google Scholar 

  146. Anaclet C, Pedersen NP, Fuller PM, Lu J. Brainstem circuitry regulating phasic activation of trigeminal motoneurons during REM sleep. PLoS ONE. 2010;5:e8788. https://doi.org/10.1371/journal.pone.0008788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Siegel JM. In: Principles and Practice of Sleep Medicine (eds M.H. Kryger, T Roth, & W.C. Dement) Ch. 8, 90–111. Elsevier Saunders.2011.

  148. Fraigne JJ, Torontali ZA, Snow MB, Peever JH. REM Sleep at its core - circuits, neurotransmitters, and pathophysiology. Front Neurol. 2015;6:123. https://doi.org/10.3389/fneur.2015.00123.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Saper CB, Fuller PM, Pedersen NP, Lu J, Scammell TE. Sleep state switching. Neuron. 2010;68:1023–42. https://doi.org/10.1016/j.neuron.2010.11.032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Steriade M. Grouping of brain rhythms in corticothalamic systems. Neuroscience. 2006;137:1087–106. https://doi.org/10.1016/j.neuroscience.2005.10.029.

    Article  CAS  PubMed  Google Scholar 

  151. Llinas RR, Steriade M. Bursting of thalamic neurons and states of vigilance. J Neurophysiol. 2006;95:3297–308. https://doi.org/10.1152/jn.00166.2006.

    Article  PubMed  Google Scholar 

  152. Steriade M, McCormick DA, Sejnowski TJ. Thalamocortical oscillations in the sleeping and aroused brain. Science. 1993;262:679–85. https://doi.org/10.1126/science.8235588.

    Article  CAS  PubMed  Google Scholar 

  153. Moruzzi G, Magoun HW. Brain stem reticular formation and activation of the EEG. Electroencephalogr Clin Neurophysiol. 1949;1:455–73.

    Article  CAS  PubMed  Google Scholar 

  154. Fuller PM, Sherman D, Pedersen NP, Saper CB, Lu J. Reassessment of the structural basis of the ascending arousal system. J Comp Neurol. 2011;519:933–56. https://doi.org/10.1002/cne.22559.

    Article  PubMed  PubMed Central  Google Scholar 

  155. Robinson JC, Wilmot JH, Hasselmo ME. Septo-hippocampal dynamics and the encoding of space and time. Trends Neurosci. 2023. https://doi.org/10.1016/j.tins.2023.06.004.

    Article  PubMed  Google Scholar 

  156. Mitchell S, Rawlins J, Steward O, Olton D. Medial septal area lesions disrupt theta rhythm and cholinergic staining in medial entorhinal cortex and produce impaired radial arm maze behavior in rats. J Neurosci. 1982;2:292–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Rawlins J, Feldon J, Gray J. Septo-hippocampal connections and the hippocampal theta rhythm. Exp Brain Res. 1979;37:49–63.

    Article  CAS  PubMed  Google Scholar 

  158. Gerashchenko D, Salin-Pascual R, Shiromani PJ. Effects of hypocretin-saporin injections into the medial septum on sleep and hippocampal theta. Brain Res. 2001;913:106–15. https://doi.org/10.1016/s0006-8993(01)02792-5.

    Article  CAS  PubMed  Google Scholar 

  159. Kapas L, et al. The effects of immunolesions of nerve growth factor-receptive neurons by 192 IgG-saporin on sleep. Brain Res. 1996;712:53–9. https://doi.org/10.1016/0006-8993(95)01431-4.

    Article  CAS  PubMed  Google Scholar 

  160. Lee MG, Chrobak JJ, Sik A, Wiley RG, Buzsaki G. Hippocampal theta activity following selective lesion of the septal cholinergic system. Neuroscience. 1994;62:1033–47. https://doi.org/10.1016/0306-4522(94)90341-7.

    Article  CAS  PubMed  Google Scholar 

  161. Bandarabadi M, et al. Dynamic modulation of theta-gamma coupling during rapid eye movement sleep. Sleep. 2019;42. https://doi.org/10.1093/sleep/zsz182

  162. Mahowald MW, Schenck CH, Bornemann MA. Pathophysiologic mechanisms in REM sleep behavior disorder. Curr Neurol Neurosci Reports. 2007;7:167–72. https://doi.org/10.1007/s11910-007-0013-7.

    Article  Google Scholar 

  163. Schenck CH, Mahowald MW. REM sleep behavior disorder: clinical, developmental, and neuroscience perspectives 16 years after its formal identification in SLEEP. Sleep. 2002;25:120–38. https://doi.org/10.1093/sleep/25.2.120.

    Article  PubMed  Google Scholar 

  164. Schenck CH, Bundlie SR, Patterson AL, Mahowald MW. Rapid eye movement sleep behavior disorder. A treatable parasomnia affecting older adults. JAMA. 1987;257:1786–9.

    Article  CAS  PubMed  Google Scholar 

  165. Sateia MJ. International classification of sleep disorders-third edition: highlights and modifications. Chest. 2014;146:1387–94. https://doi.org/10.1378/chest.14-0970.

    Article  PubMed  Google Scholar 

  166. Schenck CH, Boeve BF, Mahowald MW. Delayed emergence of a parkinsonian disorder or dementia in 81% of older men initially diagnosed with idiopathic rapid eye movement sleep behavior disorder: a 16-year update on a previously reported series. Sleep Med. 2013;14:744–8. https://doi.org/10.1016/j.sleep.2012.10.009.

    Article  PubMed  Google Scholar 

  167. Gagnon JF, Postuma RB, Mazza S, Doyon J, Montplaisir J. Rapid-eye-movement sleep behaviour disorder and neurodegenerative diseases. Lancet Neurol. 2006;5:424–32. https://doi.org/10.1016/s1474-4422(06)70441-0.

    Article  PubMed  Google Scholar 

  168. Mahowald MW, Schenck CH. REM sleep behaviour disorder: a marker of synucleinopathy. Lancet Neurol. 2013;12:417–9. https://doi.org/10.1016/S1474-4422(13)70078-4.

    Article  PubMed  Google Scholar 

  169. Mahowald MW, Schenck CH. The REM sleep behavior disorder odyssey. Sleep Med Rev. 2009;13:381–4. https://doi.org/10.1016/j.smrv.2009.02.002.

    Article  PubMed  Google Scholar 

  170. Fantini L, Filipini D, Montplaisir J. Idiopathic REM behavior disorder: a longitudinal study. Mov Disord. 2001;16:S58.

    Google Scholar 

  171. Postuma R, et al. Quantifying the risk of neurodegenerative disease in idiopathic REM sleep behavior disorder. Neurology. 2009;72:1296–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Iranzo A, et al. Rapid-eye-movement sleep behaviour disorder as an early marker for a neurodegenerative disorder: a descriptive study. Lancet Neurol. 2006;5:572–7.

    Article  PubMed  Google Scholar 

  173. Berg D, et al. Prodromal Parkinson disease subtypes - key to understanding heterogeneity. Nat Rev Neurol. 2021;17:349–61. https://doi.org/10.1038/s41582-021-00486-9.

    Article  PubMed  Google Scholar 

  174. Postuma RB, Gagnon JF, Montplaisir J. Rapid eye movement sleep behavior disorder as a biomarker for neurodegeneration: the past 10 years. Sleep Med. 2013;14:763–7. https://doi.org/10.1016/j.sleep.2012.09.001.

    Article  PubMed  Google Scholar 

  175. Ehrminger M, et al. The coeruleus/subcoeruleus complex in idiopathic rapid eye movement sleep behaviour disorder. Brain. 2016;139:1180–8.

    Article  PubMed  Google Scholar 

  176. Iranzo A, Aparicio J. A lesson from anatomy: focal brain lesions causing REM sleep behavior disorder. Sleep Med. 2009;10:9–12. https://doi.org/10.1016/j.sleep.2008.03.005.

    Article  PubMed  Google Scholar 

  177. Iranzo A, et al. Neurodegenerative disease status and post-mortem pathology in idiopathic rapid-eye-movement sleep behaviour disorder: an observational cohort study. Lancet Neurol. 2013;12:443–53. https://doi.org/10.1016/S1474-4422(13)70056-5.

    Article  PubMed  Google Scholar 

  178. Scherfler C, et al. With and gray matter abnormalities in idiopathic rapid eye movement disorder: a diffusion-tensor imaging and voxel-based morphometry study. Ann Neurol. 2011;12:284–8.

    Google Scholar 

  179. Culebras A, Moore JT. Magnetic resonance findings in REM sleep behavior disorder. Neurology. 1989;39:1519–1519.

    Article  CAS  PubMed  Google Scholar 

  180. CH S. Polysomnographic, neurologic, psychiatric and clinical outcome report on 70 consecutive cases with REM sleep behavior disorder (RSBD): sustained clonazepam efficacy in 89.5% of 57 treated patients. Cleve Clin J Med. 1990;57:9–23.

    Google Scholar 

  181. Kimura K, et al. A discrete pontine ischemic lesion could cause REM sleep behavior disorder. Neurology. 2000;55:894–5.

    Article  CAS  PubMed  Google Scholar 

  182. Olson EJ, Boeve BF, Silber MH. Rapid eye movement sleep behaviour disorder: demographic, clinical and laboratory findings in 93 cases. Brain. 2000;123:331–9.

    Article  PubMed  Google Scholar 

  183. Biscarini F, et al. REM sleep behavior disorder with predominant nightmares in a patient with ischemic pontine lesions. J Clin Sleep Med. 2022;18:945–8. https://doi.org/10.5664/jcsm.9762.

    Article  PubMed  PubMed Central  Google Scholar 

  184. Iranzo A. El trastorno de conducta durante el sueño REM. Vigilia sueño. 2006;81–87.

  185. Xi Z, Luning W. REM sleep behavior disorder in a patient with pontine stroke. Sleep Med. 2009;10:143–6. https://doi.org/10.1016/j.sleep.2007.12.002.

    Article  PubMed  Google Scholar 

  186. Iranzo A, et al. Rapid eye movement sleep behavior disorder and potassium channel antibody–associated limbic encephalitis. Ann Neurol. 2006;59:178–81.

    Article  PubMed  Google Scholar 

  187. Lugaresi E, Provini F. Agrypnia excitata: clinical features and pathophysiological implications. Sleep Med Rev. 2001;5:313–22.

    Article  PubMed  Google Scholar 

  188. Tellenbach N, et al. REM sleep and muscle atonia in brainstem stroke: a quantitative polysomnographic and lesion analysis study. J Sleep Res. 2023;32:e13640. https://doi.org/10.1111/jsr.13640.

    Article  PubMed  Google Scholar 

  189. Albin RL, et al. Decreased striatal dopaminergic innervation in REM sleep behavior disorder. Neurology. 2000;55:1410–2. https://doi.org/10.1212/wnl.55.9.1410.

    Article  CAS  PubMed  Google Scholar 

  190. Pyatigorskaya N, et al. Magnetic resonance imaging biomarkers to assess substantia nigra damage in idiopathic rapid eye movement sleep behavior disorder. Sleep. 2017;40. https://doi.org/10.1093/sleep/zsx149

  191. De Marzi R, et al. Loss of dorsolateral nigral hyperintensity on 3.0 tesla susceptibility-weighted imaging in idiopathic rapid eye movement sleep behavior disorder. Ann Neurol. 2016;79:1026–30.

    Article  PubMed  Google Scholar 

  192. Iranzo A, et al. Dopamine transporter imaging deficit predicts early transition to synucleinopathy in idiopathic rapid eye movement sleep behavior disorder. Ann Neurol. 2017;82:419–28.

    Article  CAS  PubMed  Google Scholar 

  193. Wing YK, et al. Reduced striatal dopamine transmission in REM sleep behavior disorder comorbid with depression. Neurology. 2015;84:516–22. https://doi.org/10.1212/WNL.0000000000001215.

    Article  CAS  PubMed  Google Scholar 

  194. Shin JH, et al. Longitudinal change in dopamine transporter availability in idiopathic REM sleep behavior disorder. Neurology. 2020;95:e3081–92.

    Article  CAS  PubMed  Google Scholar 

  195. Barber TR, et al. Nigrosome 1 imaging in REM sleep behavior disorder and its association with dopaminergic decline. Ann Clin Transl Neurol. 2020;7:26–35.

    Article  CAS  PubMed  Google Scholar 

  196. Du L, et al. Progressive pontine-medullary dysfunction leads to REM sleep behavior disorder symptoms in a chronic model of Parkinson’s disease. Nat Sci Sleep. 2021;13:1723–36. https://doi.org/10.2147/nss.S328365.

    Article  PubMed  PubMed Central  Google Scholar 

  197. Shen Y, et al. Propagated α-synucleinopathy recapitulates REM sleep behaviour disorder followed by parkinsonian phenotypes in mice. Brain. 2020;143:3374–92. https://doi.org/10.1093/brain/awaa283.

    Article  PubMed  Google Scholar 

  198. Postuma RB. Neuroprotective trials in REM sleep behavior disorder. Way Forward Becomes Clearer. 2022;99:19–25. https://doi.org/10.1212/wnl.0000000000200235.

    Article  Google Scholar 

  199. Scammell TE. Narcolepsy. N Engl J Med. 2015;373:2654–62. https://doi.org/10.1056/NEJMra1500587.

    Article  CAS  PubMed  Google Scholar 

  200. Mahoney CE, Cogswell A, Koralnik IJ, Scammell TE. The neurobiological basis of narcolepsy. Nat Rev Neurosci. 2019;20:83–93. https://doi.org/10.1038/s41583-018-0097-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Barateau L, Pizza F, Plazzi G, Dauvilliers Y. Narcolepsy. J Sleep Res. 2022;31:e13631. https://doi.org/10.1111/jsr.13631.

    Article  PubMed  Google Scholar 

  202. Sherman D, et al. Anatomical location of the mesencephalic locomotor region and its possible role in locomotion, posture, cataplexy, and parkinsonism. Front Neurol. 2015;6:140. https://doi.org/10.3389/fneur.2015.00140.

    Article  PubMed  PubMed Central  Google Scholar 

  203. Oishi Y, et al. Role of the medial prefrontal cortex in cataplexy. J Neurosci. 2013;33:9743–51. https://doi.org/10.1523/JNEUROSCI.0499-13.2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Burgess CR, Oishi Y, Mochizuki T, Peever JH, Scammell TE. Amygdala lesions reduce cataplexy in orexin knock-out mice. J Neurosci. 2013;33:9734–42. https://doi.org/10.1523/JNEUROSCI.5632-12.2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Mahoney CE, Agostinelli LJ, Brooks JN, Lowell BB, Scammell TE. GABAergic neurons of the central amygdala promote cataplexy. J Neurosci. 2017;37:3995–4006. https://doi.org/10.1523/JNEUROSCI.4065-15.2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Snow MB, et al. GABA cells in the central nucleus of the amygdala promote cataplexy. J Neurosci. 2017;37:4007–22. https://doi.org/10.1523/JNEUROSCI.4070-15.2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Marek R, Strobel C, Bredy TW, Sah P. The amygdala and medial prefrontal cortex: partners in the fear circuit. J Physiol. 2013;591:2381–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Li JN, Sheets PL. The central amygdala to periaqueductal gray pathway comprises intrinsically distinct neurons differentially affected in a model of inflammatory pain. J Physiol. 2018;596:6289–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Sun Y, et al. Amygdala GABA neurons project to vlPAG and mPFC. IBRO Reports. 2019;6:132–6. https://doi.org/10.1016/j.ibror.2019.03.001.

    Article  PubMed  PubMed Central  Google Scholar 

  210. Thannickal TC, et al. Reduced number of hypocretin neurons in human narcolepsy. Neuron. 2000;27:469–74. https://doi.org/10.1016/s0896-6273(00)00058-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Hung CJ, Ono D, Kilduff TS, Yamanaka A. Dual orexin and MCH neuron-ablated mice display severe sleep attacks and cataplexy. Elife. 2020;9. https://doi.org/10.7554/eLife.54275

Download references

Acknowledgements

The authors thank Dr. Jun Lu (Department of Neurology, 1st Hospital of Jilin University, China) for granting permission to reuse some parts of a figure from his previous article in which RV is a co-author.

Funding

This work was supported by NIHR01- NS119223 and the funding from the Foundation for Prader-Willi Research (FPWR).

Author information

Authors and Affiliations

Authors

Contributions

R.V. wrote the manuscript text and prepared the figures. SB contributed to the figures and involved in helpful discussions. Both authors reviewed the manuscript.

Corresponding author

Correspondence to Ramalingam Vetrivelan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vetrivelan, R., Bandaru, S.S. Neural Control of REM Sleep and Motor Atonia: Current Perspectives. Curr Neurol Neurosci Rep 23, 907–923 (2023). https://doi.org/10.1007/s11910-023-01322-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11910-023-01322-x

Keywords

Navigation