Skip to main content

Advertisement

Log in

Paroxysmal Sympathetic Hyperactivity After Acute Brain Injury

  • Critical Care (SA Mayer, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Paroxysmal sympathetic hyperactivity is a syndrome associated with brain trauma, stroke, encephalitis, and other forms of brain injury. It is characterized by uncontrolled episodes of unbalanced sympathetic surges causing hyperthermia, diaphoresis, tachycardia, hypertension, tachypnea, and dystonic posturing. Patients who develop paroxysmal sympathetic hyperactivity have worse neurologic outcomes, longer hospital stays, and more complications. Despite the clear negative impact on outcome, consensus regarding diagnostic criteria, risk factors, pathophysiology, and treatment approaches is lacking. Recently, the importance of consensus regarding diagnostic criteria has been emphasized, and new theories of pathophysiology have been proposed. Many treatment options are available, but only a few systemic studies of the efficacy of treatment algorithms exist. Treatments should focus on decreasing the frequency and intensity of episodes with regularly scheduled doses of medications, such as long-acting benzodiazepines, nonselective β-blockers, α2-agonists, morphine, baclofen, and gabapentin, usually in combination. Treatment of acute breakthrough episodes should focus on doses of as-needed morphine and short-acting benzodiazepines. A balance between control of symptoms without oversedation is the goal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. • Lv LQ et al. Risk factors related to dysautonomia after severe traumatic brain injury. J Trauma. 2011;71(3):538–42. This is a study examining PSH in consecutive severe TBI patients. It describes the prevalence, risk factors, and radiographic findings. It identified younger age and diffuse axonal injury as significant risk factors for PSH.

    PubMed  Google Scholar 

  2. Hinson HE, Sheth KN. Manifestations of the hyperadrenergic state after acute brain injury. Curr Opin Crit Care. 2012;18(2):139–45.

    Article  PubMed  Google Scholar 

  3. Penfield W. Diencephalic autonomic epilepsy. Arch Neurol Psychiatr. 1929;22:358–74.

    Article  Google Scholar 

  4. •• Perkes IE et al. Paroxysmal sympathetic hyperactivity after acquired brain injury: a review of diagnostic criteria. Brain Inj. 2011;25(10):925–32. This is an informative systemic literature review of different diagnostic criteria for PSH.

    Article  PubMed  Google Scholar 

  5. Perkes I et al. A review of paroxysmal sympathetic hyperactivity after acquired brain injury. Ann Neurol. 2010;68(2):126–35.

    Article  PubMed  Google Scholar 

  6. •• Fernandez-Ortega JF et al. Paroxysmal sympathetic hyperactivity after traumatic brain injury: clinical and prognostic implications. J Neurotrauma. 2012;29(7):1364–70. This is a prospective cohort study of severe TBI patients describing the prevalence of the syndrome and the time course of the disease.

    Article  PubMed  Google Scholar 

  7. Rabinstein AA, Benarroch EE. Treatment of paroxysmal sympathetic hyperactivity. Curr Treat Options Neurol. 2008;10(2):151–7.

    Article  PubMed  Google Scholar 

  8. Baguley IJ et al. Gabapentin in the management of dysautonomia following severe traumatic brain injury: a case series. J Neurol Neurosurg Psychiatry. 2007;78(5):539–41.

    Article  PubMed  PubMed Central  Google Scholar 

  9. • Baguley IJ et al. Dysautonomia after severe traumatic brain injury: evidence of persisting overresponsiveness to afferent stimuli. Am J Phys Med Rehabil. 2009;88(8):615–22. This is a study attempting to describe sympathetic reactivity to painful stimulation in patients with PSH. Experimentally designed studies of this type are for PSH.

    Article  PubMed  Google Scholar 

  10. Baguley IJ et al. Diagnosing dysautonomia after acute traumatic brain injury: evidence for overresponsiveness to afferent stimuli. Arch Phys Med Rehabil. 2009;90(4):580–6.

    Article  PubMed  Google Scholar 

  11. Baguley IJ et al. The incidence of dysautonomia and its relationship with autonomic arousal following traumatic brain injury. Brain Inj. 2007;21(11):1175–81.

    Article  PubMed  Google Scholar 

  12. Fearnside MR et al. The Westmead Head Injury Project outcome in severe head injury. a comparative analysis of pre-hospital, clinical and CT variables. Br J Neurosurg. 1993;7(3):267–79.

    Article  CAS  PubMed  Google Scholar 

  13. Rabinstein AA. Paroxysmal sympathetic hyperactivity in the neurological intensive care unit. Neurol Res. 2007;29(7):680–2.

    Article  PubMed  Google Scholar 

  14. Fernandez-Ortega JF et al. Prognostic influence and computed tomography findings in dysautonomic crises after traumatic brain injury. J Trauma. 2006;61(5):1129–33.

    Article  PubMed  Google Scholar 

  15. Hendricks HT et al. Brain injury severity and autonomic dysregulation accurately predict heterotopic ossification in patients with traumatic brain injury. Clin Rehabil. 2007;21(6):545–53.

    Article  PubMed  Google Scholar 

  16. Dolce G et al. Dysautonomia and clinical outcome in vegetative state. J Neurotrauma. 2008. doi:10.1089/neu.2008.0536.

    Article  Google Scholar 

  17. Dalmau J et al. Anti-NMDA-receptor encephalitis: case series and analysis of the effects of antibodies. Lancet Neurol. 2008;7(12):1091–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nazif TM et al. Anti-N-methyl-D-aspartate receptor encephalitis: an emerging cause of centrally mediated sinus node dysfunction. Europace. 2012;14(8):1188–94.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Srinivasan S, Lim CC, Thirugnanam U. Paroxysmal autonomic instability with dystonia. Clin Auton Res. 2007;17(6):378–81.

    Article  PubMed  Google Scholar 

  20. Goddeau Jr RP, Silverman SB, Sims JR. Dexmedetomidine for the treatment of paroxysmal autonomic instability with dystonia. Neurocrit Care. 2007;7(3):217–20.

    Article  CAS  PubMed  Google Scholar 

  21. Rossitch Jr E, Bullard DE. The autonomic dysfunction syndrome: aetiology and treatment. Br J Neurosurg. 1988;2(4):471–8.

    Article  PubMed  Google Scholar 

  22. Baguley IJ. Nomenclature of “paroxysmal sympathetic storms”. Mayo Clin Proc. 1999;74(1):105.

    Article  CAS  PubMed  Google Scholar 

  23. Baguley IJ et al. A critical review of the pathophysiology of dysautonomia following traumatic brain injury. Neurocrit Care. 2008;8(2):293–300.

    Article  PubMed  Google Scholar 

  24. Kelly AB et al. Head trauma: comparison of MR and CT–experience in 100 patients. AJNR Am J Neuroradiol. 1988;9(4):699–708.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Ogawa T et al. Comparative study of magnetic resonance and CT scan imaging in cases of severe head injury. Acta Neurochir Suppl (Wien). 1992;55:8–10.

    CAS  PubMed  Google Scholar 

  26. • Lv LQ et al. Prognostic influence and magnetic resonance imaging findings in paroxysmal sympathetic hyperactivity after severe traumatic brain injury. J Neurotrauma. 2010;27(11):1945–50. This is a prospective study of patients with severe TBI. Patients with PSH were more likely to have deep lesions on MRI and had worse clinical outcome.

    Article  PubMed  Google Scholar 

  27. Fernandez-Ortega JF et al. Findings in the magnetic resonance of paroxysmal sympathetic hyperactivity. J Neurotrauma. 2011;28(7):1327–8.

    Article  PubMed  Google Scholar 

  28. Diesing TS, Wijdicks EF. Arc de cercle and dysautonomia from anoxic injury. Mov Disord. 2006;21(6):868–9.

    Article  PubMed  Google Scholar 

  29. Huang P et al. Susceptibility weighted imaging in a patient with paroxysmal sympathetic storms. J Neurol. 2009;256(2):276–8.

    Article  PubMed  Google Scholar 

  30. Wang VY, Manley G. Recognition of paroxysmal autonomic instability with dystonia (PAID) in a patient with traumatic brain injury. J Trauma. 2008;64(2):500–2.

    PubMed  Google Scholar 

  31. Clifton GL, Ziegler MG, Grossman RG. Circulating catecholamines and sympathetic activity after head injury. Neurosurgery. 1981;8(1):10–4.

    Article  CAS  PubMed  Google Scholar 

  32. Naredi S et al. Increased sympathetic nervous activity in patients with nontraumatic subarachnoid hemorrhage. Stroke. 2000;31(4):901–6.

    Article  CAS  PubMed  Google Scholar 

  33. Naredi S et al. Sympathetic activation and inflammatory response in patients with subarachnoid haemorrhage. Intensive Care Med. 2006;32(12):1955–61.

    Article  CAS  PubMed  Google Scholar 

  34. Lambert G et al. Sympathetic nervous activation following subarachnoid hemorrhage: influence of intravenous clonidine. Acta Anaesthesiol Scand. 2002;46(2):160–5.

    Article  CAS  PubMed  Google Scholar 

  35. Baguley IJ. Autonomic complications following central nervous system injury. Semin Neurol. 2008;28(5):716–25.

    Article  PubMed  Google Scholar 

  36. Baguley IJ et al. Dysautonomia after traumatic brain injury: a forgotten syndrome? J Neurol Neurosurg Psychiatry. 1999;67(1):39–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mehta NM et al. Severe weight loss and hypermetabolic paroxysmal dysautonomia following hypoxic ischemic brain injury: the role of indirect calorimetry in the intensive care unit. JPEN J Parenter Enteral Nutr. 2008;32(3):281–4.

    Article  PubMed  Google Scholar 

  38. Fernandez A et al. Fever after subarachnoid hemorrhage: risk factors and impact on outcome. Neurology. 2007;68(13):1013–9.

    Article  CAS  PubMed  Google Scholar 

  39. Greer DM et al. Impact of fever on outcome in patients with stroke and neurologic injury: a comprehensive meta-analysis. Stroke. 2008;39(11):3029–35.

    Article  PubMed  Google Scholar 

  40. Tracey KJ. Physiology and immunology of the cholinergic antiinflammatory pathway. J Clin Invest. 2007;117(2):289–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Oddo M et al. Continuous electroencephalography in the medical intensive care unit. Crit Care Med. 2009;37(6):2051–6.

    Article  PubMed  Google Scholar 

  42. Bhigjee AI, Ames FR, Rutherford GS. Adult aqueduct stenosis and diencephalic epilepsy. A case report. J Neurol Sci. 1985;71(1):77–89.

    Article  CAS  PubMed  Google Scholar 

  43. Baguley IJ et al. Dysautonomia and heart rate variability following severe traumatic brain injury. Brain Inj. 2006;20(4):437–44.

    Article  PubMed  Google Scholar 

  44. Bullard DE. Diencephalic seizures: responsiveness to bromocriptine and morphine. Ann Neurol. 1987;21(6):609–11.

    Article  CAS  PubMed  Google Scholar 

  45. Pranzatelli MR et al. Hypothalamic-midbrain dysregulation syndrome: hypertension, hyperthermia, hyperventilation, and decerebration. J Child Neurol. 1991;6(2):115–22.

    Article  CAS  PubMed  Google Scholar 

  46. Thorley RR, Wertsch JJ, Klingbeil GE. Acute hypothalamic instability in traumatic brain injury: a case report. Arch Phys Med Rehabil. 2001;82(2):246–9.

    Article  CAS  PubMed  Google Scholar 

  47. Boeve BF et al. Paroxysmal sympathetic storms (“diencephalic seizures”) after severe diffuse axonal head injury. Mayo Clin Proc. 1998;73(2):148–52.

    Article  CAS  PubMed  Google Scholar 

  48. Doshi R, Neil-Dwyer G. Hypothalamic and myocardial lesions after subarachnoid haemorrhage. J Neurol Neurosurg Psychiatry. 1977;40(8):821–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Reynolds RW. Pulmonary edema as a consequence of hypothalamic lesions in rats. Science. 1963;141(3584):930–2.

    Article  CAS  PubMed  Google Scholar 

  50. Carmel PW. Vegetative dysfunctions of the hypothalamus. Acta Neurochir (Wien). 1985;75(1–4):113–21.

    Article  CAS  Google Scholar 

  51. Baguley IJ. The excitatory:inhibitory ratio model (EIR model): an integrative explanation of acute autonomic overactivity syndromes. Med Hypotheses. 2008;70(1):26–35.

    Article  PubMed  Google Scholar 

  52. Lowenthal DT, Matzek KM, MacGregor TR. Clinical pharmacokinetics of clonidine. Clin Pharmacokinet. 1988;14(5):287–310.

    Article  CAS  PubMed  Google Scholar 

  53. Payen D et al. Head injury: clonidine decreases plasma catecholamines. Crit Care Med. 1990;18(4):392–5.

    Article  CAS  PubMed  Google Scholar 

  54. Welle S, Schwartz RG, Statt M. Reduced metabolic rate during beta-adrenergic blockade in humans. Metabolism. 1991;40(6):619–22.

    Article  CAS  PubMed  Google Scholar 

  55. Chiolero RL et al. Effects of propranolol on resting metabolic rate after severe head injury. Crit Care Med. 1989;17(4):328–34.

    Article  CAS  PubMed  Google Scholar 

  56. Sneed RC. Hyperpyrexia associated with sustained muscle contractions: an alternative diagnosis to central fever. Arch Phys Med Rehabil. 1995;76(1):101–3.

    Article  CAS  PubMed  Google Scholar 

  57. Robertson CE et al. The efficacy of a new formulation of trimethoprim and sulphadiazine in acute exacerbations of chronic bronchitis. Methods Find Exp Clin Pharmacol. 1983;5(2):127–9.

    CAS  PubMed  Google Scholar 

  58. Meythaler JM, Stinson 3rd AM. Fever of central origin in traumatic brain injury controlled with propranolol. Arch Phys Med Rehabil. 1994;75(7):816–8.

    Article  CAS  PubMed  Google Scholar 

  59. Ko SB et al. Morphine-sensitive paroxysmal sympathetic storm in pontine intracerebral hemorrhage. Neurologist. 2010;16(6):384–5.

    Article  PubMed  Google Scholar 

  60. Becker R et al. Intrathecal baclofen alleviates autonomic dysfunction in severe brain injury. J Clin Neurosci. 2000;7(4):316–9.

    Article  CAS  PubMed  Google Scholar 

  61. Cuny E, Richer E, Castel JP. Dysautonomia syndrome in the acute recovery phase after traumatic brain injury: relief with intrathecal baclofen therapy. Brain Inj. 2001;15(10):917–25.

    Article  CAS  PubMed  Google Scholar 

  62. Dworkin RH et al. Pharmacologic management of neuropathic pain: evidence-based recommendations. Pain. 2007;132(3):237–51.

    Article  CAS  PubMed  Google Scholar 

  63. Zesiewicz TA et al. Evidence-based guideline update: treatment of essential tremor: report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology. 2011;77(19):1752–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Blackman JA et al. Paroxysmal autonomic instability with dystonia after brain injury. Arch Neurol. 2004;61(3):321–8.

    Article  PubMed  Google Scholar 

  65. Baguley IJ et al. Pharmacological management of dysautonomia following traumatic brain injury. Brain Inj. 2004;18(5):409–17.

    Article  PubMed  Google Scholar 

  66. Lazar RM et al. Midazolam challenge reinduces neurological deficits after transient ischemic attack. Stroke. 2003;34(3):794–6.

    Article  CAS  PubMed  Google Scholar 

  67. Russo RN, O’Flaherty S. Bromocriptine for the management of autonomic dysfunction after severe traumatic brain injury. J Paediatr Child Health. 2000;36(3):283–5.

    Article  CAS  PubMed  Google Scholar 

  68. Sandel ME, Olive DA, Rader MA. Chlorpromazine-induced psychosis after brain injury. Brain Inj. 1993;7(1):77–83.

    Article  CAS  PubMed  Google Scholar 

  69. Wilkinson R, Meythaler JM, Guin-Renfroe S. Neuroleptic malignant syndrome induced by haloperidol following traumatic brain injury. Brain Inj. 1999;13(12):1025–31.

    Article  CAS  PubMed  Google Scholar 

  70. Chan CH. Dantrolene sodium and hepatic injury. Neurology. 1990;40(9):1427–32.

    Article  CAS  PubMed  Google Scholar 

  71. Pignolo L et al. Decreasing incidence of paroxysmal sympathetic hyperactivity syndrome in the vegetative state. J Rehabil Med. 2012;44(6):502–4.

    Article  PubMed  Google Scholar 

  72. Lv LQ et al. Hyperbaric oxygen therapy in the management of paroxysmal sympathetic hyperactivity after severe traumatic brain injury: a report of 6 cases. Arch Phys Med Rehabil. 2011;92(9):1515–8.

    Article  PubMed  Google Scholar 

  73. Pattoneri P et al. Circadian blood pressure and heart rate changes in patients in a persistent vegetative state after traumatic brain injury. J Clin Hypertens (Greenwich). 2005;7(12):734–9.

    Article  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

H. Alex Choi declares no conflict of interest.

Sang-Beom Jeon declares no conflict of interest.

Sophie Samuel declares no conflict of interest.

Teresa Allison declares no conflict of interest.

Kiwon Lee declares no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Alex Choi.

Additional information

This article is part of the Topical Collection on Critical Care

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, H.A., Jeon, SB., Samuel, S. et al. Paroxysmal Sympathetic Hyperactivity After Acute Brain Injury. Curr Neurol Neurosci Rep 13, 370 (2013). https://doi.org/10.1007/s11910-013-0370-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-013-0370-3

Keywords

Navigation