Skip to main content

Advertisement

Log in

Biological approaches to aphasia treatment

  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

In this review, we discuss the basic mechanisms of neural regeneration and repair and attempt to correlate findings from animal models of stroke recovery with clinical trials for aphasia. Several randomized controlled clinical trials involving manipulation of different neurotransmitter systems, including noradrenergic, dopaminergic, cholinergic, and glutamatergic systems, have shown signals of efficacy. Biological approaches such as anti-Nogo and cell replacement therapy have shown efficacy in preclinical models but have yet to reach proof of concept in the clinic. Finally, noninvasive cortical stimulation techniques have been used in a few small trials and have shown promising results. It appears that the efficacy of all these platforms can be potentiated through coupling with concomitant behavioral intervention. Given this array of potential mechanisms that exist to augment and/or stimulate neural reorganization after stroke, we are optimistic that approaches to aphasia therapy will transition from compensatory models to models in which brain reorganization is the goal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Small SL: Biological approaches to the treatment of aphasia. In Handbook on Adult Language Disorders: Integrating Cognitive Neuropsychology, Neurology, and Rehabilitation. Edited by Hillis A. Philadelphia: Psychology Press; 2001:397–411.

    Google Scholar 

  2. Horng S, Sur M: Visual activity and cortical rewiring: activity-dependent plasticity of cortical networks. Prog Brain Res 2006, 157:3–11.

    Article  PubMed  Google Scholar 

  3. McCloskey M, Cohen NJ: Catastrophic interference in connectionist networks: the sequential learning problem. In The Psychology of Learning and Motivation. Edited by Bower G. New York: Academic Press; 1989:109–165.

    Google Scholar 

  4. Gernsbacher MA, St. John MF: Learning and losing syntax: practice makes perfect and frequency builds fortitude. In Foreign Language Learning: Psycholinguistic Experiments on Training and Retention. Edited by Healy AF, Bourne JLE. Mawah, NJ: Laurence Erlbaum Associates; 1998:231–255.

  5. Cohen HP, Woltz AG, Jacobson RL: Catecholamine content of cerebral tissue after occlusion or manipulation of middle cerebral artery in cats. J Neurosurg 1975, 43:32–36.

    Article  CAS  PubMed  Google Scholar 

  6. Feeney D, Westerberg V: Norepinephrine and brain damage: alpha noradrenergic pharmacology alters functional recovery after cortical trauma. Can J Psychol 1990, 44:233–252.

    CAS  PubMed  Google Scholar 

  7. Stroemer RP, Kent TA, Hulsebosch CE: Neocortical neural sprouting, synaptogenesis, and behavioral recovery after neocortical infarction in rats. Stroke 1995, 26:2135–2144.

    CAS  PubMed  Google Scholar 

  8. Hiramoto T, Ihara Y, Watanabe Y: alpha-1 Adrenergic receptors stimulation induces the proliferation of neural progenitor cells in vitro. Neurosci Lett 2006, 408:25–28.

    Article  CAS  PubMed  Google Scholar 

  9. Izumi Y, Zorumski C: Norepinephrine promotes long-term potentiation in the adult rat hippocampus in vitro. Synapse 1999, 31:196–202.

    Article  CAS  PubMed  Google Scholar 

  10. Feeney D, Gonzalez A, Law W: Amphetamine, haloperidol, and experience interact to affect rate of recovery after motor cortex injury. Science 1982, 217:855–857.

    Article  CAS  PubMed  Google Scholar 

  11. Papadopoulos CM, Tsai SY, Guillen V, et al.: Motor recovery and axonal plasticity with short-term amphetamine after stroke. Stroke 2009, 40:294–302.

    Article  CAS  PubMed  Google Scholar 

  12. Ramic M, Emerick AJ, Bollnow MR, et al.: Axonal plasticity is associated with motor recovery following amphetamine treatment combined with rehabilitation after brain injury in the adult rat. Brain Res 2006, 1111:176–186.

    Article  CAS  PubMed  Google Scholar 

  13. Boyeson MG, Feeney DM: The role of norepinephrine in recovery from brain injury [abstract]. Presented at the Annual Meeting of the Society for Neuroscience. Anaheim, CA; October 10–15, 1984.

  14. Breitenstein C, Flöel A, Korsukewitz C, et al.: A shift of paradigm: from noradrenergic to dopaminergic modulation of learning? J Neurol Sci 2006, 248:42–47.

    Article  CAS  PubMed  Google Scholar 

  15. Kilgard MP, Merzenich MM: Cortical map reorganization enabled by nucleus basalis activity. Science 1998, 279:1714–1718.

    Article  CAS  PubMed  Google Scholar 

  16. Thiel CM, Friston KJ, Dolan RJ: Cholinergic modulation of experience-dependent plasticity in human auditory cortex. Neuron 2002, 35:567–574.

    Article  CAS  PubMed  Google Scholar 

  17. Gu Q, Singer W: Involvement of serotonin in developmental plasticity of kitten visual cortex. Eur J Neurosci 1995, 7:1146–1153.

    Article  CAS  PubMed  Google Scholar 

  18. Li WL, Cai HH, Wang B, et al.: Chronic fluoxetine treatment improves ischemia-induced spatial cognitive deficits through increasing hippocampal neurogenesis after stroke. J Neurosci Res 2009, 87:112–122.

    Article  CAS  PubMed  Google Scholar 

  19. Ploughman M, Windle V, MacLellan CL, et al.: Brainderived neurotrophic factor contributes to recovery of skilled reaching after focal ischemia in rats. Stroke 2009, 40:1490–1495.

    Article  CAS  PubMed  Google Scholar 

  20. Schabitz WR, Steigleder T, Cooper-Kuhn CM, et al.: Intravenous brain-derived neurotrophic factor enhances poststroke sensorimotor recovery and stimulates neurogenesis. Stroke 2007, 38:2165–2172.

    Article  PubMed  Google Scholar 

  21. Boyeson M, Harmon R, Jones J: Comparative effects of fluoxetine, amitriptyline and serotonin on functional motor recovery after sensorimotor cortex injury. Am J Phys Med Rehabil 1994, 73:76–83.

    Article  CAS  PubMed  Google Scholar 

  22. Windle V, Corbett D: Fluoxetine and recovery of motor function after focal ischemia in rats. Brain Res 2005, 1044:25–32.

    Article  CAS  PubMed  Google Scholar 

  23. Tsai S, Markus S, Andrews EM, et al.: Intrathecal treatment with anti-Nogo-A antibody improves functional recovery in adult rats after stroke. Exp Brain Res 2007, 182:261–266.

    Article  CAS  PubMed  Google Scholar 

  24. Brenneman MM, Wagner SJ, Cheatwood JL, et al.: Nogo-A inhibition induces recovery from neglect in rats. Behav Brain Res 2008, 187:262–272.

    Article  CAS  PubMed  Google Scholar 

  25. Kondziolka D, Wechsler L, Goldstein S, et al.: Transplantation of cultured human neuronal cells for patients with stroke. Neurology 2000, 55:565–569.

    CAS  PubMed  Google Scholar 

  26. Bang O, Lee J, Lee P, et al.: Autologous mesenchymal stem cell transplantation in stroke patients. Ann Neurol 2005, 57:874–882.

    Article  PubMed  Google Scholar 

  27. Savitz SI, Dinsmore J, Wu J, et al.: Neurotransplantation of fetal porcine cells in patients with basal ganglia infarcts: a preliminary safety and feasibility study. Cerebrovasc Dis 2005, 20:101–107.

    Article  PubMed  Google Scholar 

  28. Sprigg N, Bath PM, Zhao L, et al.: Granulocyte-colonystimulating factor mobilizes bone marrow stem cells in patients with subacute ischemic stroke: the Stem cell Trial of recovery EnhanceMent after Stroke (STEMS) pilot randomized, controlled trial (ISRCTN 16784092). Stroke 2006, 37:2979–2983.

    Article  CAS  PubMed  Google Scholar 

  29. Liu YP, Seckin H, Izci Y, et al.: Neuroprotective effects of mesenchymal stem cells derived from human embryonic stem cells in transient focal cerebral ischemia in rats. J Cereb Blood Flow Metab 2009, 29:780–791.

    Article  PubMed  Google Scholar 

  30. Shyu WC, Lin SZ, Chiang MF, et al.: Intracerebral peripheral blood stem cell (CD34+) implantation induces neuroplasticity by enhancing beta1 integrin-mediated angiogenesis in chronic stroke rats. J Neurosci 2006, 26:3444–3453.

    Article  CAS  PubMed  Google Scholar 

  31. Hicks AU, Hewlett K, Windle V, et al.: Enriched environment enhances transplanted subventricular zone stem cell migration and functional recovery after stroke. Neuroscience 2007, 146:31–40.

    Article  CAS  PubMed  Google Scholar 

  32. Walker-Batson D, Curtis S, Natarajan R, et al.: A doubleblind, placebo-controlled study of the use of amphetamine in the treatment of aphasia [editorial comment]. Stroke 2001, 32:2093–2098.

    Article  CAS  PubMed  Google Scholar 

  33. Whiting E, Chenery HJ, Chalk J, et al.: Dexamphetamine boosts naming treatment effects in chronic aphasia. J Int Neuropsychol Soc 2007, 13:972–979.

    Article  CAS  PubMed  Google Scholar 

  34. Darley F, Keith R, Sasanuma S: The effect of alerting and tranquilizing drugs upon the performance of aphasic patients. Clin Aphasiol 1977, 7:91–96.

    Google Scholar 

  35. McNeil MR, Doyle PJ, Spencer KA, et al.: A double-blind, placebo-controlled study of pharmacological and behavioral treatment of lexical-semantic deficits in aphasia. Aphasiology 1997, 11:358–400.

    Article  Google Scholar 

  36. Breitenstein C, Wailke S, Bushuven S, et al.: D-amphetamine boosts language learning independent of its cardiovascular and motor arousing effects. Neuropsychopharmacology 2004, 29:1704–1714.

    Article  CAS  PubMed  Google Scholar 

  37. Uftring S, Wachtel S, Chu D, et al.: An fMRI study of the effect of amphetamine on brain activity. Neuropsychopharmacology 2001, 25:925–935.

    Article  CAS  PubMed  Google Scholar 

  38. Sommer I, Oranje B, Ramsey N, et al.: The influence of amphetamine on language activation: an fMRI study. Psychopharmacology 2006, 183:387–393.

    Article  CAS  PubMed  Google Scholar 

  39. Gladstone DJ, Danells CJ, Armesto A, et al.: Physiotherapy coupled with dextroamphetamine for rehabilitation after hemiparetic stroke: a randomized, double-blind, placebo-controlled trial. Stroke 2006, 37:179–185.

    Article  PubMed  Google Scholar 

  40. Platz T, Kim IH, Engel U, et al.: Amphetamine fails to facilitate motor performance and to enhance motor recovery among stroke patients with mild arm paresis: interim analysis and termination of a double blind, randomised, placebo-controlled trial. Restor Neurol Neurosci 2005, 23:271–280.

    CAS  PubMed  Google Scholar 

  41. Beversdorf DQ, Sharma UK, Phillips NN, et al.: Effect of propranolol on naming in chronic Broca’s aphasia with anomia. Neurocase 2007, 13:256–259.

    Article  PubMed  Google Scholar 

  42. Bragoni M, Altieri M, Di Piero V, et al.: Bromocriptine and speech therapy in non-fluent chronic aphasia after stroke. Neurol Sci 2000, 21:19–22.

    Article  CAS  PubMed  Google Scholar 

  43. Seniów J, Litwin M, Litwin T, et al.: New approach to the rehabilitation of post-stroke focal cognitive syndrome: effect of levodopa combined with speech and language therapy on functional recovery from aphasia. J Neurol Sci 2009, 283:214–218.

    Article  PubMed  Google Scholar 

  44. Ashtary F, Janghorbani M, Chitsaz A, et al.: A randomized, double-blind trial of bromocriptine efficacy in nonfluent aphasia after stroke. Neurology 2006, 66:914–916.

    Article  CAS  PubMed  Google Scholar 

  45. Sabe L, Salvarezza F, García Cuerva A, et al.: A randomized, double-blind, placebo-controlled study of bromocriptine in nonfluent aphasia. Neurology 1995, 45:2272–2274.

    CAS  PubMed  Google Scholar 

  46. Gupta S, Mlcoch A, Scolaro C, et al.: Bromocriptine treatment of nonfluent aphasia. Neurology 1995, 45:2170–2173.

    CAS  PubMed  Google Scholar 

  47. Rösser N, Heuschmann P, Wersching H, et al.: Levodopa improves procedural motor learning in chronic stroke patients. Arch Phys Med Rehabil 2008, 89:1633–1641.

    Article  PubMed  Google Scholar 

  48. Scheidtmann K, Fries W, Muller F, Koenig E: Effect of levodopa in combination with physiotherapy on functional motor recovery after stroke: a prospective, randomised, double-blind study. Lancet 2001, 358:787–790.

    Article  CAS  PubMed  Google Scholar 

  49. Berthier ML, Green C, Higueras C, et al.: A randomized, placebo-controlled study of donepezil in poststroke aphasia. Neurology 2006, 67:1687–1689.

    Article  CAS  PubMed  Google Scholar 

  50. Müller W, Eckert G, Eckert A: Piracetam: novelty in a unique mode of action. Pharmacopsychiatry 1999, 32:2–9.

    Article  PubMed  Google Scholar 

  51. Enderby P, Broeckx J, Hospers W, et al.: Effect of piracetam on recovery and rehabilitation after stroke: a double-blind, placebo-controlled study. Clin Neuropharmacol 1994, 17:320–331.

    Article  CAS  PubMed  Google Scholar 

  52. Huber W, Willmes K, Poeck K, et al.: Piracetam as an adjuvant to language therapy for aphasia: a randomized double-blind placebo-controlled pilot study. Arch Phys Med Rehabil 1997, 78:245–250.

    Article  CAS  PubMed  Google Scholar 

  53. Kessler J, Thiel A, Karbe H, et al.: Piracetam improves activated blood flow and facilitates rehabilitation of poststroke aphasic patients. Stroke 2000, 31:2112–2116.

    CAS  PubMed  Google Scholar 

  54. Berthier M, Green C, Lara J, et al.: Memantine and constraint-induced aphasia therapy in chronic poststroke aphasia. Ann Neurol 2009, 65:577–585.

    Article  CAS  PubMed  Google Scholar 

  55. Pulvermüller F, Neininger B, Elbert T, et al.: Constraintinduced therapy of chronic aphasia after stroke. Stroke 2001, 32:1621–1626.

    PubMed  Google Scholar 

  56. Donaldson Z, Young L: Oxytocin, vasopressin, and the neurogenetics of sociality. Science 2008, 322:900–904.

    Article  CAS  PubMed  Google Scholar 

  57. Tsikunov SG, Belokoskova SG: Psychophysiological analysis of the influence of vasopressin on speech in patients with post-stroke aphasias. Span J Psychol 2007, 10:178–188.

    PubMed  Google Scholar 

  58. Devlin JT, Watkins KE: Stimulating language: insights from TMS. Brain 2007, 130:610–622.

    Article  PubMed  Google Scholar 

  59. Cotelli M, Manenti R, Cappa SF, et al.: Transcranial magnetic stimulation improves naming in Alzheimer disease patients at different stages of cognitive decline. Eur J Neurol 2008, 15:1286–1292.

    Article  CAS  PubMed  Google Scholar 

  60. Naeser MA, Martin PI, Nicholas M, et al.: Improved picture naming in chronic aphasia after TMS to part of right Broca’s area: an open-protocol study. Brain Lang 2005, 93:95–105.

    Article  PubMed  Google Scholar 

  61. Floel A, Rosser N, Michka O, et al.: Noninvasive brain stimulation improves language learning. J Cogn Neurosci 2008, 20:1415–1422.

    Article  PubMed  Google Scholar 

  62. Hesse S, Werner C, Schonhardt EM, et al.: Combined transcranial direct current stimulation and robot-assisted arm training in subacute stroke patients: a pilot study. Restor Neurol Neurosci 2007, 25:9–15.

    CAS  PubMed  Google Scholar 

  63. Gil R, Neau JP: Rapid aggravation of aphasia by vigabatrin. J Neurol 1995, 242:251–252.

    Article  CAS  PubMed  Google Scholar 

  64. Kennedy G, Lhatoo S: CNS adverse events associated with antiepileptic drugs. CNS Drugs 2008, 22:739–760.

    Article  CAS  PubMed  Google Scholar 

  65. Mula M, Trimble MR, Thrompson P, et al.: Topiramate and word-finding difficulties in patients with epilepsy. Neurology 2003, 60:1104–1107.

    PubMed  Google Scholar 

  66. Starkstein SE, Robinson RG: Affective disorders and cerebral vascular disease. Br J Psychiatry 1989, 154:170–182.

    Article  CAS  PubMed  Google Scholar 

  67. van de Weg F, Kuik D, Lankhorst G: Post-stroke depression and functional outcome: a cohort study investigating the influence of depression on functional recovery from stroke. Clin Rehabil 1999, 13:268–272.

    Article  PubMed  Google Scholar 

  68. Robinson RG: The Clinical Neuropsychiatry of Stroke: Cognitive, Behavioral and Emotional Disorders Following Vascular Brain Injury. Cambridge, UK: Cambridge University Press; 1998.

    Google Scholar 

  69. Task Force on DSM-IV: Diagnostic and Statistical Manual of Mental Disorders: Fourth Edition (Text Revision). Washington, DC: American Psychiatric Association; 1994:943.

  70. Laska AC, Märtensson B, Kahan T, et al.: Recognition of depression in aphasic stroke patients. Cerebrovasc Dis 2007, 24:74–79.

    Article  CAS  PubMed  Google Scholar 

  71. Hilari K, Byng S: Health-related quality of life in people with severe aphasia. Int J Lang Commun Disord 2009, 44:193–205.

    Article  PubMed  Google Scholar 

  72. Lipsey JR, Robinson RG, Pearlson GD, et al.: Nortriptyline treatment of post-stroke depression: a double-blind study. Lancet 1984, 1:297–300.

    Article  CAS  PubMed  Google Scholar 

  73. Andersen G, Vestergaard K, Lauritzen L: Effective treatment of poststroke depression with the selective serotonin reuptake inhibitor citalopram. Stroke 1994, 25:1099–1104.

    CAS  PubMed  Google Scholar 

  74. Rampello L, Chiechio S, Nicoletti G, et al.: Prediction of the response to citalopram and reboxetine in post-stroke depressed patients. Psychopharmacology (Berl) 2004, 173:73–78.

    Article  CAS  Google Scholar 

  75. Robinson RG, Jorge RE, Moser DJ, et al.: Escitalopram and problem-solving therapy for prevention of poststroke depression: a randomized controlled trial. JAMA 2008, 299:2391–2400.

    Article  CAS  PubMed  Google Scholar 

  76. Nadeau S, Wu S: CIMT as a behavioral engine in research on physiological adjuvants to neurorehabilitation: the challenge of merging animal and human research. Neurorehabilitation 2006, 21:107–130.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven L. Small.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Small, S.L., Llano, D.A. Biological approaches to aphasia treatment. Curr Neurol Neurosci Rep 9, 443–450 (2009). https://doi.org/10.1007/s11910-009-0066-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11910-009-0066-x

Keywords

Navigation