Skip to main content

Advertisement

Log in

Clinical applications of new cerebrospinal fluid analytic techniques for the diagnosis and treatment of central nervous system infections

  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Advances in molecular biology and immunology provide new, highly sensitive and specific techniques that can be applied to analysis of cerebrospinal fluid to enhance the diagnosis and treatment of central nervous system (CNS) infections. In addition to improved accuracy and speed of diagnosis, these modalities may offer improved means of monitoring treatment efficacy, establishing prognosis, detecting organism resistance, and tracking epidemic sources. This brief review discusses a number of recent papers applying these methods, in order to illustrate their value and significance for clinical neurologic practice. Some of these applications are commonly available, whereas others are likely to enter the physician’s armamentarium in the near future. As they do, they can be expected to improve the treatment of CNS infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References and Recommended Reading

  1. DeBiasi RL, Tyler KL: Polymerase chain reaction in the diagnosis and management of central nervous system infections. Arch Neurol 1999, 56:1215–1219.

    Article  PubMed  CAS  Google Scholar 

  2. Louie M, Louie L, Simor AE: The role of DNA amplification technology in the diagnosis of infectious diseases. Can Med Assoc J 2000, 163:301–309.

    CAS  Google Scholar 

  3. Storch GA: Diagnostic virology. Clin Infect Dis 2000, 31:739–751. Concise review of current methods used to diagnose viral infections, including cerebrospinal fluid analysis.

    Article  PubMed  CAS  Google Scholar 

  4. Dunbar SA, Eason RA, Musher DM, Clarridge JE III: Microscopic examination and broth culture of cerebrospinal fluid in the diagnosis of meningitis. J Clin Microbiol 1998, 36:1617–1620.

    PubMed  CAS  Google Scholar 

  5. Backman A, Lantz PG, Radstrom P, Olcen P: Evaluation of an extended diagnostic PCR assay for detection and verification of the common causes of bacterial meningitis in CSF and other biological samples. Mol Cell Probes 1999, 13:49–60.

    Article  PubMed  CAS  Google Scholar 

  6. Stuertz K, Merx I, Eiffert H, et al.: Enzyme immunoassay detecting teichoic and lipoteichoic acids versus cerebrospinal fluid culture and latex agglutination for diagnosis of Streptococcus pneumoniae meningitis. J Clin Microbiol 1998, 36:2346–2348.

    PubMed  CAS  Google Scholar 

  7. Schneider O, Michel U, Zysk G, et al.: Clinical outcome in pneumococcal meningitis correlates with CSF lipoteichoic acid concentrations. Neurology 1999, 52:1584–1587.

    Google Scholar 

  8. du Plessis M, Smith AM, Klugman KP: Rapid detection of penicillin-resistant streptococcus pneumoniae in cerebrospinal fluid by a seminested PCR strategy. J Clin Microbiol 1998, 36:453–457.

    PubMed  Google Scholar 

  9. Porritt RJ, Mercer JL, Munro R: Detection and serogroup determination of neisseria meningitides in CSF by polymerase chain reaction (PCR). Pathology 2000, 32:42–45.

    Article  PubMed  CAS  Google Scholar 

  10. Sumi MG, Mathai A, Sarada C, Radhakrishnan VV: Rapid diagnosis of tuberculous meningitis by a dot immunobinding assay to detect mycobacterial antigen in cerebrospinal fluid specimens. J Clin Microbiol 1999, 37:3925–3927.

    PubMed  CAS  Google Scholar 

  11. Bonington A, Strang JI, Klapper PE, et al.: Use of Roche amplicor mycobacterium tuberculosis PCR in early diagnosis of tuberculous meningitis. J Clin Microbiol 1998, 36:1251–1254.

    PubMed  CAS  Google Scholar 

  12. Baran J Jr, Riederer KM, Khatib R: Limits of detection of mycobacterium tuberculosis in spiked cerebrospinal fluid using the polymerase chain reaction in tuberculous meningitis. Eur J Microbiol Infect Dis 2000, 19:47–50.

    Article  CAS  Google Scholar 

  13. Caws M, Wilson SM, Clough C, Drobniewski F: Role of IS6110-targeted PCR, culture, biochemical, clinical, and immunological criteria for diagnosis of tuberculous meningitis. J Clin Microbiol 2000, 38:3150–3155.

    PubMed  CAS  Google Scholar 

  14. Garcia-Monco JC, Benach JL: Lyme neuroborreliosis. Ann Neurol 1995, 37:691–702.

    Article  PubMed  CAS  Google Scholar 

  15. Nocton JJ, Bloom BJ, Rutledge BJ, et al.: Detection of Borrelia burgdorferi DNA by polymerase chain reaction in cerebrospinal fluid in Lyme neuroborreliosis. J Infect Dis 1996, 174:623–627.

    PubMed  CAS  Google Scholar 

  16. Rappelli P, Are R, Casu G, et al.: Development of a nested PCR for detection of Cryptococcus neoformans in cerebrospinal fluid. J Clin Microbiol 1998, 36:3438–3440.

    PubMed  CAS  Google Scholar 

  17. Robinson PA, Bauer M, Leal MA, et al.: Early mycological treatment failure in AIDS-associated Cryptococcal meningitis. Clin Infect Dis 1999, 28:82–92.

    PubMed  CAS  Google Scholar 

  18. Graybill JR, Sobel J, Saag M, et al.: Diagnosis and management of increased intracranial pressure in patients with AIDS and Cryptococcal meningitis. Clin Infect Dis 2000, 30:47–54.

    Article  PubMed  CAS  Google Scholar 

  19. van Vliet KE, Glimaker M, Lebon P, et al.: Multicenter evaluation of the amplicor enterovirus PCR test with cerebrospinal fluid from patients with aseptic meningitis. J Clin Microbiol 1998, 36:2652–2657.

    PubMed  Google Scholar 

  20. Hadziyannis E, Cornish N, Starkey C, et al.: Amplicor enterovirus polymerase chain reaction in patients with aseptic meningitis. Arch Pathol Lab Med 1999, 123:882–884.

    PubMed  CAS  Google Scholar 

  21. Spicher VM, Berclaz PY, Cheseaux JJ, et al.: Detection of enteroviruses in the cerebrospinal fluid by polymerase chain reaction: prospective study of impact on the management of hospitalized children. Clin Pediatr 2000, 39:203–208.

    CAS  Google Scholar 

  22. Ramers C, Billman G, Hartin M, et al.: Impact of a diagnostic cerebrospinal fluid enterovirus polymerase chain reaction test on patient management. JAMA 2000, 283:2680–2685. Retrospective analysis of a 1-year experience in a pediatric hospital demonstrates economic utility of specific diagnostic testing, despite benign natural history of the disease and absence of specific therapy.

    Article  PubMed  CAS  Google Scholar 

  23. Nigrovic LE, Chiang VW: Cost analysis of enteroviral polymerase chain reaction in infants with fever and cerebrospinal fluid pleocytosis. Arch Pediatr Adolesc Med 2000, 154:817–821. Decision-analysis modeling of management strategy using cerebrospinal fluid polymerase chain reaction analysis, which demonstrates economic benefits in infants with enteroviral meningitis.

    PubMed  CAS  Google Scholar 

  24. Tebas P, Nease RF, Storch GA: Use of the polymerase chain reaction in the diagnosis of Herpes simplex encephalitis: a decision analysis model. Am J Med 1998, 105:287–295. Decision-analysis modeling of utility of polymerase chain reaction-based approach demonstrates better outcomes and cost savings compared with empiric acyclovir therapy.

    Article  PubMed  CAS  Google Scholar 

  25. Tang YW, Rys PN, Rutledge BJ, et al.: Comparitive evaluation of colorimetric microtiter plate systems for detection of Herpes simplex virus in cerebrospinal fluid. J Clin Microbiol 1998, 36:2714–2717.

    PubMed  CAS  Google Scholar 

  26. Schalasta G, Arents A, Schmid M, et al.: Fast and type-specific analysis of Herpes simplex virus types 1 and 2 by rapid PCR and fluorescence melting-curve-analysis. Infection 2000, 28:85–91.

    Article  PubMed  CAS  Google Scholar 

  27. Kessler HH, Muhlbauer G, Rinner B, et al.: Detection of Herpes simplex virus DNA by real-time PCR. J Clin Microbiol 2000, 38:2638–2642.

    PubMed  CAS  Google Scholar 

  28. Domingues RB, Lakeman FD, Mayo MS, Whitley RJ: Application of competitive PCR to cerebrospinal fluid samples from patients with herpes simplex encephalitis. J Clin Microbiol 1998, 36:2229–2234.

    PubMed  CAS  Google Scholar 

  29. Najioullah F, Bosshard S, Thouvenot D, et al.: Diagnosis and surveillance of Herpes simplex virus infection of the central nervous system. J Med Virol 2000, 61:468–473.

    Article  PubMed  CAS  Google Scholar 

  30. Fodor PA, Levin MJ, Weinberg A, et al.: Atypical herpes simplex virus diagnosed by PCR amplificaiton of viral DNA from CSF. Neurology 1998, 51:554–559.

    PubMed  CAS  Google Scholar 

  31. Sauerbrei A, Eichhorn U, Hottenrott G, Wutzler P: Virological diagnosis of herpes simplex encephalitis. J Clin Virol 2000, 17:31–36.

    Article  PubMed  CAS  Google Scholar 

  32. Wildemann B, Haas J, Lynen N, et al.: Diagnosis of cytomegalovirus encephalitis in patients with AIDS by quantitation of cytomegalovirus genomes in cells of cerebrospinal fluid. Neurology 1998, 50:693–697.

    PubMed  CAS  Google Scholar 

  33. Zhang F, Tetali S, Wang XP, et al.: Detection of human cytomegalovirus pp67 late gene transcripts in cerebrospinal fluid of human immunodeficiency virus type 1-infected patients by nucleic acid sequence-based amplification. J Clin Microbiol 2000, 38:1920–1925. Study comparing cerebrospinal fluid polymerase chain reaction (PCR) test for glycoprotein B DNA with PCR for pp67 late gene transcript mRNA demonstrating improved correlation of the pp67 assay with active cytomegalovirus central nervous system infection.

    PubMed  CAS  Google Scholar 

  34. Yoshikawa T, Ihira M, Suzuki K, et al.: Invasion by human herpesvirus 6 and human herpesvirus 7 of the central nervous system in patients with neurological signs and symptoms. Arch Dis Child 2000, 83:170–171.

    Article  PubMed  CAS  Google Scholar 

  35. Quereda C, Corral I, Laguna F, et al.: Diagnostic utility of a multiplex herpesvirus PCR assay performed with cerebrospinal fluid from human immunodeficiency virus-infected patients with neurological disorders. J Clin Microbiol 2000, 38:3061–3067. Application of a multiplex polymerase chain reaction assay for the simultaneous evaluation of multiple herpes viruses in cerebrospinal fluid from AIDS patients with neurologic disease.

    PubMed  CAS  Google Scholar 

  36. Johnson G, Nelson S, Petric M, Tellier R: Comprehensive PCR-based assay for detection and species identification of human herpesviruses. J Clin Microbiol 2000, 38:3274–3279.

    PubMed  CAS  Google Scholar 

  37. Taoufik Y, Gasnault J, Karaterki AA, et al.: Prognostic value of JC virus load in cerebrospinal fluid of patients with progressive multifocal leukoencephalopathy J Infect Dis 1998, 178:1816–1820.

    Article  PubMed  CAS  Google Scholar 

  38. Yiannoutsos CT, Major EO, Curfman B, et al.: Relation of JC virus DNA in the cerebrospinal fluid to survival in acquired immunodeficiency syndrome patients with biopsy-proven progressive multifocal leukoencephalopathy. Ann Neurol 1999, 45:816–821.

    Article  PubMed  CAS  Google Scholar 

  39. Koralnik IJ, Boden D, Mai VX, et al.: JC virus DNA load in patients with and without progressive multifocal leukoencephalopathy. Neurology 1999, 52:253–260.

    Article  PubMed  CAS  Google Scholar 

  40. De Luca A, Giancola ML, Ammassari A, et al.: The effect of potent antiretroviral therapy and JC virus load in cerebrospinal fluid on clinical outcome of paitents with AIDSassociated progressive multifocal leukoencephalopathy. J Infect Dis 2000, 182:1077–1083.

    Article  PubMed  Google Scholar 

  41. Ellis RJ, Hsia K, Spector SA, et al.: Cerebrospinal fluid human immunodeficiency virus thpe 1 RNA levels ae elevated in neuroicognitively impaired individuals with acquired immunodeficiency syndrome. Ann Neurol 1997, 42:679–688.

    Article  PubMed  CAS  Google Scholar 

  42. McArthur JC, McClernon DR, Cronin MF, et al.: Relationship between human immunodeficiency virus-associated dementia and viral load in cerebrospinal fluid and brain. Ann Neurol 1997, 42:689–698.

    Article  PubMed  CAS  Google Scholar 

  43. Gisslen M, Svennerholm B, Norkrans G, et al.: Cerebrospinal fluid and plasma viral load in HIV-1-infected patients with various anti-retroviral treatment regimens. Scand J Infect Dis 2000, 32:365–369.

    Article  PubMed  CAS  Google Scholar 

  44. Venturi G, Catucci M, Romano L, et al.: Antiretroviral resistance mutations in human immunodeficiency virus type 1 reverse transcriptase and protease from paired cerebrospinal fluid and plasma samples. J Infect Dis 2000, 181:740–745.

    Article  PubMed  CAS  Google Scholar 

  45. Eggers C, Stuerenburg HJ, Schafft T, et al.: Rapid clearance of human immunodeficiency virus type 1 from ventricular cerebrospinal fluid during antiretroviral treatment. Ann Neurol 2000, 47:816–819.

    Article  PubMed  CAS  Google Scholar 

  46. Ellis RJ, Gamst AC, Capparelli E, et al.: Cerebrospinal fluid HIV RNA originates from both local CNS and systemic sources. Neurology 2000, 54:927–936. Demonstrates independent HIV dynamics in cerebrospinal fluid (CSF) compared with blood in relation to disease stage, suggesting central nervous system replication contributes to HIV load in CSF of patients with HIV-associated dementia.

    PubMed  CAS  Google Scholar 

  47. Zerr I, Bodemer M, Gefeller O, et al.: Detection of 14-3-3 protein in the cerebrospinal fluid supports the diagnosis of Creutzfeldt-Jakob disease. Ann Neurol 1998, 43:32–40.

    Article  PubMed  CAS  Google Scholar 

  48. Saiz A, Graus F, Dalmau J, et al.: Detection of 14-3-3 protein in the cerebrospinal fluid of patients with paraneoplastic neurological disorders. Ann Neurol 1999, 46:774–777.

    Article  CAS  Google Scholar 

  49. Lemstra AW, van Meegan MT, Vreyling JP, et al.: 14-3-3 testing in diagnosing Creutzfeldt-Jakob disease. Neurology 2000, 55:514–516.

    PubMed  CAS  Google Scholar 

  50. Kenney K, Brechtel C, Takahashi H, et al.: An enzyme-linked immunosorbent assay to quantify 14-3-3 proteins in the cerebrospinal fluid of suspected Creutzfeldt-Jakob disease patients. Ann Neurol 2000, 48:395–398.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cohen, B.A. Clinical applications of new cerebrospinal fluid analytic techniques for the diagnosis and treatment of central nervous system infections. Curr Neurol Neurosci Rep 1, 518–525 (2001). https://doi.org/10.1007/s11910-001-0056-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11910-001-0056-0

Keywords

Navigation