Skip to main content

Advertisement

Log in

Neuromuscular Complications of Programmed Cell Death-1 (PD-1) Inhibitors

  • Nerve and Muscle (L H Weimer, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

In recent years, immune checkpoint inhibitors have been increasingly used in patients with metastatic cancers with favorable oncological outcomes; however, there have also been increasing number of cancer survivors who have developed immune-related adverse events. Little is known about PD-1 inhibitor-associated neuromuscular complications.

Recent Findings

Neuromuscular disorders are the most common neurological complication reported in PD-1 inhibitor-treated patients. Myasthenia gravis, immune-mediated myopathies, and Guillain-Barre syndrome are among commonly reported immune-related neuromuscular complications. HyperCKemia occurs frequently in patients with PD-1 inhibitor-associated myasthenia gravis, indicating coexisting myopathies or myocarditis. Oculobulbar weakness is a unique and common presentation of PD-1 inhibitor-associated immune-mediated myopathies with or without concomitant myasthenia gravis. High-dose steroid monotherapy may be associated with clinical deterioration in some patients with PD-1 inhibitor-associated myasthenia gravis, immune-mediated myopathies, or Guillain-Barre syndrome.

Summary

PD-1 inhibitor-associated neuromuscular complications have some characteristic features compared to their idiopathic counterparts. Although steroid monotherapy is commonly used in non-neuromuscular autoimmune disorders triggered by anti-PD-1 therapy, this may lead to unfavorable outcomes in some patients with PD-1 inhibitor-associated neuromuscular complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Burdick CG. William Bradley Coley 1862-1936. Ann Surg. 1937;105:152–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chen L, Flies DB. Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat Rev Immunol. 2013;13:227–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12:252–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sharpe AH, Pauken KE. The diverse functions of the PD1 inhibitory pathway. Nat Rev Immunol. 2018;18:153–67.

    Article  CAS  PubMed  Google Scholar 

  5. Jiang TT, Martinov T, Xin L, Kinder JM, Spanier JA, Fife BT, et al. Programmed death-1 culls peripheral accumulation of high-affinity autoreactive CD4 T cells to protect against autoimmunity. Cell Rep. 2016;17:1783–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Garcia-Diaz A, Shin DS, Moreno BH, Saco J, Escuin-Ordinas H, Rodriguez GA, et al. Interferon receptor signaling pathways regulating PD-L1 and PD-L2 expression. Cell Rep. 2017;19:1189–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ribas A. Adaptive immune resistance: how cancer protects from immune attack. Cancer Discov. 2015;5:915–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. • Ribas A, Wolchok JD. Cancer immunotherapy using checkpoint blockade. Science. 2018;359:1350–5. A comprehensive review of cancer immunotherapy using immune checkpoint imhibitors.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zamani MR, Aslani S, Salmaninejad A, Javan MR, Rezaei N. PD-1/PD-L and autoimmunity: a growing relationship. Cell Immunol. 2016;310:27–41.

    Article  CAS  PubMed  Google Scholar 

  10. Weber JS, D’Angelo SP, Minor D, Hodi FS, Gutzmer R, Neyns B, et al. Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial. Lancet Oncol. 2015;16:375–84.

    Article  CAS  PubMed  Google Scholar 

  11. Robert C, Schachter J, Long GV, Arance A, Grob JJ, Mortier L, et al. Pembrolizumab versus Ipilimumab in advanced melanoma. N Engl J Med. 2015;372:2521–32.

    Article  CAS  PubMed  Google Scholar 

  12. •• Kao JC, Liao B, Markovic SN, Klein CJ, Naddaf E, Staff NP, et al. Neurological complications associated with anti-programmed death 1 (PD-1) antibodies. JAMA Neurol. 2017;74:1216–22. A series of patients with PD-1 inhibitor-associated neurologic complications highlighting the breadth, diversity, and frequency of neuromuscular complications.

    Article  PubMed  PubMed Central  Google Scholar 

  13. •• Zimmer L, Goldinger SM, Hofmann L, Loquai C, Ugurel S, Thomas I, et al. Neurological, respiratory, musculoskeletal, cardiac and ocular side-effects of anti-PD-1 therapy. Eur J Cancer. 2016;60:210–25. A series of patients with PD-1 inhibitor-associated neurologic complications highlighting the breadth, diversity, and frequency of neuromuscular complications.

    Article  CAS  PubMed  Google Scholar 

  14. Spain L, Diem S, Larkin J. Management of toxicities of immune checkpoint inhibitors. Cancer Treat Rev. 2016;44:51–60.

    Article  CAS  PubMed  Google Scholar 

  15. •• Liewluck T, Kao JC, Mauermann ML. PD-1 inhibitor-associated myopathies: emerging immune-mediated myopathies. J Immunother. 2018;41:208–11. A series of patients with PD-1 inhibitor-associated immune-mediated myopathies highlighting a unique oculobulbar involvement in these patients, mimicking myasthenia gravis.

    Article  CAS  PubMed  Google Scholar 

  16. Lau KH, Kumar A, Yang IH, Nowak RJ. Exacerbation of myasthenia gravis in a patient with melanoma treated with pembrolizumab. Muscle Nerve. 2016;54:157–61.

    Article  PubMed  Google Scholar 

  17. Nguyen BH, Kuo J, Budiman A, Christie H, Ali S. Two cases of clinical myasthenia gravis associated with pembrolizumab use in responding melanoma patients. Melanoma Res. 2017;27:152–4.

    Article  PubMed  Google Scholar 

  18. Phadke SD, Ghabour R, Swick BL, Swenson A, Milhem M, Zakharia Y. Pembrolizumab therapy triggering an exacerbation of preexisting autoimmune disease: a report of 2 patient cases. J Investig Med High Impact Case Rep. 2016;4:2324709616674316.

    PubMed  PubMed Central  Google Scholar 

  19. Alnahhas I, Wong J. A case of new-onset antibody-positive myasthenia gravis in a patient treated with pembrolizumab for melanoma. Muscle Nerve. 2017;55:E25-E26.

    Article  Google Scholar 

  20. Maeda O, Yokota K, Atsuta N, Katsuno M, Akiyama M, Ando Y. Nivolumab for the treatment of malignant melanoma in a patient with pre-existing myasthenia gravis. Nagoya J Med Sci. 2016;78:119–22.

    PubMed  PubMed Central  Google Scholar 

  21. Zhu J, Li Y. Myasthenia gravis exacerbation associated with pembrolizumab. Muscle Nerve. 2016;54:506–7.

    Article  PubMed  Google Scholar 

  22. Polat P, Donofrio PD. Myasthenia gravis induced by nivolumab therapy in a patient with non-small-cell lung cancer. Muscle Nerve. 2016;54:507.

    Article  PubMed  Google Scholar 

  23. Sciacca G, Nicoletti A, Rampello L, Noto L, Parra HJ, Zappia M. Benign form of myasthenia gravis after nivolumab treatment. Muscle Nerve. 2016;54:507–9.

    Article  PubMed  Google Scholar 

  24. Gonzalez NL, Puwanant A, Lu A, Marks SM, Zivkovic SA. Myasthenia triggered by immune checkpoint inhibitors: new case and literature review. Neuromuscul Disord. 2017;27:266–8.

    Article  PubMed  Google Scholar 

  25. Kimura T, Fukushima S, Miyashita A, Aoi J, Jinnin M, Kosaka T, et al. Myasthenic crisis and polymyositis induced by one dose of nivolumab. Cancer Sci. 2016;107:1055–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chang E, Sabichi AL, Sada YH. Myasthenia gravis after nivolumab therapy for squamous cell carcinoma of the bladder. J Immunother. 2017;40:114–6.

    Article  CAS  PubMed  Google Scholar 

  27. March KL, Samarin MJ, Sodhi A, Owens RE. Pembrolizumab-induced myasthenia gravis: a fatal case report. J Oncol Pharm Pract. 2017;1078155216687389.

  28. Shirai T, Sano T, Kamijo F, Saito N, Miyake T, Kodaira M, et al. Acetylcholine receptor binding antibody-associated myasthenia gravis and rhabdomyolysis induced by nivolumab in a patient with melanoma. Jpn J Clin Oncol. 2016;46:86–8.

    Article  PubMed  Google Scholar 

  29. Mehta JJ, Maloney E, Srinivasan S, Seitz P, Cannon M. Myasthenia gravis induced by nivolumab: a case report. Cureus. 2017;9:e1702.

    PubMed  PubMed Central  Google Scholar 

  30. Loochtan AI, Nickolich MS, Hobson-Webb LD. Myasthenia gravis associated with ipilimumab and nivolumab in the treatment of small cell lung cancer. Muscle Nerve. 2015;52:307–8.

    Article  PubMed  Google Scholar 

  31. Makarious D, Horwood K, Coward JIG. Myasthenia gravis: an emerging toxicity of immune checkpoint inhibitors. Eur J Cancer. 2017;82:128–36.

    Article  CAS  PubMed  Google Scholar 

  32. Huh SY, Shin SH, Kim MK, Lee SY, Son KH, Shin HY. Emergence of myasthenia gravis with myositis in a patient treated with pembrolizumab for thymic cancer. J Clin Neurol. 2018;14:115–7.

    Article  PubMed  Google Scholar 

  33. Chen YH, Liu FC, Hsu CH, Chian CF. Nivolumab-induced myasthenia gravis in a patient with squamous cell lung carcinoma: case report. Medicine (Baltimore). 2017;96:e7350.

    Article  CAS  Google Scholar 

  34. Chen JH, Lee KY, Hu CJ, Chung CC. Coexisting myasthenia gravis, myositis, and polyneuropathy induced by ipilimumab and nivolumab in a patient with non-small-cell lung cancer: a case report and literature review. Medicine (Baltimore). 2017;96:e9262.

    Article  Google Scholar 

  35. Tan RYC, Toh CK, Takano A. Continued response to one dose of nivolumab complicated by myasthenic crisis and myositis. J Thorac Oncol. 2017;12:e90–1.

    Article  PubMed  Google Scholar 

  36. Fellner A, Makranz C, Lotem M, Bokstein F, Taliansky A, Rosenberg S, et al. Neurologic complications of immune checkpoint inhibitors. J Neuro-Oncol. 2018;137:601–9.

    Article  CAS  Google Scholar 

  37. •• Suzuki S, Ishikawa N, Konoeda F, et al. Nivolumab-related myasthenia gravis with myositis and myocarditis in Japan. Neurology. 2017;89:1127-34. A well-designed study of myasthenia gravis in nivolumab-treated patients highlighting the differences between myasthenia gravis patients with and without nivolumab exposure and the myasthenia gravis-myositis-myocarditis overlap syndrome.

    Article  CAS  PubMed  Google Scholar 

  38. Agata Y, Kawasaki A, Nishimura H, Ishida Y, Tsubat T, Yagita H, et al. Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes. Int Immunol. 1996;8:765–72.

    Article  CAS  PubMed  Google Scholar 

  39. Thibult ML, Mamessier E, Gertner-Dardenne J, Pastor S, Just-Landi S, Xerri L, et al. PD-1 is a novel regulator of human B-cell activation. Int Immunol. 2013;25:129–37.

    Article  CAS  PubMed  Google Scholar 

  40. Vallet H, Gaillet A, Weiss N, Vanhaecke C, Saheb S, Touitou V, et al. Pembrolizumab-induced necrotic myositis in a patient with metastatic melanoma. Ann Oncol. 2016;27:1352–3.

    Article  CAS  PubMed  Google Scholar 

  41. Suzuki S, Utsugisawa K, Yoshikawa H, Motomura M, Matsubara S, Yokoyama K, et al. Autoimmune targets of heart and skeletal muscles in myasthenia gravis. Arch Neurol. 2009;66:1334–8.

    Article  PubMed  Google Scholar 

  42. Santos E, Coutinho E, Martins da Silva A, Marinho A, Vasconcelos C, Taipa R, et al. Inflammatory myopathy associated with myasthenia gravis with and without thymic pathology: report of four cases and literature review. Autoimmun Rev. 2017;16:644–9.

    Article  PubMed  Google Scholar 

  43. Bilen MA, Subudhi SK, Gao J, Tannir NM, Tu SM, Sharma P. Acute rhabdomyolysis with severe polymyositis following ipilimumab-nivolumab treatment in a cancer patient with elevated anti-striated muscle antibody. J Immunother Cancer. 2016;4:36.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Juel VC. Myasthenia gravis: management of myasthenic crisis and perioperative care. Semin Neurol. 2004;24:75–81.

    Article  PubMed  Google Scholar 

  45. Grob D, Brunner N, Namba T, Pagala M. Lifetime course of myasthenia gravis. Muscle Nerve. 2008;37:141–9.

    Article  PubMed  Google Scholar 

  46. Johnson DB, Balko JM, Compton ML, Chalkias S, Gorham J, Xu Y, et al. Fulminant myocarditis with combination immune checkpoint blockade. N Engl J Med. 2016;375:1749–55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Gandiga PC, Wang AR, Gonzalez-Rivera T, Sreih AG. Pembrolizumab-associated inflammatory myopathy. Rheumatology (Oxford). 2018;57:397–8.

    Article  Google Scholar 

  48. Bourgeois-Vionnet J, Joubert B, Bernard E, Sia MA, Pante V, Fabien N, et al. Nivolumab-induced myositis: a case report and a literature review. J Neurol Sci. 2018;387:51–3.

    Article  PubMed  Google Scholar 

  49. Uchio N, Taira K, Ikenaga C, Unuma A, Kadoya M, Kubota A, et al. Granulomatous myositis induced by anti-PD-1 monoclonal antibodies. Neurol Neuroimmunol Neuroinflamm. 2018;5:e464.

    Article  PubMed Central  Google Scholar 

  50. Yoshioka M, Kambe N, Yamamoto Y, Suehiro K, Matsue H. Case of respiratory discomfort due to myositis after administration of nivolumab. J Dermatol. 2015;42:1008–9.

    Article  PubMed  Google Scholar 

  51. Fox E, Dabrow M, Ochsner G. A case of nivolumab-induced myositis. Oncologist. 2016;21:e3.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Diamantopoulos PT, Tsatsou K, Benopoulou O, Anastasopoulou A, Gogas H. Inflammatory myopathy and axonal neuropathy in a patient with melanoma following pembrolizumab treatment. J Immunother. 2017;40:221–3.

    Article  PubMed  Google Scholar 

  53. Saini L, Chua N. Severe inflammatory myositis in a patient receiving concurrent nivolumab and azacitidine. Leuk Lymphoma. 2017;58:2011–3.

    Article  PubMed  Google Scholar 

  54. Behling J, Kaes J, Munzel T, Grabbe S, Loquai C. New-onset third-degree atrioventricular block because of autoimmune-induced myositis under treatment with anti-programmed cell death-1 (nivolumab) for metastatic melanoma. Melanoma Res. 2017;27:155–8.

    Article  CAS  PubMed  Google Scholar 

  55. Min L, Hodi FS. Anti-PD1 following ipilimumab for mucosal melanoma: durable tumor response associated with severe hypothyroidism and rhabdomyolysis. Cancer Immunol Res. 2014;2:15–8.

    Article  PubMed  Google Scholar 

  56. Milone M. Diagnosis and management of immune-mediated myopathies. Mayo Clin Proc. 2017;92:826–37.

    Article  PubMed  Google Scholar 

  57. Moslehi JJ, Salem JE, Sosman JA, Lebrun-Vignes B, Johnson DB. Increased reporting of fatal immune checkpoint inhibitor-associated myocarditis. Lancet. 2018;391:933.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Gordon SR, Maute RL, Dulken BW, Hutter G, George BM, McCracken MN, et al. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature. 2017;545:495–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kahler KC, Hassel JC, Heinzerling L, et al. Management of side effects of immune checkpoint blockade by anti-CTLA-4 and anti-PD-1 antibodies in metastatic melanoma. J Dtsch Dermatol Ges. 2016;14:662–81.

    PubMed  Google Scholar 

  60. Yost MD, Chou CZ, Botha H, Block MS, Liewluck T. Facial diplegia after pembrolizumab treatment. Muscle Nerve. 2017;56:E20–1.

    Article  PubMed  Google Scholar 

  61. Ong S, Chapman J, Young G, Mansy T. Guillain-Barre-like syndrome during pembrolizumab treatment. Muscle Nerve. 2018;58:E8-E10.

    Article  Google Scholar 

  62. Jacob A, Unnikrishnan DC, Mathew A, Thyagarajan B, Patel S. A case of fatal Guillain-Barre syndrome from anti-PD1 monoclonal antibody use. J Cancer Res Clin Oncol. 2016;142:1869–70.

    Article  PubMed  Google Scholar 

  63. Schneiderbauer R, Schneiderbauer M, Wick W, Enk AH, Haenssle HA, Hassel JC. PD-1 antibody-induced Guillain-Barre syndrome in a patient with metastatic melanoma. Acta Derm Venereol. 2017;97:395–6.

    Article  PubMed  Google Scholar 

  64. de Maleissye MF, Nicolas G, Saiag P. Pembrolizumab-induced demyelinating polyradiculoneuropathy. N Engl J Med. 2016;375:296–7.

    Article  PubMed  Google Scholar 

  65. Fukumoto Y, Kuwahara M, Kawai S, Nakahama K, Kusunoki S. Acute demyelinating polyneuropathy induced by nivolumab. J Neurol Neurosurg Psychiatry. 2018;89:435–7.

    Article  PubMed  Google Scholar 

  66. Supakornnumporn S, Katirji B. Guillain-Barre syndrome triggered by immune checkpoint inhibitors: a case report and literature review. J Clin Neuromuscul Dis. 2017;19:80–3.

    Article  PubMed  Google Scholar 

  67. Dimachkie MM, Saperstein DS. Acquired immune demyelinating neuropathies. Continuum (Minneap Minn). 2014;20:1241–60.

    Google Scholar 

  68. Tanaka R, Maruyama H, Tomidokoro Y, Yanagiha K, Hirabayashi T, Ishii A, et al. Nivolumab-induced chronic inflammatory demyelinating polyradiculoneuropathy mimicking rapid-onset Guillain-Barre syndrome: a case report. Jpn J Clin Oncol. 2016;46:875–8.

    Article  PubMed  Google Scholar 

  69. Sepulveda M, Martinez-Hernandez E, Gaba L, et al. Motor polyradiculopathy during pembrolizumab treatment of metastatic melanoma. Muscle Nerve. 2017;56:E162–7.

    Article  CAS  PubMed  Google Scholar 

  70. Aya F, Ruiz-Esquide V, Viladot M, Font C, Prieto-González S, Prat A, et al. Vasculitic neuropathy induced by pembrolizumab. Ann Oncol. 2017;28:433–4.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teerin Liewluck.

Ethics declarations

Conflict of Interest

Justin C. Kao, Adipong Brickshawana, and Teerin Liewluck declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Nerve and Muscle

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kao, J.C., Brickshawana, A. & Liewluck, T. Neuromuscular Complications of Programmed Cell Death-1 (PD-1) Inhibitors. Curr Neurol Neurosci Rep 18, 63 (2018). https://doi.org/10.1007/s11910-018-0878-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-018-0878-7

Keywords

Navigation