Skip to main content

Advertisement

Log in

Abstract

Recent major epidemiologic trends in bacterial meningitis include a dramatic decline in the incidence of Haemophilus influenzae meningitis since the introduction of the protein-conjugated H. influenzae vaccines, and a worldwide increase in infections with antibiotic-resistant strains of bacterial pathogens. Cases of meningitis caused by resistant strains require an alternative therapeutic strategy. Animal studies have identified inflammatory mediators, eg, chemokines, excitatory amino acids, and endothelins, which are involved in the pathophysiology of bacterial meningitis. There is increasing evidence that reactive oxygen species (ROS), reactive nitrogen species, peroxynitrite, and matrix metalloproteinases contribute to brain damage during bacterial meningitis. The cytotoxic effects of ROS and peroxynitrite include the initiation of lipid peroxidation and the induction of DNA single-strand breakage. Damaged DNA activates poly(ADP-ribose) polymerase (PARP). Recent experimental data suggest that lipid peroxidation and PARP activation play a role in the development of meningitis-associated intracranial complications and brain injury. Agents that interfere with the production of ROS and peroxynitrite, and interfere with lipid peroxidation and PARP activation, may represent novel, therapeutic strategies by which meningitisassociated brain damage can be limited, therefore improving the outcome of this serious disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Schuchat A, Robinson K, Wenger JD, et al.: Bacterial meningitis in the United States in 1995. Active Surveillance Team. N Engl J Med 1997, 337:970–976. The authors describe the epidemiologic features of bacterial meningitis 5 years after the H. influenzae type b conjugate vaccines were licensed for routine immunization of infants.

    Article  PubMed  CAS  Google Scholar 

  2. Phillips EJ, Simor AE: Bacterial meningitis in children and adults-changes in community-acquired disease may affect patient care. Postgrad Med 1998, 103:102.

    Article  PubMed  CAS  Google Scholar 

  3. Tomasz A: Antibiotic resistance in Streptococcus pneumoniae. Clin Infect Dis 1997, 24:S85-S88.

    PubMed  CAS  Google Scholar 

  4. Doit C, Bourrillon A, Bingen E: Childhood bacterial meningitis-bacterial epidemiology and antibiotic resistance. Presse Medicale 1998, 27:1177–1182.

    CAS  Google Scholar 

  5. Galimand M, Gerbaud G, Guibourdenche M, et al.: High-level chloramphenicol resistance in Neisseria meningitidis. N Engl J Med 1998, 339:868–874. This study investigates the mechanisms of chloramphenicol resistance in strains of N. meningitidis isolated from 11 patients in Vietnam and one patient in France.

    Article  PubMed  CAS  Google Scholar 

  6. Andersen J, Backer V, Voldsgrard P, et al.: Acute meningococcal meningitis: Analysis of features of the disease according to the age of 255 patients. J Infect 1997, 34:227–235.

    Article  PubMed  CAS  Google Scholar 

  7. Mylonakis E, Hohmann EL, Calderwoud SB: Central nervous system infection with Listeria monocytogenes. 33 years’ experience at a general hospital and review of 776 episodes from the literature. Medicine 1998, 77:313–336.

    Article  PubMed  CAS  Google Scholar 

  8. Padovan CS, Liebetrau M, Danek M, et al.: Polyradiculitis, perimyocarditis, and nephrotic syndrome: unusual manifestations of Listeria monocytogenes infection. Clin Infect Dis 1999, 28:152–153.

    Article  PubMed  CAS  Google Scholar 

  9. Sigurdardottir B, Bjornsson OM, Jonsdottir KE, et al.: Acute bacterial meningitis in adults: a 20-year overview. Arch Intern Med 1997, 157:425–430.

    Article  PubMed  CAS  Google Scholar 

  10. Dichgans M, Jäger L, Mayer T, et al.: Bacterial meningitis in Adults: Demonstration of inner ear involvement using HRMRI. Neurology 1999, 52:1003–1009.

    PubMed  CAS  Google Scholar 

  11. Mueller M, Merkelbach S, Hermes M, et al.: Relationship between short-term outcome and occurrence of cerebral artery stenosis in survivors of bacterial meningitis. J Neurol 1998, 245:87–92.

    Article  Google Scholar 

  12. Stover JF, Lowitzsch KH, Kempski OS: Cerebrospinal fluid of hypoxanthine, xanthine and uric acid levels may reflect glutamate-mediated excitotoxicity in different neurological diseases. Neurosci Lett 1997, 238:25–28.

    Article  PubMed  CAS  Google Scholar 

  13. Lewczuk P, Reiber H, Tumani H: Intercellular adhesion molecule-1 in cerebrospinal fluid — the evaluation of bloodderived and brain derived fractions in neurological diseases. J Neuroimmunol 1998, 87:156–161.

    Article  PubMed  CAS  Google Scholar 

  14. Hoijer MA, DeGrot R, van Lieshout L, et al.: Differences in N-acetylmuramyl-L-alanine amidase and lysozyme in serum and cerebrospinal fluid of patients with bacterial meningitis. J Infect Dis 1998, 177:102–106.

    Article  PubMed  CAS  Google Scholar 

  15. Gendrel D, Raymond J, Assicot M, et al.: Measurement of procalcitonine levels in children with bacterial or viral meningitis. Clin Infect Dis 1997, 24:1240–1242.

    Article  PubMed  CAS  Google Scholar 

  16. Stahel PF, Nadal D, Pfister HW, et al.: Complement C3 and factor B cerebrospinal fluid concentrations in bacterial and aseptic meningitis. Lancet 1997, 349:1886–1887.

    Article  PubMed  CAS  Google Scholar 

  17. Song H, Seishima M, Saito K, et al.: ApoA-I and apoE concentrations in cerebrospinal fluids of patients with acute meningitis. Ann Clin Biochem 1998, 35:408–414.

    PubMed  Google Scholar 

  18. Tumani H, Reiber H, Nau R, et al.: Beta-trace concentrations in cerebrospinal fluid is decreased in patients with bacterial meningitis. Neurosci Lett 1998, 242:5–8.

    Article  PubMed  CAS  Google Scholar 

  19. Baggiolini M: Chemokines and leukocyte traffic. Nature 1998, 392:565–568. An excellent, comprehensive review article on chemokines that have been identified as attractants of different types of blood leukocytes to sites of infection or inflammation.

    Article  PubMed  CAS  Google Scholar 

  20. Lahrtz F, Piali L, Spanaus KS, et al.: Chemokines and chemotaxis of leukocytes in infectious meningitis. J Neuroimmunol 1998, 85:33–43.

    Article  PubMed  CAS  Google Scholar 

  21. Spanaus KS, Nadal D, Pfister HW, et al.: C-X-C and C-C chemokines are expressed in the cerebrospinal fluid in bacterial meningitis and mediate chemotactic activity on peripheral blood-derived polymorphonuclear and mononuclear cells in vitro. J Immunol 1997, 158:1956–1964.

    PubMed  CAS  Google Scholar 

  22. Dallegri F, Ottonello L: Tissue injury in neutrophilic inflammation. Inflamm. Res 1997, 46:382–391.

    Article  PubMed  CAS  Google Scholar 

  23. Koedel U, Pfister H-W: Protective effect of the antioxidant N-acetyl-L-cysteine in pneumococcal meningitis in the rat. Neurosci Lett 1997, 225:33–36.

    Article  PubMed  CAS  Google Scholar 

  24. Leib SL, Kim YS, Black SM, et al.: Inducible nitric oxide synthase and the effect of aminoguanidine in experimental neonatal meningitis. J Infect Dis 1998, 177:692–700.

    Article  PubMed  CAS  Google Scholar 

  25. Paul R, Lorenzl S, Koedel U, et al.: Matrix metalloproteinases contribute to the blood-brain barrier disruption during bacterial meningitis. Ann Neurol 1998, 44:592–600. This paper describes the pathophysiologic role of MMPs in the development of blood-brain barrier abnormalities in bacterial meningitis.

    Article  PubMed  CAS  Google Scholar 

  26. Koedel U, Pfister HW: Oxidative stress in bacterial meningitis. Brain Pathol 1999, 9:57–67.

    Article  PubMed  CAS  Google Scholar 

  27. Paul R, Koedel U, Pfister HW: 7-Nitroindazole inhibits pial arteriolar vasodilation in a rat model of pneumococcal meningitis. J Cereb Blood Flow Metab 1997, 17:985–991.

    Article  PubMed  CAS  Google Scholar 

  28. Bille MB, Angstwurm K, Einhäupl KM, et al.: Pneumococcal meningitis in iNOS-deficient mice: a new model [abstractB5]. In 38th Interscience Conference on Antimicrobial Agents and Chemotherapy, San Diego; 1998.

  29. Tureen JH, Liu Q, Chow L: Mechanisms of peroxynitriteinduced brain pathophysiology in experimental meningitis [abstract B7] In 38th Interscience Conference on Antimicrobial Agents and Chemotherapy, San Diego; 1998.

  30. Szabo C: Role of poly(ADP-ribose)synthetase in inflammation. Eur J Pharmacol 1998, 350:1–19. This paper describes the pathophysiologic role of poly(ADP-ribose) synthetase in various forms of inflammation, including zymosan or endotoxin-induced multiple organ failure, arthritis, and allergic encephalomyelitis. Pharmacologic inhibition of PARP may be a promising novel approach for the experimental therapy of various forms of inflammation.

    Article  PubMed  CAS  Google Scholar 

  31. Szabo C, Virag L, Cuzzocrea S, et al.: Protection against peroxynitrite-induced fibroblast injury and arthritis development by inhibition of poly(ADP-ribose) synthase. Proc Natl Acad Sci U S A 1998, 95:3867–3872.

    Article  PubMed  CAS  Google Scholar 

  32. Koedel U, Paul R, Sporer B, Pfister H-W: Beneficial effects of — aminobenzamide (3-AB), an inhibitor of the DNA repair enzyme poly (ADP)ribose polymerase (PARP), in experimental pneumococcal meningitis [abstract]. Akt Neurologie 1998, 25:S99.

    Google Scholar 

  33. Koedel U, Gorriz C, Lorenzl S, Pfister H-W: Increased endothelin levels in the cerebrospinal fluid of adults with bacterial meningitis. Clin Infect Dis 1997, 25:329–330.

    Article  PubMed  CAS  Google Scholar 

  34. Koedel U, Lorenzl S, Gorriz C, et al.: Endothelin B receptormediated increase of cerebral blood flow in experimental pneumococcal meningitis. J Cereb Blood Flow Metab 1998, 18:67–74.

    Article  PubMed  CAS  Google Scholar 

  35. Pfister LA, Leib SL, Weinmann O, et al.: The endothelin receptor antagonist bosentan is neuroprotective in experimental pneumococcal meningitis idependent of an effect on nitric oxide production [abstract BB-32]. In 38th Interscience Conference on Antimicrobial Agents and Chemotherapy, San Diego; 1998.

  36. Yong VW, Krekoski CA, Forsyth PA, Bell R, Edwards DR: Matrix metalloproteinases and diseases of the CNS. Trends Neurosci 1998, 21:75–80. This excellent paper reviews the role of MMPs in the pathophysiology of several CNS diseases, including multiple sclerosis or malignant glioma. Synthetic MMP inhibitors might be valuable for treating some CNS diseases.

    Article  PubMed  CAS  Google Scholar 

  37. Leib SL, Leppert D, Clements J, Täuber MG: Matrix metallproteinase inhibition by GM6001 is neuroprotective in experimental pneumococcal meningitis [abstract B-34]. In 38th Interscience Conference on Antimicrobial Agents and Chemotherapy, San Diego; 1998.

  38. Kolb SA, Lahrtz F, Paul R, et al.: Matrix metalloproteinases and tissue inhibitors of metalloproteinases in viral meningitis: upregulation of MMP-9 and TIMP-1 in cerebrospinal fluid. J Neuroimmunol 1998, 84:143–150.

    Article  PubMed  CAS  Google Scholar 

  39. Sporer B, Paul R, Grimm R, et al.: Presence of matrix metalloproteinase-9 activity in the cerebrospinal fluid of human immunodeficiency virus-infected patients. J Infect Dis 1998, 178:854–857.

    Article  PubMed  CAS  Google Scholar 

  40. Quagliarello VJ, Scheld WM: Treatment of bacterial meningitis. N Engl J Med 1997, 336:708–716. This is a comprehensive review article on the general management of patients with suspected bacterial meningitis and recommendations for antibiotic therapy for bacterial meningitis as well as adjunctive therapeutic approaches.

    Article  PubMed  CAS  Google Scholar 

  41. McIntyre PB, Berkey CS, King SM, et al.: Dexamethasone as adjunctive therapy in bacterial meningitis. A meta-analysis of randomized clinical trials since 1988. JAMA 1997, 278:925–931. The authors report results of a meta-analysis of clinical data from randomized, controlled trials of dexamethasone therapy in childhood bacterial meningitis published from 1988 to November, 1996.

    Article  PubMed  CAS  Google Scholar 

  42. Enting R: Dexamethasone for bacterial meningitis: we need the answer. Dutch Bacterial Meningitis Study Group. Lancet 1997, 349:1179–1180.

    Article  PubMed  CAS  Google Scholar 

  43. Leib SL, Kim YS, Chow LL, et al.: Reactive oxygen intermediates contribute to necrotic and apoptotic neuronal injury in an infant rat model of bacterial meningitis due to group B streptococci. J Clin Invest 1996, 98:2632–2639. This paper stresses the pathophysiologic role of ROS in an advanced stage of experimental bacterial meningitis.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pfister, HW., Koedel, U. & Paul, R. Acute meningitis. Curr Infect Dis Rep 1, 153–159 (1999). https://doi.org/10.1007/s11908-996-0023-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11908-996-0023-7

Keywords

Navigation