Skip to main content

Advertisement

Log in

Septic Coagulopathy: Pathophysiology, Diagnosis, and Therapeutic Strategies

  • Sepsis in the ICU (J Lipman, Section Editor)
  • Published:
Current Infectious Disease Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Septic coagulopathy is a complex disorder linked with multiple organ dysfunction and increased mortality, and definitive treatments are still lacking. This review summarizes the current understanding of septic coagulopathy, covering its pathophysiology, diagnosis, and debatable treatment approaches. Additionally, it provides a thorough overview of recent research and emerging trends in this area.

Recent Findings

Recent studies have highlighted the interplay between coagulation mechanisms in sepsis and inflammatory response. Diagnostic tools include the newly published scoring system for sepsis-induced coagulopathy and the existing scoring systems for disseminated intravascular coagulation, enhancing early detection and treatment. Several drugs targeting abnormal clotting have been investigated in septic coagulopathy or wider septic groups, including heparin, antithrombin, activated protein C, and human-soluble thrombomodulin. However, they have not yielded clear survival benefits. Nonetheless, recent studies indicate that some of those therapies may benefit specific groups with septic coagulopathy, emphasizing the growing interest in emerging biomarkers and precision medicine to enhance patient outcomes.

Summary

Despite recent advancements, no pharmaceutical intervention is currently endorsed for septic coagulopathy. However, a noted association exists between disseminated intravascular coagulation and unfavorable prognosis. Future research is imperative, especially in devising individualized treatment strategies tailored to each patient’s condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Levi M, van der Poll T. Coagulation and sepsis. Thromb Res. 2017;149:38–44. https://doi.org/10.1016/j.thromres.2016.11.007.

    Article  CAS  PubMed  Google Scholar 

  2. Kinasewitz GT, Yan SB, Basson B, et al. Universal changes in biomarkers of coagulation and inflammation occur in patients with severe sepsis, regardless of causative micro-organism [ISRCTN74215569]. Crit Care (Lond Engl). 2004;8:R82–90. https://doi.org/10.1186/cc2459.

  3. Winer LK, Salyer C, Beckmann N, Caldwell CC, Nomellini V. Enigmatic role of coagulopathy among sepsis survivors: a review of coagulation abnormalities and their possible link to chronic critical illness. Trauma Surg Acute Care Open. 2020;5:e000462. https://doi.org/10.1136/tsaco-2020-000462.

  4. Schmoch T, Möhnle P, Weigand MA, et al. The prevalence of sepsis-induced coagulopathy in patients with sepsis - a secondary analysis of two German multicenter randomized controlled trials. Ann Intensive Care. 2023;13:3. https://doi.org/10.1186/s13613-022-01093-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Iba T, Levy JH. Inflammation and thrombosis: roles of neutrophils, platelets and endothelial cells and their interactions in thrombus formation during sepsis. J Thromb Haemost. 2018;16:231–41. https://doi.org/10.1111/jth.13911.

  6. Simmons J, Pittet JF. The coagulopathy of acute sepsis. Curr Opin Anaesthesiol. 2015;28:227–36. https://doi.org/10.1097/ACO.0000000000000163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Delabranche X, Helms J, Meziani F. Immunohaemostasis: a new view on haemostasis during sepsis. Ann Intensive Care. 2017;7:117. https://doi.org/10.1186/s13613-017-0339-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Czempik PF, Wiórek A. Management strategies in septic coagulopathy: a review of the current literature. Healthcare (Basel Switz). https://doi.org/10.3390/healthcare11020227.

  9. Levi M, Schultz M, van der Poll T. Sepsis and thrombosis. Semin Thromb Hemost. 2013;39:559–66. https://doi.org/10.1055/s-0033-1343894.

    Article  CAS  PubMed  Google Scholar 

  10. Semeraro N, Ammollo CT, Semeraro F, Colucci M. Sepsis, thrombosis and organ dysfunction. Thromb Res. 2012;129:290–5. https://doi.org/10.1016/j.thromres.2011.10.013.

    Article  CAS  PubMed  Google Scholar 

  11. Bleiblo F, Michael P, Brabant D, Ramana CV, Tai T, Saleh M, Parrillo JE, Kumar A, Kumar A. The role of immunostimulatory nucleic acids in septic shock. Int J Clin Exp Med. 2012;5:1–23.

  12. Lupu F. “Crossroads in sepsis research” Review series overview of the pathophysiology of sepsis. J Cell Mol Med. 2008;12:1072–3. https://doi.org/10.1111/j.1582-4934.2008.00366.x.

  13. Abrams ST, Morton B, Alhamdi Y, Alsabani M, Lane S, Welters ID, et al. A novel assay for neutrophil extracellular trap formation independently predicts disseminated intravascular coagulation and mortality in critically ill patients. Am J Respir Crit Care Med. 2019;200:869–80. https://doi.org/10.1164/rccm.201811-2111OC.

  14. Yu X, Tan J, Diamond SL. Hemodynamic force triggers rapid NETosis within sterile thrombotic occlusions. J Thromb Haemost. 2018;16:316–29. https://doi.org/10.1111/jth.13907.

  15. Delabranche X, Stiel L, Severac F, et al. Evidence of netosis in septic shock-induced disseminated intravascular coagulation. Shock (Augusta Ga). 2017;47:313–7. https://doi.org/10.1097/SHK.0000000000000719.

  16. Kambas K, Mitroulis I, Apostolidou E, et al. Autophagy mediates the delivery of thrombogenic tissue factor to neutrophil extracellular traps in human sepsis. PLoS ONE. 2012;7: e45427. https://doi.org/10.1371/journal.pone.0045427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. van Vught LA, Uhel F, Ding C, et al. Consumptive coagulopathy is associated with a disturbed host response in patients with sepsis. J Thromb Haemost. 2021;19:1049–63. https://doi.org/10.1111/jth.15246.

  18. Muronoi T, Koyama K, Nunomiya S, Lefor AK, Wada M, Koinuma T, et al. Immature platelet fraction predicts coagulopathy-related platelet consumption and mortality in patients with sepsis. Thromb Res. 2016;144:169–75. https://doi.org/10.1016/j.thromres.2016.06.002.

  19. Scarlatescu E, Tomescu D, Arama SS. Sepsis-associated coagulopathy. J. Crit Care Med. 2016;2:156–63. https://doi.org/10.1515/jccm-2016-0024.

    Article  Google Scholar 

  20. Levi M, Keller TT, van Gorp E, ten Cate H. Infection and inflammation and the coagulation system. Cardiovasc Res. 2003;60:26–39. https://doi.org/10.1016/s0008-6363(02)00857-x.

    Article  CAS  PubMed  Google Scholar 

  21. Levy JH, Sniecinski RM, Welsby IJ, Levi M. Antithrombin: anti-inflammatory properties and clinical applications. Thromb Haemost. 2016;115:712–28. https://doi.org/10.1160/TH15-08-0687.

    Article  PubMed  Google Scholar 

  22. • Lupu F, Kinasewitz G, Dormer K. The role of endothelial shear stress on haemodynamics, inflammation, coagulation and glycocalyx during sepsis. J Cell Mol Med. 2020;24:12258–71. https://doi.org/10.1111/jcmm.15895. This review offers insights into the influence of endothelial shear stress on various aspects such as hemodynamics, inflammation, and coagulation during sepsis.

  23. Riewald M, Ruf W. Protease-activated receptor-1 signaling by activated protein C in cytokine-perturbed endothelial cells is distinct from thrombin signaling. J Biol Chem. 2005;280:19808–14. https://doi.org/10.1074/jbc.M500747200.

    Article  CAS  PubMed  Google Scholar 

  24. Carey MJ, Rodgers GM. Disseminated intravascular coagulation: clinical and laboratory aspects. Am J Hematol. 1998;59:65–73. https://doi.org/10.1002/(sici)1096-8652(199809)59:1<65::aid-ajh13>3.0.co;2-0.

  25. Semeraro N, Ammollo CT, Semeraro F, Colucci M. Sepsis-associated disseminated intravascular coagulation and thromboembolic disease. Mediterr J Hematol Infect Dis. 2010;2:e2010024. https://doi.org/10.4084/MJHID.2010.024.

  26. Okamoto K, Tamura T, Sawatsubashi Y. Sepsis and disseminated intravascular coagulation. J Intensive Care. 2016;4:23. https://doi.org/10.1186/s40560-016-0149-0.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Iba T, Levy JH. Sepsis-induced coagulopathy and disseminated intravascular coagulation. Anesthesiology. 2020;132:1238–45. https://doi.org/10.1097/ALN.0000000000003122.

    Article  PubMed  Google Scholar 

  28. Taylor FB, Toh CH, Hoots WK, Wada H, Levi M, Scientific Subcommittee on Disseminated Intravascular Coagulation (DIC) of the International Society on Thrombosis and Haemostasis (ISTH). Towards definition, clinical and laboratory criteria, and a scoring system for disseminated intravascular coagulation. Thromb Haemost. 2001;86:1327–30.

  29. Gando S, Wada H, Asakura H, et al. Evaluation of new Japanese diagnostic criteria for disseminated intravascular coagulation in critically ill patients. Clin Appl Thromb. 2005;11:71–6. https://doi.org/10.1177/107602960501100108.

  30. Frank CS, Larsen JB. Prognostic impact of the international society on thrombosis and hemostasis disseminated intravascular coagulation score in sepsis: a systematic review. Semin Thromb Hemost. 2023;49:471–87. https://doi.org/10.1055/s-0043-1761216.

    Article  CAS  PubMed  Google Scholar 

  31. Umemura Y, Yamakawa K, Hayakawa M, Hamasaki T, Fujimi S, Japan Septic Disseminated Intravascular Coagulation (J-Septic DIC) study group. Screening itself for disseminated intravascular coagulation may reduce mortality in sepsis: a nationwide multicenter registry in Japan. Thromb Res. 2018;161:60–6. https://doi.org/10.1016/j.thromres.2017.11.023.

  32. Iba T, Umemura Y, Watanabe E, Wada T, Hayashida K, Kushimoto S. Diagnosis of sepsis-induced disseminated intravascular coagulation and coagulopathy. Acute Med Surg. 2019;6:223–32. https://doi.org/10.1002/ams2.411.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Dhainaut JF, Yan SB, Joyce DE, Pettilä V, Basson B, Brandt JT, et al. Treatment effects of drotrecogin alfa (activated) in patients with severe sepsis with or without overt disseminated intravascular coagulation. J Thromb Haemost. 2004;2:1924–33. https://doi.org/10.1111/j.1538-7836.2004.00955.x.

  34. Gando S, Iba T, Eguchi Y, et al. A multicenter, prospective validation of disseminated intravascular coagulation diagnostic criteria for critically ill patients: comparing current criteria*. Crit Care Med. 2006;34:625. https://doi.org/10.1097/01.CCM.0000202209.42491.38.

    Article  PubMed  Google Scholar 

  35. Gando S, Saitoh D, Ishikura H, et al. A randomized, controlled, multicenter trial of the effects of antithrombin on disseminated intravascular coagulation in patients with sepsis. Crit Care (Lond Engl). 2013;17:R297. https://doi.org/10.1186/cc13163.

  36. Tanaka K, Takeba J, Matsumoto H, Ohshita M, Annen S, Moriyama N, et al. Anticoagulation therapy using rh-thrombomodulin and/or antithrombin III agent is associated with reduction in in-hospital mortality in septic disseminated intravascular coagulation: a nationwide registry study. Shock (Augusta Ga). 2019;51:713–7. https://doi.org/10.1097/SHK.0000000000001230.

  37. Endo S, Shimazaki R, Antithrombin Gamma Study Group. An open-label, randomized, phase 3 study of the efficacy and safety of antithrombin gamma in patients with sepsis-induced disseminated intravascular coagulation syndrome. J Intensive Care. 2018;6:75. https://doi.org/10.1186/s40560-018-0339-z.

  38. Jiang S, Ma J, Ye S, Meaney C, Moore TE, Pan S, et al. Associations among disseminated intravascular coagulation, thrombocytopenia cytokines/chemokines and genetic polymorphisms of toll-like receptor 2/4 in Chinese patients with sepsis. J Inflamm Res. 2022;15:1–15. https://doi.org/10.2147/JIR.S337559.

  39. Gando S, Saitoh D, Ogura H, et al. Disseminated intravascular coagulation (DIC) diagnosed based on the Japanese Association for Acute Medicine criteria is a dependent continuum to overt DIC in patients with sepsis. Thromb Res. 2009;123:715–8. https://doi.org/10.1016/j.thromres.2008.07.006.

    Article  CAS  PubMed  Google Scholar 

  40. Kato T, Sakai T, Kato M, Hagihara M, Hasegawa T, Matsuura K, et al. Recombinant human soluble thrombomodulin administration improves sepsis-induced disseminated intravascular coagulation and mortality: a retrospective cohort study. Thromb J. 2013;11:3. https://doi.org/10.1186/1477-9560-11-3.

  41. Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016;315:801–10. https://doi.org/10.1001/jama.2016.0287.

  42. • Iba T, Helms J, Connors JM, Levy JH. The pathophysiology, diagnosis, and management of sepsis-associated disseminated intravascular coagulation. J Intensive Care. 2023;11:24. https://doi.org/10.1186/s40560-023-00672-5. This article provides a comprehensive guide on the underlying mechanisms, diagnosis, and management of sepsis-associated disseminated intravascular coagulation.

  43. Iba T, Di Nisio M, Thachil J, Wada H, Asakura H, Sato K, et al. Revision of the Japanese Association for Acute Medicine (JAAM) disseminated intravascular coagulation (DIC) diagnostic criteria using antithrombin activity. Crit Care Lond Engl. 2016;20:287. https://doi.org/10.1186/s13054-016-1468-1.

  44. Iba T, Nisio MD, Levy JH, Kitamura N, Thachil J. New criteria for sepsis-induced coagulopathy (SIC) following the revised sepsis definition: a retrospective analysis of a nationwide survey. BMJ Open. 2017;7:e017046. https://doi.org/10.1136/bmjopen-2017-017046.

  45. Vincent JL, Moreno R, Takala J, Willatts S, De Mendonça A, Bruining H, et al. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med 1996:22:707–10. https://doi.org/10.1007/BF01709751.

  46. Tanaka C, Tagami T, Kudo S, et al. Validation of sepsis-induced coagulopathy score in critically ill patients with septic shock: post hoc analysis of a nationwide multicenter observational study in Japan. Int J Hematol. 2021;114:164–71. https://doi.org/10.1007/s12185-021-03152-4.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Vincent JL. Dear SIRS, I’m sorry to say that I don’t like you. Crit Care Med 1997:25:372–4.

  48. Iba T, Arakawa M, Levy JH, Yamakawa K, Koami H, Hifumi T, et al. Sepsis-induced coagulopathy and Japanese Association for Acute Medicine DIC in coagulopathic patients with decreased antithrombin and treated by antithrombin. Clin Appl Thromb. 2018;24:1020–6. https://doi.org/10.1177/1076029618770273.

  49. Yamakawa K, Yoshimura J, Ito T, Hayakawa M, Hamasaki T, Fujimi S. External validation of the two newly proposed criteria for assessing coagulopathy in sepsis. Thromb Haemost. 2019;119:203–12. https://doi.org/10.1055/s-0038-1676610.

    Article  PubMed  Google Scholar 

  50. Iba T, Arakawa M, Di Nisio M, Gando S, Anan H, Sato K, et al. Newly proposed sepsis-induced coagulopathy precedes international society on thrombosis and haemostasis overt-disseminated intravascular coagulation and predicts high mortality. J Intensive Care Med. 2020;35:643–9. https://doi.org/10.1177/0885066618773679.

  51. Ding R, Wang Z, Lin Y, Liu B, Zhang Z, Ma X. Comparison of a new criteria for sepsis-induced coagulopathy and International Society on Thrombosis and Haemostasis disseminated intravascular coagulation score in critically ill patients with sepsis 3.0: a retrospective study. Blood Coagul Fibrinolysis. 2018;29:551–8. https://doi.org/10.1097/MBC.0000000000000755.

  52. Iba T, Levy JH, Yamakawa K, Thachil J, Warkentin TE, Levi M. Proposal of a two-step process for the diagnosis of sepsis-induced disseminated intravascular coagulation. J Thromb Haemost. 2019;17:1265–8. https://doi.org/10.1111/jth.14482.

    Article  PubMed  Google Scholar 

  53. Ushio N, Wada T, Ono Y, Yamakawa K. Sepsis-induced disseminated intravascular coagulation: an international estrangement of disease concept. Acute Med Surg. 2023;10:e00843. https://doi.org/10.1002/ams2.843.

  54. van der Poll T, Opal SM. Should all septic patients be given systemic anticoagulation? No. Intensive Care Med. 2017;43:455–7. https://doi.org/10.1007/s00134-016-4607-x.

  55. Meziani F, Gando S, Vincent JL. Should all patients with sepsis receive anticoagulation? Yes. Intensive Care Med. 2017;43:452–4. https://doi.org/10.1007/s00134-016-4621-z.

  56. Hotchkiss RS, Levy JH, Levi M. Sepsis-induced disseminated intravascular coagulation, symmetrical peripheral gangrene, and amputations. Crit Care Med. 2013;41:e290–1. https://doi.org/10.1097/CCM.0b013e31828cef48.

  57. Iba T, Levy JH. Derangement of the endothelial glycocalyx in sepsis. J Thromb Haemost. 2019;17:283–94. https://doi.org/10.1111/jth.14371.

  58. Lopes-Pires ME, Frade-Guanaes JO, Quinlan GJ. Clotting dysfunction in sepsis: a role for ROS and potential for therapeutic intervention. Antioxidants (Basel Switz). https://doi.org/10.3390/antiox11010088

  59. Lipinska-Gediga M. Coagulopathy in sepsis - a new look at an old problem. Anaesthesiol Intensive Ther. 2016;48:352–9. https://doi.org/10.5603/AIT.a2016.0051.

    Article  PubMed  Google Scholar 

  60. Scully M, Levi M. How we manage haemostasis during sepsis. Br J Haematol. 2019;185:209–18. https://doi.org/10.1111/bjh.15821.

    Article  PubMed  Google Scholar 

  61. Ranieri VM, Thompson BT, Barie PS, et al. Drotrecogin alfa (activated) in adults with septic shock. N Engl J Med. 2012;366:2055–64. https://doi.org/10.1056/NEJMoa1202290.

    Article  CAS  PubMed  Google Scholar 

  62. Jaimes F, De La Rosa G, Morales C, Fortich F, Arango C, Aguirre D, et al. Unfractioned heparin for treatment of sepsis: a randomized clinical trial (the HETRASE study). Crit Care Med. 2009;37:1185–96. https://doi.org/10.1097/CCM.0b013e31819c06bc.

  63. Zarychanski R, Abou-Setta AM, Kanji S, et al. The efficacy and safety of heparin in patients with sepsis: a systematic review and meta-analysis. Crit Care Med. 2015;43:511–8. https://doi.org/10.1097/CCM.0000000000000763.

    Article  CAS  PubMed  Google Scholar 

  64. Fu S, Yu S, Wang L, Ma X, Li X. Unfractionated heparin improves the clinical efficacy in adult sepsis patients: a systematic review and meta-analysis. BMC Anesthesiol. 2022;22:28. https://doi.org/10.1186/s12871-021-01545-w.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Warren BL, Eid A, Singer P, et al. Caring for the critically ill patient. High-dose antithrombin III in severe sepsis: a randomized controlled trial. JAMA. 2001;286:1869–78. https://doi.org/10.1001/jama.286.15.1869.

  66. Allingstrup M, Wetterslev J, Ravn FB, Møller AM, Afshari A. Antithrombin III for critically ill patients: a systematic review with meta-analysis and trial sequential analysis. Intensive Care Med. 2016;42:505–20. https://doi.org/10.1007/s00134-016-4225-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bernard GR, Vincent JL, Laterre PF, et al. Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med. 2001;344:699–709. https://doi.org/10.1056/NEJM200103083441001.

    Article  CAS  PubMed  Google Scholar 

  68. Abraham E, Laterre P-F, Garg R, et al. Drotrecogin alfa (activated) for adults with severe sepsis and a low risk of death. N Engl J Med. 2005;353:1332–41. https://doi.org/10.1056/NEJMoa050935.

    Article  CAS  PubMed  Google Scholar 

  69. Saito H, Maruyama I, Shimazaki S, et al. Efficacy and safety of recombinant human soluble thrombomodulin (ART-123) in disseminated intravascular coagulation: results of a phase III, randomized, double-blind clinical trial. J Thromb Haemost. 2007;5:31–41. https://doi.org/10.1111/j.1538-7836.2006.02267.x.

  70. Vincent J-L, François B, Zabolotskikh I, et al. Effect of a recombinant human soluble thrombomodulin on mortality in patients with sepsis-associated coagulopathy: the SCARLET randomized clinical trial. J Am Med Assoc. 2019;321:1993–2002. https://doi.org/10.1001/jama.2019.5358.

  71. Yamakawa K, Murao S, Aihara M. Recombinant human soluble thrombomodulin in sepsis-induced coagulopathy: an updated systematic review and meta-analysis. Thromb Haemost. 2019;119:56–65. https://doi.org/10.1055/s-0038-1676345.

    Article  PubMed  Google Scholar 

  72. Levi M, Vincent J-L, Tanaka K, Radford AH, Kayanoki T, Fineberg DA, et al. Effect of a recombinant human soluble thrombomodulin on baseline coagulation biomarker levels and mortality outcome in patients with sepsis-associated coagulopathy. Crit Care Med. 2020;48:1140–7. https://doi.org/10.1097/CCM.0000000000004426.

  73. Valeriani E, Squizzato A, Gallo A, Porreca E, Vincent J-L, Iba T, et al. Efficacy and safety of recombinant human soluble thrombomodulin in patients with sepsis-associated coagulopathy: a systematic review and meta-analysis. J Thromb Haemost. 2020;18:1618–25. https://doi.org/10.1111/jth.14812.

  74. Ameri A, Kuppuswamy MN, Basu S, Bajaj SP. Expression of tissue factor pathway inhibitor by cultured endothelial cells in response to inflammatory mediators. Blood. 1992;79:3219–26.

    Article  CAS  PubMed  Google Scholar 

  75. Bajaj MS, Kuppuswamy MN, Saito H, Spitzer SG, Bajaj SP. Cultured normal human hepatocytes do not synthesize lipoprotein-associated coagulation inhibitor: evidence that endothelium is the principal site of its synthesis. Proc Natl Acad Sci USA. 1990;87:8869–73. https://doi.org/10.1073/pnas.87.22.8869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Abraham E, Reinhart K, Opal S, et al. Efficacy and safety of tifacogin (recombinant tissue factor pathway inhibitor) in severe sepsis: a randomized controlled trial. JAMA. 2003;290:238–47. https://doi.org/10.1001/jama.290.2.238.

    Article  CAS  PubMed  Google Scholar 

  77. Walborn A, Rondina M, Mosier M, Fareed J, Hoppensteadt D. Endothelial dysfunction is associated with mortality and severity of coagulopathy in patients with sepsis and disseminated intravascular coagulation. Clin Appl Thromb. 2019;25:1076029619852163. https://doi.org/10.1177/1076029619852163.

  78. de Jonge E, Dekkers PE, Creasey AA, Hack CE, Paulson SK, Karim A, et al. Tissue factor pathway inhibitor dose-dependently inhibits coagulation activation without influencing the fibrinolytic and cytokine response during human endotoxemia. Blood. 2000;95:1124–9.

  79. Abraham E, Reinhart K, Svoboda P, et al. Assessment of the safety of recombinant tissue factor pathway inhibitor in patients with severe sepsis: a multicenter, randomized, placebo-controlled, single-blind, dose escalation study. Crit Care Med. 2001;29:2081–9. https://doi.org/10.1097/00003246-200111000-00007.

    Article  CAS  PubMed  Google Scholar 

  80. • Adelborg K, Larsen JB, Hvas AM. Disseminated intravascular coagulation: epidemiology, biomarkers, and management. Br J Haematol. 2021;192:803–18. https://doi.org/10.1111/bjh.17172. This article offers a comprehensive overview of the epidemiology, biomarkers, and management strategies for disseminated intravascular coagulation.

  81. Falcone M, Russo A, Farcomeni A, Pieralli F, Vannucchi V, Vullo V, et al. Septic shock from community-onset pneumonia: is there a role for aspirin plus macrolides combination? Intensive Care Med. 2016;42:301–2. https://doi.org/10.1007/s00134-015-4139-9.

  82. Wang Y, Ouyang Y, Liu B, Ma X, Ding R. Platelet activation and antiplatelet therapy in sepsis: a narrative review. Thromb Res. 2018;166:28–36. https://doi.org/10.1016/j.thromres.2018.04.007.

    Article  CAS  PubMed  Google Scholar 

  83. Eisen DP, Leder K, Woods RL, et al. Effect of aspirin on deaths associated with sepsis in healthy older people (ANTISEPSIS): a randomised, double-blind, placebo-controlled primary prevention trial. Lancet Respir Med. 2021;9:186–95. https://doi.org/10.1016/S2213-2600(20)30411-2.

    Article  CAS  PubMed  Google Scholar 

  84. Kiers D, van der Heijden WA, van Ede L, et al. A randomised trial on the effect of anti-platelet therapy on the systemic inflammatory response in human endotoxaemia. Thromb Haemost. 2017;117:1798–807. https://doi.org/10.1160/TH16-10-0799.

  85. Bestle MH, Clausen NE, Søe-Jensen P, Kristiansen KT, Lange T, Johansson PI, et al. Efficacy and safety of iloprost in patients with septic shock-induced endotheliopathy-Protocol for the multicenter randomized, placebo-controlled, blinded, investigator-initiated trial. Acta Anaesthesiol Scand. 2020;64:705–11. https://doi.org/10.1111/aas.13546.

  86. Berthelsen RE, Ostrowski SR, Bestle MH, Johansson PI. Co-administration of iloprost and eptifibatide in septic shock (CO-ILEPSS)-a randomised, controlled, double-blind investigator-initiated trial investigating safety and efficacy. Crit Care (Lond Engl). 2019;23:301. https://doi.org/10.1186/s13054-019-2573-8.

  87. Akca S, Haji-Michael P, de Mendonça A, Suter P, Levi M, Vincent JL. Time course of platelet counts in critically ill patients. Crit Care Med. 2002;30:753–6. https://doi.org/10.1097/00003246-200204000-00005.

    Article  PubMed  Google Scholar 

  88. Gonzalez DA, Kumar R, Asif S, Bali A, Dang AK. Sepsis and thrombocytopenia: a nowadays problem. Cureus. 2022;14:e25421. https://doi.org/10.7759/cureus.25421.

  89. • Giustozzi M, Ehrlinder H, Bongiovanni D, Borovac JA, Guerreiro RA, Gąsecka A, et al. Coagulopathy and sepsis: pathophysiology, clinical manifestations and treatment. Blood Rev. 2021;50:100864. https://doi.org/10.1016/j.blre.2021.100864. This review delves deeply into a wide range of information related to the pathophysiology, diagnostic process, and treatment options for septic coagulopathy.

  90. Levi M, Toh CH, Thachil J, Watson HG. Guidelines for the diagnosis and management of disseminated intravascular coagulation. British Committee for Standards in Haematology. Br J Haematol. 2009;145:24–33. https://doi.org/10.1111/j.1365-2141.2009.07600.x.

  91. Estcourt LJ, Birchall J, Allard S, Bassey SJ, Hersey P, Kerr JP, et al. British Committee for Standards in Haematology Guidelines for the use of platelet transfusions. Br J Haematol. 2017;176:365–94. https://doi.org/10.1111/bjh.14423.

  92. David S, Russell L, Castro P, et al. Research priorities for therapeutic plasma exchange in critically ill patients. Intensive Care Med Exp. 2023;11:26. https://doi.org/10.1186/s40635-023-00510-w.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Weng J, Chen M, Fang D, Liu D, Guo R, Yang S. Therapeutic plasma exchange protects patients with sepsis-associated disseminated intravascular coagulation by improving endothelial function. Clin Appl Thromb. 2021;27:10760296211053312. https://doi.org/10.1177/10760296211053313.

  94. Lee OPE, Kanesan N, Leow EH, Sultana R, Chor YK, Gan CS, et al. Survival benefits of therapeutic plasma exchange in severe sepsis and septic shock: a systematic review and meta-analysis. J Intensive Care Med. 2023;38:598–611. https://doi.org/10.1177/08850666231170775.

  95. Scarlatescu E, Juffermans NP, Thachil J. The current status of viscoelastic testing in septic coagulopathy. Thromb Res. 2019;183:146–52. https://doi.org/10.1016/j.thromres.2019.09.029.

    Article  CAS  PubMed  Google Scholar 

  96. Zhou W, Zhou W, Bai J, Ma S, Liu Q, Ma X. TEG in the monitoring of coagulation changes in patients with sepsis and the clinical significance. Exp Ther Med. 2019;17:3373–82. https://doi.org/10.3892/etm.2019.7342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kim S-M, Kim S-I, Yu G, Kim Y-J, Kim WY. Which septic shock patients with non-overt DIC progress to DIC after admission? Point-of-Care thromboelastography testing. Shock (Augusta Ga). 2022;57:168–74. https://doi.org/10.1097/SHK.0000000000001847.

  98. Luo C, Hu H, Gong J, Zhou Y, Chen Z, Cai S. The value of thromboelastography in the diagnosis of sepsis-induced coagulopathy. Clin Appl Thromb. 2020;26:1076029620951847. https://doi.org/10.1177/1076029620951847.

  99. Kim S-M, Kim SI, Yu G, Kim JS, Hong SI, Chae B, et al. Role of thromboelastography in the evaluation of septic shock patients with normal prothrombin time and activated partial thromboplastin time. Sci Rep. 2021;11:11833. https://doi.org/10.1038/s41598-021-91221-3.

  100. Adamzik M, Eggmann M, Frey UH, Görlinger K, Bröcker-Preuss M, Marggraf G, et al. Comparison of thromboelastometry with procalcitonin, interleukin 6, and C-reactive protein as diagnostic tests for severe sepsis in critically ill adults. Crit Care (Lond Engl). 2010;14:R178. https://doi.org/10.1186/cc9284.

  101. Boscolo A, Spiezia L, De Cassai A, et al. Are thromboelastometric and thromboelastographic parameters associated with mortality in septic patients? A systematic review and meta-analysis. J Crit Care. 2021;61:5–13. https://doi.org/10.1016/j.jcrc.2020.09.034.

    Article  CAS  PubMed  Google Scholar 

  102. Ninan KF, Iyadurai R, Varghese JK, et al. Thromboelastograph: a prognostic marker in sepsis with organ dysfunction without overt bleeding. J Crit Care. 2021;65:177–83. https://doi.org/10.1016/j.jcrc.2021.06.005.

    Article  Google Scholar 

  103. Schmitt FCF, Manolov V, Morgenstern J, et al. Acute fibrinolysis shutdown occurs early in septic shock and is associated with increased morbidity and mortality: results of an observational pilot study. Ann Intensive Care. 2019;9:19. https://doi.org/10.1186/s13613-019-0499-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Boscolo A, Spiezia L, Campello E, Bertini D, Lucchetta V, Piasentini E, et al. Whole-blood hypocoagulable profile correlates with a greater risk of death within 28 days in patients with severe sepsis. Korean J Anesthesiol. 2020;73:224–31. https://doi.org/10.4097/kja.19396.

  105. Kim SM, Kim SI, Yu G, Kim JS, Hong SI, Chae B, et al. Role of thromboelastography as an early predictor of disseminated intravascular coagulation in patients with septic shock. J Clin Med. 2020;9:3883. https://doi.org/10.3390/jcm9123883.

  106. Koyama K, Madoiwa S, Nunomiya S, Koinuma T, Wada M, Sakata A, et al. Combination of thrombin-antithrombin complex, plasminogen activator inhibitor-1, and protein C activity for early identification of severe coagulopathy in initial phase of sepsis: a prospective observational study. Crit Care (Lond Engl). 2014;18:R13. https://doi.org/10.1186/cc13190.

  107. Jackson Chornenki NL, Dwivedi DJ, Kwong AC, Zamir N, Fox-Robichaud AE, Liaw PC, et al. Identification of hemostatic markers that define the pre-DIC state: a multi-center observational study. J Thromb Haemost. 2020;18:2524–31. https://doi.org/10.1111/jth.14973.

  108. • Cánovas-Cervera I, Nacher-Sendra E, Osca-Verdegal R, Dolz-Andrés E, Beltrán-García J, Rodríguez-Gimillo M, et al. The intricate role of non-coding RNAs in sepsis-associated disseminated intravascular coagulation. Int J Mol Sci. https://doi.org/10.3390/ijms24032582. This article dives into the complex role of a wide variety of non-coding RNAs in disseminated intravascular coagulation associated with sepsis.

  109. Meidert AS, Buschmann D, Brandes F, et al. Molecular RNA correlates of the SOFA Score in patients with sepsis. Diagnostics (Basel Switz). 2021;11:1649. https://doi.org/10.3390/diagnostics11091649.

  110. Wang H, Zhang C, Zhang C, Wang Y, Zhai K, Tong Z. MicroRNA-122-5p regulates coagulation and inflammation through MASP1 and HO-1 genes. Infect Genet Evol. 2022;100:105268. https://doi.org/10.1016/j.meegid.2022.105268.

  111. Hoshino K, Nakashio M, Maruyama J, Irie Y, Kawano Y, Ishikura H. Validating plasminogen activator inhibitor-1 as a poor prognostic factor in sepsis. Acute Med Surg. 2020;7:e581. https://doi.org/10.1002/ams2.581.

  112. Wang D, Yang Y, Wang Y, Proulle V, Andreasen PA, Hong W, et al. Embelin ameliorated sepsis-induced disseminated intravascular coagulation intensities by simultaneously suppressing inflammation and thrombosis. Biomed Pharmacother. 2020;130:110528. https://doi.org/10.1016/j.biopha.2020.110528.

  113. Catenacci V, Sheikh F, Patel K, Fox-Robichaud AE. The prognostic utility of protein C as a biomarker for adult sepsis: a systematic review and meta-analysis. Crit Care (Lond Engl). 2022;26:21. https://doi.org/10.1186/s13054-022-03889-2.

  114. Niederwanger C, Hell T, Hofer S, Salvador C, Michel M, Schenk B, et al. Antithrombin deficiency is associated with mortality and impaired organ function in septic pediatric patients: a retrospective study. PeerJ. 2018;6:e5538. https://doi.org/10.7717/peerj.5538.

  115. Al Otair HA, Abdel Gader AGM, Khurshid SM, Alzeer AH, Al Momen AK, Al Shaikh M, et al. The levels of tissue factor pathway inhibitor in sepsis patients receiving prophylactic enoxaparin. Turk J Haematol. 2016;33:112–8. https://doi.org/10.4274/tjh.2014.0312.

  116. Ishikura H, Irie Y, Kawamura M, Hoshino K, Nakamura Y, Mizunuma M, et al. Early recognition of sepsis-induced coagulopathy using the C2PAC index: a ratio of soluble type C lectin-like receptor 2 (sCLEC-2) level and platelet count. Platelets. 2022;33:935–44. https://doi.org/10.1080/09537104.2021.2019694.

  117. Azfar MF, Khan MF, Habib SS, Aseri ZA, Zubaidi AM, Aguila DO, et al. Prognostic value of ADAMTS13 in patients with severe sepsis and septic shock. Clin Investig Med. 2017;40:E49–58. https://doi.org/10.25011/cim.v40i2.28195.

  118. Levi M, Scully M, Singer M. The role of ADAMTS-13 in the coagulopathy of sepsis. J Thromb Haemost. 2018;16:646–51. https://doi.org/10.1111/jth.13953.

  119. Rodrigues AT, Rodrigues JT, Rodrigues CT, de Oliveira Volpe CM, Rocha-Silva F, Nogueira-Machado JA, et al. Association between thrombomodulin and high mobility group box 1 in sepsis patients. World J Crit Care Med. 2020;9:63–73. https://doi.org/10.5492/wjccm.v9.i4.63.

  120. Hatanaka K, Ito T, Madokoro Y, Kamikokuryo C, Niiyama S, Yamada S, et al. Circulating Syndecan-1 as a predictor of persistent thrombocytopenia and lethal outcome: a population study of patients with suspected sepsis requiring intensive care. Front Cardiovasc Med. 2021;8:730553. https://doi.org/10.3389/fcvm.2021.730553.

  121. Ikeda M, Matsumoto H, Ogura H, Hirose T, Shimizu K, Yamamoto K, et al. Circulating syndecan-1 predicts the development of disseminated intravascular coagulation in patients with sepsis. J Crit Care. 2018;43:48–53. https://doi.org/10.1016/j.jcrc.2017.07.049.

  122. Huang X, Hu H, Sun T, Zhu W, Tian H, Hao D, et al. Plasma endothelial glycocalyx components as a potential biomarker for predicting the development of disseminated intravascular coagulation in patients with sepsis. J Intensive Care Med. 2021;36:1286–95. https://doi.org/10.1177/0885066620949131.

  123. Guitton C, Gérard N, Sébille V, Bretonnière C, Zambon O, Villers D, et al. Early rise in circulating endothelial protein C receptor correlates with poor outcome in severe sepsis. Intensive Care Med. 2011;37:950–6. https://doi.org/10.1007/s00134-011-2171-y.

  124. Lafon T, Cazalis M-A, Vallejo C, Tazarourte K, Blein S, Pachot A, et al. Prognostic performance of endothelial biomarkers to early predict clinical deterioration of patients with suspected bacterial infection and sepsis admitted to the emergency department. Ann Intensive Care. 2020;10:113. https://doi.org/10.1186/s13613-020-00729-w.

  125. Cheng TH, Puskarich M, Li X, Fang Z, Xu F, Chen Y, et al. Circulating complement C3-alpha chain levels predict survival of septic shock patients. Shock (Augusta Ga). 2020;54:190–7. https://doi.org/10.1097/SHK.0000000000001502.

  126. Abe T, Kubo K, Izumoto S, Shimazu S, Goan A, Tanaka T, et al. Complement activation in human sepsis is related to sepsis-induced disseminated intravascular coagulation. Shock (Augusta Ga). 2020;54:198–204. https://doi.org/10.1097/SHK.0000000000001504.

  127. Takahashi G, Shibata S, Ishikura H, Miura M, Fukui Y, Inoue Y, et al. Presepsin in the prognosis of infectious diseases and diagnosis of infectious disseminated intravascular coagulation: a prospective, multicentre, observational study. Eur J Anaesthesiol. 2015;32:199–206. https://doi.org/10.1097/EJA.0000000000000178.

  128. Ishikura H, Nishida T, Murai A, Nakamura Y, Irie Y, Tanaka J, et al. New diagnostic strategy for sepsis-induced disseminated intravascular coagulation: a prospective single-center observational study. Crit Care (Lond Engl). 2014;18:R19. https://doi.org/10.1186/cc13700.

  129. Hatada T, Wada H, Nobori T, Okabayashi K, Maruyama K, Abe Y, et al. Plasma concentrations and importance of High Mobility Group Box protein in the prognosis of organ failure in patients with disseminated intravascular coagulation. Thromb Haemost. 2005;94:975–9. https://doi.org/10.1160/TH05-05-0316.

  130. Patel P, Walborn A, Rondina M, Fareed J, Hoppensteadt D. Markers of inflammation and infection in sepsis and disseminated intravascular coagulation. Clin Appl Thromb. 2019;25:1076029619843338. https://doi.org/10.1177/1076029619843338.

  131. Nakahara M, Ito T, Kawahara K, et al. Recombinant thrombomodulin protects mice against histone-induced lethal thromboembolism. PLoS ONE. 2013;8:e75961. https://doi.org/10.1371/journal.pone.0075961.

  132. Abrams ST, Su D, Sahraoui Y, et al. Assembly of alternative prothrombinase by extracellular histones initiates and disseminates intravascular coagulation. Blood. 2021;137:103–14. https://doi.org/10.1182/blood.2019002973.

    Article  CAS  PubMed  Google Scholar 

  133. Rhodes A, Wort SJ, Thomas H, Collinson P, Bennett ED. Plasma DNA concentration as a predictor of mortality and sepsis in critically ill patients. Crit Care (Lond Engl). 2006;10:R60. https://doi.org/10.1186/cc4894.

  134. Wang HJ, Deng J, Wang JY, Zhang PJ, Xin Z, Xiao K, et al. Serum miR-122 levels are related to coagulation disorders in sepsis patients. Clin Chem Lab Med. 2014;52:927–33. https://doi.org/10.1515/cclm-2013-0899.

  135. Wang Y, Wang H, Zhang C, Zhang C, Yang H, Gao R, et al. Plasma Hsa-miR-92a-3p in correlation with lipocalin-2 is associated with sepsis-induced coagulopathy. BMC Infect Dis. 2020;20:155. https://doi.org/10.1186/s12879-020-4853-y.

  136. Zhang R, Lu S, Yang X, et al. miR-19a-3p downregulates tissue factor and functions as a potential therapeutic target for sepsis-induced disseminated intravascular coagulation. Biochem Pharmacol. 2021;192:114671. https://doi.org/10.1016/j.bcp.2021.114671.

  137. Zhu X. MiR-125b but not miR-125a is upregulated and exhibits a trend to correlate with enhanced disease severity, inflammation, and increased mortality in sepsis patients. J Clin Lab Anal. 2020;34:e23094. https://doi.org/10.1002/jcla.23094.

  138. Ma H, Wang X, Ha T, et al. MicroRNA-125b prevents cardiac dysfunction in polymicrobial sepsis by targeting TRAF6-mediated nuclear factor κB activation and p53-mediated apoptotic signaling. J Infect Dis. 2016;214:1773–83. https://doi.org/10.1093/infdis/jiw449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Seymour CW, Kennedy JN, Wang S, et al. Derivation, validation, and potential treatment implications of novel clinical phenotypes for sepsis. JAMA. 2019;321:2003–15. https://doi.org/10.1001/jama.2019.5791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Kudo D, Goto T, Uchimido R, Hayakawa M, Yamakawa K, Abe T, et al. Coagulation phenotypes in sepsis and effects of recombinant human thrombomodulin: an analysis of three multicentre observational studies. Crit Care (Lond Engl). 2021;25:114. https://doi.org/10.1186/s13054-021-03541-5.

  141. Goto T, Kudo D, Uchimido R, Hayakawa M, Yamakawa K, Abe T, et al. Web-based application for predicting the potential target phenotype for recombinant human thrombomodulin therapy in patients with sepsis: analysis of three multicentre registries. Crit Care (Lond Engl). 2022;26:145. https://doi.org/10.1186/s13054-022-04020-1.

  142. Cai D, Greco M, Wu Q, Cheng Y. Sepsis-induced coagulopathy subphenotype identification by latent class analysis. Balk Med J. 2023;40:244–51. https://doi.org/10.4274/balkanmedj.galenos.2023.2023-4-6.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

All artworks in this article were created with BioRender.com.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the drafting and review of this manuscript.

Corresponding author

Correspondence to Yoshiro Hayashi.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 13 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karumai, T., Kotani, Y., Yamamoto, R. et al. Septic Coagulopathy: Pathophysiology, Diagnosis, and Therapeutic Strategies. Curr Infect Dis Rep 26, 91–106 (2024). https://doi.org/10.1007/s11908-024-00833-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11908-024-00833-z

Keywords

Navigation