Skip to main content
Log in

Recent Advances in Myotonic Dystrophy Type 2

  • Nerve and Muscle (L Weimer, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Myotonic dystrophy is the commonest adult muscular dystrophy. Myotonic dystrophy type 1 (DM1) and myotonic dystrophy type 2 (DM2) are often discussed jointly, and although they share many clinical and molecular features, differences do exist. Historically, more is known about DM1 than about DM2. The literature in the field of myotonic dystrophy is broad, with advances in our understanding of DM2. This article reviews recent developments in DM2 with respect to diagnosis, systemic features, and molecular mechanisms of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Liquori CL et al. Myotonic dystrophy type 2 caused by a CCTG expansion in intron 1 of ZNF9. Science. 2001;293(5531):864–7.

    Article  CAS  PubMed  Google Scholar 

  2. Thornton CA, Griggs RC, Moxley 3rd RT. Myotonic dystrophy with no trinucleotide repeat expansion. Ann Neurol. 1994;35(3):269–72.

    Article  CAS  PubMed  Google Scholar 

  3. Ricker K et al. Proximal myotonic myopathy. Clinical features of a multisystem disorder similar to myotonic dystrophy. Arch Neurol. 1995;52(1):25–31.

    Article  CAS  PubMed  Google Scholar 

  4. Rowland LP. Thornton-Griggs-Moxley disease: myotonic dystrophy type 2. Ann Neurol. 1994;36(5):803–4.

    Article  CAS  PubMed  Google Scholar 

  5. Ricker K et al. Linkage of proximal myotonic myopathy to chromosome 3q. Neurology. 1999;52(1):170–1.

    Article  CAS  PubMed  Google Scholar 

  6. Suominen T et al. Population frequency of myotonic dystrophy: higher than expected frequency of myotonic dystrophy type 2 (DM2) mutation in Finland. Eur J Hum Genet. 2011;19(7):776–82.

    Article  CAS  PubMed  Google Scholar 

  7. Ranum LP, Day JW. Myotonic dystrophy: clinical and molecular parallels between myotonic dystrophy type 1 and type 2. Curr Neurol Neurosci Rep. 2002;2(5):465–70.

    Article  PubMed  Google Scholar 

  8. Day JW et al. Myotonic dystrophy type 2: molecular, diagnostic and clinical spectrum. Neurology. 2003;60(4):657–64.

    Article  CAS  PubMed  Google Scholar 

  9. Hilbert JE et al. Diagnostic odyssey of patients with myotonic dystrophy. J Neurol. 2013;260(10):2497–504.

    Article  PubMed  Google Scholar 

  10. Matsuura T et al. Myotonic dystrophy type 2 is rare in the Japanese population. J Hum Genet. 2012;57(3):219–20.

    Article  CAS  PubMed  Google Scholar 

  11. Kamsteeg EJ et al. Best practice guidelines and recommendations on the molecular diagnosis of myotonic dystrophy types 1 and 2. Eur J Hum Genet. 2012;20(12):1203–8.

    Article  CAS  PubMed  Google Scholar 

  12. Fournier E et al. Electromyography guides toward subgroups of mutations in muscle channelopathies. Ann Neurol. 2004;56(5):650–61.

    Article  CAS  PubMed  Google Scholar 

  13. Gawel M et al. Value of short exercise and short exercise with cooling tests in the diagnosis of myotonic dystrophies (DM1 AND DM2). Muscle Nerve. 2013. doi:10.1002/mus.23908.

  14. Lee TM et al. Severe dilated cardiomyopathy in a patient with myotonic dystrophy type 2 and homozygous repeat expansion in ZNF9. Congest Heart Fail. 2012;18(3):183–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Sansone VA et al. The frequency and severity of cardiac involvement in myotonic dystrophy type 2 (DM2): Long-term outcomes. Int J Cardiol. 2013;168(2):1147–53.

    Article  CAS  PubMed  Google Scholar 

  16. Ha AH et al. Predictors of atrio-ventricular conduction disease, long-term outcomes in patients with myotonic dystrophy types I and II. Pacing Clin Electrophysiol. 2012;35(10):1262–9.

    Article  PubMed  Google Scholar 

  17. Schneider-Gold C et al. Cardiac and skeletal muscle involvement in myotonic dystrophy type 2 (DM2): a quantitative 31P-MRS and MRI study. Muscle Nerve. 2004;30(5):636–44.

    Article  CAS  PubMed  Google Scholar 

  18. Spengos K et al. Delayed contrast enhancement on cardiac MRI unmasks subclinical cardiomyopathy in a case of myotonic dystrophy type 2. Hellenic J Cardiol. 2012;53(4):324–6.

    PubMed  Google Scholar 

  19. Turkbey EB et al. Assessment of cardiac involvement in myotonic muscular dystrophy by T1 mapping on magnetic resonance imaging. Heart Rhythm. 2012;9(10):1691–7.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Romigi A et al. Sleep disorders in myotonic dystrophy type 2: a controlled polysomnographic study and self-reported questionnaires. Eur J Neurol. 2013. doi:10.1111/ene.12226.

  21. Shepard P et al. Sleep disturbances in myotonic dystrophy type 2. Eur Neurol. 2012;68(6):377–80.

    Article  PubMed  Google Scholar 

  22. Lam EM et al. Restless legs syndrome and daytime sleepiness are prominent in myotonic dystrophy type 2. Neurology. 2013;81(2):157–64.

    Article  PubMed  Google Scholar 

  23. Bhat S et al. Sleep disordered breathing and other sleep dysfunction in myotonic dystrophy type 2. Sleep Med. 2012;13(9):1207–8.

    Article  PubMed  Google Scholar 

  24. Stramare R et al. MRI in the assessment of muscular pathology: a comparison between limb-girdle muscular dystrophies, hyaline body myopathies and myotonic dystrophies. Radiol Med. 2010;115(4):585–99.

    Article  CAS  PubMed  Google Scholar 

  25. Kornblum C et al. Distinct neuromuscular phenotypes in myotonic dystrophy types 1 and 2: a whole body highfield MRI study. J Neurol. 2006;253(6):753–61.

    Article  PubMed  Google Scholar 

  26. Tieleman AA et al. Skeletal muscle involvement in myotonic dystrophy type 2. A comparative muscle ultrasound study. Neuromuscul Disord. 2012;22(6):492–9.

    Article  CAS  PubMed  Google Scholar 

  27. Meola G et al. Executive dysfunction and avoidant personality trait in myotonic dystrophy type 1 (DM-1) and in proximal myotonic myopathy (PROMM/DM-2). Neuromuscul Disord. 2003;13(10):813–21.

    Article  CAS  PubMed  Google Scholar 

  28. Franc DT et al. Cerebral and muscle MRI abnormalities in myotonic dystrophy. Neuromuscul Disord. 2012;22(6):483–91.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Suokas KI et al. Pain in patients with myotonic dystrophy type 2: a postal survey in Finland. Muscle Nerve. 2012;45(1):70–4.

    Article  PubMed  Google Scholar 

  30. Rhodes JD et al. Activation of the innate immune response and interferon signalling in myotonic dystrophy type 1 and type 2 cataracts. Hum Mol Genet. 2012;21(4):852–62.

    Article  CAS  PubMed  Google Scholar 

  31. Passeri E et al. Vitamin D, parathyroid hormone and muscle impairment in myotonic dystrophies. J Neurol Sci. 2013;331(1–2):132–5.

    Article  CAS  PubMed  Google Scholar 

  32. Mathieu J et al. Anesthetic and surgical complications in 219 cases of myotonic dystrophy. Neurology. 1997;49(6):1646–50.

    Article  CAS  PubMed  Google Scholar 

  33. Veyckemans F, Scholtes JL. Myotonic dystrophies type 1 and 2: anesthetic care. Paediatr Anaesth. 2013;23(9):794–803.

    Article  PubMed  Google Scholar 

  34. Win AK et al. Increased cancer risks in myotonic dystrophy. Mayo Clin Proc. 2012;87(2):130–5.

    Article  PubMed  Google Scholar 

  35. Das M et al. Correlates of tumor development in patients with myotonic dystrophy. J Neurol. 2012;259(10):2161–6.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Awater C, Zerres K, Rudnik-Schoneborn S. Pregnancy course and outcome in women with hereditary neuromuscular disorders: comparison of obstetric risks in 178 patients. Eur J Obstet Gynecol Reprod Biol. 2012;162(2):153–9.

    Article  PubMed  Google Scholar 

  37. Kurosaki T et al. The unstable CCTG repeat responsible for myotonic dystrophy type 2 originates from an AluSx element insertion into an early primate genome. PLoS One. 2012;7(6):e38379.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Bachinski LL et al. Confirmation of the type 2 myotonic dystrophy (CCTG)n expansion mutation in patients with proximal myotonic myopathy/proximal myotonic dystrophy of different European origins: a single shared haplotype indicates an ancestral founder effect. Am J Hum Genet. 2003;73(4):835–48.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Nakamori M et al. Splicing biomarkers of disease severity in myotonic dystrophy. Ann Neurol. 2013. doi:10.1002/ana.23992.

  40. Santoro M et al. Alternative splicing of human insulin receptor gene (INSR) in type I and type II skeletal muscle fibers of patients with myotonic dystrophy type 1 and type 2. Mol Cell Biochem. 2013;380(1–2):259–65.

    Article  CAS  PubMed  Google Scholar 

  41. Lukas Z et al. Sequestration of MBNL1 in tissues of patients with myotonic dystrophy type 2. Neuromuscul Disord. 2012;22(7):604–16.

    Article  CAS  PubMed  Google Scholar 

  42. Giagnacovo M et al. Nuclear ribonucleoprotein-containing foci increase in size in non-dividing cells from patients with myotonic dystrophy type 2. Histochem Cell Biol. 2012;138(4):699–707.

    Article  CAS  PubMed  Google Scholar 

  43. Eisenberg I et al. Distinctive patterns of microRNA expression in primary muscular disorders. Proc Natl Acad Sci U S A. 2007;104(43):17016–21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Greco S et al. Deregulated microRNAs in myotonic dystrophy type 2. PLoS One. 2012;7(6):e39732.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Faenza I et al. A role for PLCbeta1 in myotonic dystrophies type 1 and 2. FASEB J. 2012;26(7):3042–8.

    Article  CAS  PubMed  Google Scholar 

  46. Ursu SF et al. ClC1 chloride channel in myotonic dystrophy type 2 and ClC1 splicing in vitro. Acta Myol. 2012;31(2):144–53.

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Berg J et al. Truncated ClC-1 mRNA in myotonic dystrophy exerts a dominant-negative effect on the Cl current. Neurology. 2004;63(12):2371–5.

    Article  CAS  PubMed  Google Scholar 

  48. Tang ZZ et al. Muscle weakness in myotonic dystrophy associated with misregulated splicing and altered gating of Ca(V)1.1 calcium channel. Hum Mol Genet. 2012;21(6):1312–24.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Lewis P. Rowland for inspiration, wisdom, and guidance.

Compliance with Ethics Guidelines

Conflict of Interest

Christina M. Ulane and Sarah Teed declare that they have no conflict of interest.

Jacinda Sampson has received a grant from the Marigold Foundation for myotonic dystrophy support group development. She also has received honorarium and paid travel expenses from the Myotonic Dystrophy Foundation for her role as a guest speaker.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacinda Sampson.

Additional information

This article is part of the Topical Collection on Nerve and Muscle

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ulane, C.M., Teed, S. & Sampson, J. Recent Advances in Myotonic Dystrophy Type 2. Curr Neurol Neurosci Rep 14, 429 (2014). https://doi.org/10.1007/s11910-013-0429-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-013-0429-1

Keywords

Navigation