Skip to main content
Log in

Limb-girdle muscular dystrophy

  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

The limb-girdle muscular dystrophies (LGMDs) are a group of muscular dystrophies that share a similar clinical phenotype. Despite this clinical homogeneity, at least 15 different genetic forms of LGMD are now known. Some of these share pathogenetic mechanisms with other forms of muscular dystrophy, such as the sarcoglycanopathies (LGMD 2C-F) and the dystrophinopathies (Duchenne and Becker muscular dystrophy). Some are allelic with other forms of muscular dystrophy; LGMD 1B is allelic with autosomal dominant Emery-Dreifuss muscular dystrophy. Still others introduce totally unique pathogenetic mechanisms to the study of muscular dystrophy. For example, LGMD 2H appears to be due to mutations affecting the ubiquitin-proteasome pathway. A diagnostic approach is outlined based on clinical features, genetics, and commercially available testing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Arikawa E, Hoffman EP, Kaido M, et al.: The frequency of patients with dystrophin abnormalities in a limb-girdle patient population. Neurology 1991, 41:1491–1496.

    PubMed  CAS  Google Scholar 

  2. Wickland MP, Moore SA, Campbell KP, Mathews K, Wall C, Shilling C, King N, King W, Serrano C, Kissel JT, Fenichel GM, et al.: Molecular and clinical characterization of individuals with limb-girdle muscular dystrophy. American Academy of Neurology Meeting, Philadelphia; 2001.

  3. Fanin M, Pegoraro E, Matsuda-Asada C, Brown RH Jr, Angelini C: Calpain-3 and dysferlin protein screening in patients with limb-girdle dystrophy and myopathy. Neurology 2001, 56:660–665.

    PubMed  CAS  Google Scholar 

  4. Mendell JR, Buzin CH, Feng J, et al.: Diagnosis of Duchenne dystrophy by enhanced detection of small mutations. Neurology 2001, 57:645–650.

    PubMed  CAS  Google Scholar 

  5. Hauser MA, Horrigan SK, Salmikangas P, et al.: Myotilin is mutated in limb girdle muscular dystrophy 1A. Hum Mol Genet 2000, 9:2141–2147.

    Article  PubMed  CAS  Google Scholar 

  6. Sakaki M, Koike H, Takahashi N, et al.: Interaction between emerin and nuclear lamins. J Biochem (Tokyo). 2001, 129:321–327.

    CAS  Google Scholar 

  7. Kitaguchi T, Matsubara S, Sato M, et al.: A missense mutation in the exon 8 of lamin A/C gene in a Japanese case of autosomal dominant limb-girdle muscular dystrophy and cardiac conduction block. Neuromusc Disord 2001, 11:542–546.

    Article  PubMed  CAS  Google Scholar 

  8. Muchir A, Bonne G, van der Kooi AJ, et al.: Identification of mutations in the gene encoding lamins A/C in autosomal dominant limb girdle muscular dystrophy with atrioventricular conduction disturbances (LGMD1B). Hum Mol Genet 2000, 9:1453–1459. This paper reports the identification of mutations in the lamin A/C gene, previously reported to cause autosomal dominant Emery-Dreifuss muscular dystrophy, in patients with limb-girdle muscular dystrophy (LGMD). This introduced abnormalities of nuclear envelope proteins to the spectrum of LGMD etiologies.

    Article  PubMed  CAS  Google Scholar 

  9. Galbiati F, Razani B, Lisanti MP: Caveolae and caveolin-3 in muscular dystrophy. Trends Mol Med 2001, 7:435–441.

    Article  PubMed  CAS  Google Scholar 

  10. McNally EM, de Sa Moreira E, Duggan DJ, et al.: Caveolin-3 in muscular dystrophy. Hum Mol Genet 1998, 7:871–877.

    Article  PubMed  CAS  Google Scholar 

  11. Herrmann R, Straub V, Blank M, et al.: Dissociation of the dystroglycan complex in caveolin-3-deficient limb girdle muscular dystrophy. Hum Mol Genet 2000, 9:2335–2240.

    PubMed  CAS  Google Scholar 

  12. Betz RC, Schoser BG, Kasper D, et al.: Mutations in CAV3 cause mechanical hyperirritability of skeletal muscle in rippling muscle disease. Nat Genet 2001, 28:218–219.

    Article  PubMed  CAS  Google Scholar 

  13. Baghdiguian S, Richard I, Martin M, et al.: Pathophysiology of limb girdle muscular dystrophy type 2A: hypothesis and new insights into the IkappaBalpha/NF-kappaB survival pathway in skeletal muscle. J Mol Med 2001, 79:254–261. The authors review the data that support the hypothesis that calpain-3 is involved in an antiapoptotic pathway, and that mutations in calpain-3 lead to apoptosis and impaired membrane repair. This introduces a new potential pathogenetic mechanism for limb-girdle muscular dystrophy. The authors suggest that this pathway may also be involved in inflammatory myopathies. This work may also suggest new therapeutic approaches.

    Article  PubMed  CAS  Google Scholar 

  14. Fardeau M, Hillaire D, Mignard C, et al.: Juvenile limb-girdle muscular dystrophy. Clinical, histopathological and genetic data from a small community living in the Reunion Island. Brain 1996, 119(Pt 1):295–308.

    Google Scholar 

  15. Richard I, Roudaut C, Saenz A, et al.: Calpainopathy—a survey of mutations and polymorphisms. Am J Hum Genet 1999, 64:1524–1540.

    Article  PubMed  CAS  Google Scholar 

  16. Talim B, Ognibene A, Mattioli E, et al.: Normal calpain expression in genetically confirmed limb-girdle muscular dystrophy type 2A. Neurology 2001, 56:692–693.

    PubMed  CAS  Google Scholar 

  17. Liu J, Aoki M, Illa I, et al.: Dysferlin, a novel skeletal muscle gene, is mutated in Miyoshi myopathy and limb girdle muscular dystrophy. Nat Genet 1998, 20:31–36.

    Article  PubMed  CAS  Google Scholar 

  18. Matsuda C, Aoki M, Hayashi YK, et al.: Dysferlin is a surface membrane-associated protein that is absent in Miyoshi myopathy. Neurology 1999, 53:1119–1122.

    PubMed  CAS  Google Scholar 

  19. Bashir R, Britton S, Strachan T, et al.: A gene related to Caenorhabditis elegans spermatogenesis factor fer-1 is mutated in limb-girdle muscular dystrophy type 2B. Nat Genet 1998, 20:37–42.

    Article  PubMed  CAS  Google Scholar 

  20. Bejaoui K, Hirabayashi K, Hentati F, et al.: Linkage of Miyoshi myopathy (distal autosomal recessive muscular dystrophy) locus to chromosome 2p12-14. Neurology 1995, 45:768–772.

    PubMed  CAS  Google Scholar 

  21. Illa I, Serrano-Munuera C, Gallardo E, et al.: Distal anterior compartment myopathy: a dysferlin mutation causing a new muscular dystrophy phenotype. Ann Neurol 2001, 49:130–134.

    Article  PubMed  CAS  Google Scholar 

  22. Weiler T, Greenberg CR, Nylen E, et al.: Limb-girdle muscular dystrophy and Miyoshi myopathy in an aboriginal Canadian kindred map to LGMD2B and segregate with the same haplotype. Am J Hum Genet 1996, 59:872–878.

    PubMed  CAS  Google Scholar 

  23. Weiler T, Bashir R, Anderson LV, et al.: Identical mutation in patients with limb girdle muscular dystrophy type 2B or Miyoshi myopathy suggests a role for modifier gene(s). Hum Mol Genet 1999, 8:871–877.

    Article  PubMed  CAS  Google Scholar 

  24. Illarioshkin SN, Ivanova-Smolenskaya IA, Greenberg CR, et al.: Identical dysferlin mutation in limb-girdle muscular dystrophy type 2B and distal myopathy. Neurology 2000, 55:1931–1933.

    PubMed  CAS  Google Scholar 

  25. Piccolo F, Moore SA, Ford GC, Campbell KP: Intracellular accumulation and reduced sarcolemmal expression of dysferlin in limb-girdle muscular dystrophies. Ann Neurol 2000, 48:902–912. The morphologic description of cytoplasmic accumulation of dysferlin in some forms of muscular dystrophy allowed the authors to hypothesize how dysferlin mutations lead to disease.

    Article  PubMed  CAS  Google Scholar 

  26. Matsuda C, Hayashi YK, Ogawa M, et al.: The sarcolemmal proteins dysferlin and caveolin-3 interact in skeletal muscle. Hum Mol Genet 2001, 10:1761–1766.

    Article  PubMed  CAS  Google Scholar 

  27. Selcen D, Stilling G, Engel AG: The earliest pathologic alterations in dysferlinopathy. Neurology 2001, 56:1472–1481.

    PubMed  CAS  Google Scholar 

  28. Vainzof M, Passos-Bueno MR, Canovas M, et al.: The sarcoglycan complex in the six autosomal recessive limb-girdle muscular dystrophies. Hum Mol Genet 1996, 5:1963–1969.

    Article  PubMed  CAS  Google Scholar 

  29. Hack AA, Lam MY, Cordier L, et al.: Differential requirement for individual sarcoglycans and dystrophin in the assembly and function of the dystrophin-glycoprotein complex. J Cell Sci 2000, 113(Pt 14):2535–2544.

    PubMed  CAS  Google Scholar 

  30. Politano L, Nigro V, Passamano L, et al.: Evaluation of cardiac and respiratory involvement in sarcoglycanopathies. Neuromusc Disord 2001, 11:178–185.

    Article  PubMed  CAS  Google Scholar 

  31. Gnecchi-Ruscone T, Taylor J, Mercuri E, et al.: Cardiomyopathy in duchenne, becker, and sarcoglycanopathies: a role for coronary dysfunction? Muscle Nerve 1999, 22:1549–1556.

    Article  PubMed  CAS  Google Scholar 

  32. Cohn RD, Durbeej M, Moore SA, et al.: Prevention of cardiomyopathy in mouse models lacking the smooth muscle sarcoglycan-sarcospan complex. J Clin Invest 2001, 107:R1-R7. The authors demonstrate coronary artery constrictions and associated areas of cardiac necrosis leading to fibrosis in mice deleted for either Β-or δ-sarcoglycan. The constrictions, necrosis, and cardiomyopathy were prevented by treatment with verapamil. This paper presents a potentially treatable component to the cardiomyopathy associated with some forms of sarcoglycanopathy.

    Article  PubMed  CAS  Google Scholar 

  33. Moreira ES, Vainzof M, Marie SK, et al.: The seventh form of autosomal recessive limb-girdle muscular dystrophy is mapped to 17q11-12. Am J Hum Genet 1997, 61:151–159.

    Article  PubMed  CAS  Google Scholar 

  34. Moreira ES, Wiltshire TJ, Faulkner G, et al.: Limb-girdle muscular dystrophy type 2G is caused by mutations in the gene encoding the sarcomeric protein telethonin. Nat Genet 2000, 24:163–166.

    Article  PubMed  CAS  Google Scholar 

  35. Frosk P, Weiler T, Nylen E, et al.: Limb-girdle muscular dystrophy type 2H associated with mutation in TRIM32, a putative E3-ubiquitin-ligase gene. Am J Hum Genet 2002, 70:663–672. The limb-girdle muscular dystrophy 2H gene, TRIM32, is introduced in this paper. The authors suggest that TRIM32 is involved in the ubiquitin-proteasome pathway, and that muscular dystrophy is caused by the abnormal accumulation of a protein that is normally targeted for degredation.

    Article  PubMed  CAS  Google Scholar 

  36. Weiler T, Greenberg CR, Zelinski T, et al.: A gene for autosomal recessive limb-girdle muscular dystrophy in Manitoba Hutterites maps to chromosome region 9q31-q33: evidence for another limb-girdle muscular dystrophy locus. Am J Hum Genet 1998, 63:140–147.

    Article  PubMed  CAS  Google Scholar 

  37. Michele DE, Barresi R, Kanagawa M, et al.: Post-translational disruption of dystroglycan-ligand interactions in congenital muscular dystrophies. Nature 2002, 418:417–422. This study provides biochemical evidence that the hypoglycosylation of α-dystroglycan and concomitant loss of laminin binding activity underlies the pathogenesis of muscular dystrophies caused by mutations in glycosyltransferase genes.

    Article  PubMed  CAS  Google Scholar 

  38. Brockington M, Blake DJ, Prandini P, et al.: Mutations in the fukutin-related protein gene (FKRP) cause a form of congenital muscular dystrophy with secondary laminin alpha2 deficiency and abnormal glycosylation of alpha-dystroglycan. Am J Hum Genet 2001, 69:1198–1209.

    Article  PubMed  CAS  Google Scholar 

  39. Brockington M, Yuva Y, Prandini P, et al.: Mutations in the fukutin-related protein gene (FKRP) identify limb girdle muscular dystrophy 2I as a milder allelic variant of congenital muscular dystrophy MDC1C. Hum Mol Genet 2001, 10:2851–2859. This group recently showed that one form of congenital muscular dystrophy is caused by abnormal glycosylation of a dystroglycan through mutations in the FKRP gene. In this paper, they expand the spectrum of clinical phenotypes resulting from FKRP mutations to include patients with early-or late-onset limb-girdle muscular dystrophy. Glycosylation defects may be an important new mechanism in the muscular dystrophies.

    Article  PubMed  CAS  Google Scholar 

  40. Haravouri H, Vihola A, Straub V, et al.: Secondary calpain3 deficiency in 2q-linked muscular dystrophy. Titin is the candidate gene. Neurology 2001, 56:869–877.

    Google Scholar 

  41. Hackman P, Vihola A, Haravouri H, et al.:Tibial muscular dystrophy is a titinopathy caused by mutations in TTN, the gene encoding the giant skeletal-muscle protein titin. Am J Hum Genet 2002,71:492–500.

    Article  PubMed  CAS  Google Scholar 

  42. Gerull B, Gramlich M, Atherton J, et al.:Mutations of TTN, encoding the giant muscle filament titin, cause familial dilated cardiomyopathy. Nat Genet 2002, 30:201–204.

    Article  PubMed  CAS  Google Scholar 

  43. Jones KJ, Morgan G, Johnston H, et al.: The expanding phenotype of laminin alpha2 chain (merosin) abnormalities: case series and review. J Med Genet 2001, 38:649–657.

    Article  PubMed  CAS  Google Scholar 

  44. Mohire M, Tandan R, Fries T, et al.: Early-onset benign autosomal dominant limb-girdle myopathy with contractures (Bethlem myopathy). Neurology 1988, 38:573–580.

    PubMed  CAS  Google Scholar 

  45. Higuchi I, Shiraishi T, Hashiguchi T, et al.: Frameshift mutation in the collagen VI gene causes Ullrich’s disease. Ann Neurol 2001, 50:261–265.

    Article  PubMed  CAS  Google Scholar 

  46. Jobsis GJ, Keizers H, Vreijling JP, et al.: Type VI collagen mutations in Bethlem myopathy, an autosomal dominant myopathy with contractures. Nat Genet 1996, 14:113–115.

    Article  PubMed  CAS  Google Scholar 

  47. Camacho Vanegas O, Bertini E, Zhang RZ, et al.: Ullrich scleroatonic muscular dystrophy is caused by recessive mutations in collagen type VI. Proc Natl Acad Sci U S A 2001, 98:7516–7521.

    Article  PubMed  CAS  Google Scholar 

  48. Ho M, Gallardo E, McKenna-Yasek D, et al.: A novel, bloodbased diagnostic assay for limb girdle muscular dystrophy 2B and miyoshi myopathy. Ann Neurol 2002, 51:129–133.

    Article  PubMed  Google Scholar 

  49. Mora M, Cartegni L, Di Blasi C, et al.: X-linked Emery-Dreifuss muscular dystrophy can be diagnosed from skin biopsy or blood sample. Ann Neurol 1997, 42:249–253.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mathews, K.D., Moore, S.A. Limb-girdle muscular dystrophy. Curr Neurol Neurosci Rep 3, 78–85 (2003). https://doi.org/10.1007/s11910-003-0042-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11910-003-0042-9

Keywords

Navigation