Skip to main content

Advertisement

Log in

Cryptococcal Disease in HIV-Infected Children

  • Pediatric Infectious Diseases (I Brook, Section Editor)
  • Published:
Current Infectious Disease Reports Aims and scope Submit manuscript

Abstract

Cryptococcus neoformans is an encapsulated fungal pathogen that is remarkable for its tendency to cause meningoencephalitis, especially in patients with AIDS. While disease is less common in children than adults, it remains an important cause of morbidity and mortality among HIV-infected children without access to anti-retroviral therapy. This review highlights recent insights into both the biology and treatment of cryptococcosis with a special emphasis on the pediatric literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Ngamskulrungroj P, Gilgado F, Faganello J, Litvintseva AP, Leal AL, Tsui KM, et al. Genetic diversity of the Cryptococcus species complex suggests that Cryptococcus gattii deserves to have varieties. PLoS One. 2009;4(6):e5862.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Rosen LB, Freeman AF, Yang LM, Jutivorakool K, Olivier KN, Angkasekwinai N, et al. Anti-GM-CSF autoantibodies in patients with cryptococcal meningitis. J Immunol. 2013;190(8):3959–66. Identifies autoreactive antibodies to GM-CSF as a potential risk factor for cryptococcosis in otherwise healthy individuals.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Park BJ, Wannemuehler KA, Marston BJ, Govender N, Pappas PG, Chiller TM. Estimation of the current global burden of cryptococcal meningitis among persons living with HIV/AIDS. AIDS. 2009;23(4):525–30.

    Article  PubMed  Google Scholar 

  4. Casadevall A. Amoeba provide insight into the origin of virulence in pathogenic fungi. Adv Exp Med Biol. 2012;710:1–10.

    Article  CAS  PubMed  Google Scholar 

  5. Shao X, Mednick A, Alvarez M, van Rooijen N, Casadevall A, Goldman DL. An innate immune system cell is a major determinant of species-related susceptibility differences to fungal pneumonia. J Immunol. 2005;175(5):3244–51.

    Article  CAS  PubMed  Google Scholar 

  6. Feldmesser M, Tucker S, Casadevall A. Intracellular parasitism of macrophages by Cryptococcus neoformans. Trends Microbiol. 2001;9(6):273–8.

    Article  CAS  PubMed  Google Scholar 

  7. Kozel TR, Gotschlich EC. The capsule of cryptococcus neoformans passively inhibits phagocytosis of the yeast by macrophages. J Immunol. 1982;129(4):1675–80.

    CAS  PubMed  Google Scholar 

  8. Ellerbroek PM, Ulfman LH, Hoepelman AI, Coenjaerts FE. Cryptococcal glucuronoxylomannan interferes with neutrophil rolling on the endothelium. Cell Microbiol. 2004;6(6):581–92.

    Article  CAS  PubMed  Google Scholar 

  9. Lipovsky MM, Gekker G, Hu S, Ehrlich LC, Hoepelman AI, Peterson PK. Cryptococcal glucuronoxylomannan induces interleukin (IL)-8 production by human microglia but inhibits neutrophil migration toward IL-8. J Infect Dis. 1998;177(1):260–3.

    Article  CAS  PubMed  Google Scholar 

  10. Almeida GM, Andrade RM, Bento CA. The capsular polysaccharides of Cryptococcus neoformans activate normal CD4(+) T cells in a dominant Th2 pattern. J Immunol. 2001;167(10):5845–51.

    Article  CAS  PubMed  Google Scholar 

  11. Lee SC, Casadevall A. Polysaccharide antigen in brain tissue of AIDS patients with cryptococcal meningitis. Clin Infect Dis. 1996;23(1):194–5.

    Article  CAS  PubMed  Google Scholar 

  12. Hirano A, Zimmerman HM, Levine S. The fine structure of cerebral fluid accumulation. Iii. Extracellular spread of cryptococcal polysaccharides in the acute stage. Am J Pathol. 1964;45:1–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Fries BC, Lee SC, Kennan R, Zhao W, Casadevall A, Goldman DL. Phenotypic switching of Cryptococcus neoformans can produce variants that elicit increased intracranial pressure in a rat model of cryptococcal meningoencephalitis. Infect Immun. 2005;73(3):1779–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Graybill JR, Sobel J, Saag M, van Der Horst C, Powderly W, Cloud G, et al. Diagnosis and management of increased intracranial pressure in patients with AIDS and cryptococcal meningitis. The NIAID Mycoses Study Group and AIDS Cooperative Treatment Groups. Clin Infect Dis. 2000;30(1):47–54.

    Article  CAS  PubMed  Google Scholar 

  15. Baker LG, Specht CA, Lodge JK. Cell wall chitosan is necessary for virulence in the opportunistic pathogen Cryptococcus neoformans. Eukaryot Cell. 2011;10(9):1264–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fonseca FL, Nimrichter L, Cordero RJ, Frases S, Rodrigues J, Goldman DL, et al. Role for chitin and chitooligomers in the capsular architecture of Cryptococcus neoformans. Eukaryot Cell. 2009;8(10):1543–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fonseca FL, Guimaraes AJ, Kmetzsch L, Dutra FF, Silva FD, Taborda CP, et al. Binding of the wheat germ lectin to Cryptococcus neoformans chitooligomers affects multiple mechanisms required for fungal pathogenesis. Fungal Genet Biol. 2013;60:64–73. This study implicates chitin as a virulence factor in CME.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wiesner DL, Specht CA, Lee CK, Smith KD, Mukaremera L, Lee ST, et al. Chitin recognition via chitotriosidase promotes pathologic type-2 helper T cell responses to cryptococcal infection. PLoS Pathog. 2015;11(3):e1004701. Important study that implicates chitin-induced immune dysregulation in the pathogenesis of CME.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Almeida F, Wolf JM, Casadevall A. Virulence-associated enzymes of Cryptococcus neoformans. Eukaryotic Cell. 2015.

  20. Zaragoza O, Nielsen K. Titan cells in Cryptococcus neoformans: cells with a giant impact. Curr Opin Microbiol. 2013;16(4):409–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Crabtree JN, Okagaki LH, Wiesner DL, Strain AK, Nielsen JN, Nielsen K. Titan cell production enhances the virulence of Cryptococcus neoformans. Infect Immun. 2012;80(11):3776–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nicola AM, Robertson EJ, Albuquerque P, Derengowski Lda S, Casadevall A. Nonlytic exocytosis of Cryptococcus neoformans from macrophages occurs in vivo and is influenced by phagosomal pH. mBio. 2011; 2(4).

  23. Alvarez M, Casadevall A. Phagosome extrusion and host-cell survival after Cryptococcus neoformans phagocytosis by macrophages. Curr Biol. 2006;16(21):2161–5.

    Article  CAS  PubMed  Google Scholar 

  24. Johnston SA, May RC. The human fungal pathogen Cryptococcus neoformans escapes macrophages by a phagosome emptying mechanism that is inhibited by Arp2/3 complex-mediated actin polymerisation. PLoS Pathog. 2010;6(8):e1001041.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Goldman DL, Fries BC, Franzot SP, Montella L, Casadevall A. Phenotypic switching in the human pathogenic fungus Cryptococcus neoformans is associated with changes in virulence and pulmonary inflammatory response in rodents. Proc Natl Acad Sci USA. 1998;95(25):14967–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bouklas T, Pechuan X, Goldman DL, Edelman B, Bergman A, Fries BC. Old Cryptococcus neoformans cells contribute to virulence in chronic cryptococcosis. mBio. 2013; 4(4). Initial description of ageing in C. neoformans and its potential contribution to CME pathogenesis.

  27. Bouklas T, Fries BC. Aging: an emergent phenotypic trait that contributes to the virulence of Cryptococcus neoformans. Future Microbiol. 2015;10(2):191–7. Reviews the contribution of ageing to CME.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lee H, Chang YC, Nardone G, Kwon-Chung KJ. TUP1 disruption in Cryptococcus neoformans uncovers a peptide-mediated density-dependent growth phenomenon that mimics quorum sensing. Mol Microbiol. 2007;64(3):591–601.

    Article  CAS  PubMed  Google Scholar 

  29. Albuquerque P, Nicola AM, Nieves E, Paes HC, Williamson PR, Silva-Pereira I, et al. Quorum sensing-mediated, cell density-dependent regulation of growth and virulence in Cryptococcus neoformans. mBio. 2014;5(1):e00986–00913. Describes pantothenic acid-mediated quorum sensing in C. neformans and its potential role in disease.

    Article  Google Scholar 

  30. Garcia-Hermoso D, Janbon G, Dromer F. Epidemiological evidence for dormant Cryptococcus neoformans infection. J Clin Microbiol. 1999;37(10):3204–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Haugen RK, Baker RD. The pulmonary lesions in cryptococcosis with special reference to subpleural nodules. Am J Clin Pathol. 1954;24(12):1381–90.

    Article  CAS  PubMed  Google Scholar 

  32. Saha DC, Goldman DL, Shao X, Casadevall A, Husain S, Limaye AP, et al. Serologic evidence for reactivation of cryptococcosis in solid-organ transplant recipients. Clin Vaccine Immunol. 2007;14(12):1550–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Goldman DL, Lee SC, Mednick AJ, Montella L, Casadevall A. Persistent Cryptococcus neoformans pulmonary infection in the rat is associated with intracellular parasitism, decreased inducible nitric oxide synthase expression, and altered antibody responsiveness to cryptococcal polysaccharide. Infect Immun. 2000;68(2):832–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nosanchuk JD, Shoham S, Fries BC, Shapiro DS, Levitz SM, Casadevall A. Evidence of zoonotic transmission of Cryptococcus neoformans from a pet cockatoo to an immunocompromised patient. Ann Intern Med. 2000;132(3):205–8.

    Article  CAS  PubMed  Google Scholar 

  35. Charlier C, Nielsen K, Daou S, Brigitte M, Chretien F, Dromer F. Evidence of a role for monocytes in dissemination and brain invasion by Cryptococcus neoformans. Infect Immun. 2009;77(1):120–7.

    Article  CAS  PubMed  Google Scholar 

  36. Chang YC, Stins MF, McCaffery MJ, Miller GF, Pare DR, Dam T, et al. Cryptococcal yeast cells invade the central nervous system via transcellular penetration of the blood–brain barrier. Infect Immun. 2004;72(9):4985–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Vu K, Tham R, Uhrig JP, Thompson 3rd GR, Na Pombejra S, Jamklang M, et al. Invasion of the central nervous system by Cryptococcus neoformans requires a secreted fungal metalloprotease. mBio. 2014;5(3):e01101–14. Reports the discovey of a metalloprotease involved in the translocation of C. neoformans into the CNS.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Shi M, Li SS, Zheng C, Jones GJ, Kim KS, Zhou H, et al. Real-time imaging of trapping and urease-dependent transmigration of Cryptococcus neoformans in mouse brain. J Clin Invest. 2010;120(5):1683–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jong A, Wu CH, Shackleford GM, Kwon-Chung KJ, Chang YC, Chen HM, et al. Involvement of human CD44 during Cryptococcus neoformans infection of brain microvascular endothelial cells. Cell Microbiol. 2008;10(6):1313–26.

    Article  CAS  PubMed  Google Scholar 

  40. Ibrahim AS, Filler SG, Alcouloumre MS, Kozel TR, Edwards Jr JE, Ghannoum MA. Adherence to and damage of endothelial cells by Cryptococcus neoformans in vitro: role of the capsule. Infect Immun. 1995;63(11):4368–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Chen SH, Stins MF, Huang SH, Chen YH, Kwon-Chung KJ, Chang Y, et al. Cryptococcus neoformans induces alterations in the cytoskeleton of human brain microvascular endothelial cells. J Med Microbiol. 2003;52(Pt 11):961–70.

    Article  CAS  PubMed  Google Scholar 

  42. Abadi J, Nachman S, Kressel AB, Pirofski L. Cryptococcosis in children with AIDS. Clin Infect Dis. 1999;28(2):309–13.

    Article  CAS  PubMed  Google Scholar 

  43. Goldman DL, Khine H, Abadi J, Lindenberg DJ, Pirofski L, Niang R, et al. Serologic evidence for Cryptococcus neoformans infection in early childhood. Pediatrics. 2001;107(5):E66.

    Article  CAS  PubMed  Google Scholar 

  44. Abadi J, Pirofski L. Antibodies reactive with the cryptococcal capsular polysaccharide glucuronoxylomannan are present in sera from children with and without human immunodeficiency virus infection. J Infect Dis. 1999;180(3):915–9.

    Article  CAS  PubMed  Google Scholar 

  45. Miglia KJ, Govender NP, Rossouw J, Meiring S, Mitchell TG. Analyses of pediatric isolates of Cryptococcus neoformans from South Africa. J Clin Microbiol. 2011;49(1):307–14.

    Article  PubMed  Google Scholar 

  46. Iseki M, Anzo M, Yamashita N, Matsuo N. Hyper-IgM immunodeficiency with disseminated cryptococcosis. Acta Paediatr. 1994;83(7):780–2.

    Article  CAS  PubMed  Google Scholar 

  47. Jacobs DH, Macher AM, Handler R, Bennett JE, Collen MJ, Gallin JI. Esophageal cryptococcosis in a patient with the hyperimmunoglobulin E-recurrent infection (Job’s) syndrome. Gastroenterology. 1984;87(1):201–3.

    CAS  PubMed  Google Scholar 

  48. Wahab JA, Hanifah MJ, Choo KE. Bruton’s agammaglobulinaemia in a child presenting with cryptococcal empyema thoracis and periauricular pyogenic abscess. Singap Med J. 1995;36(6):686–9.

    CAS  Google Scholar 

  49. Liou J, Chiu C, Tseng C, Chi C, Fu L. Cryptococcal meningitis in pediatric systemic lupus erythematosus. Mycoses. 2003;46(3–4):153–6.

    Article  CAS  PubMed  Google Scholar 

  50. Leggiadro RJ, Barrett FF, Hughes WT. Extrapulmonary cryptococcosis in immunocompromised infants and children. Pediatr Infect Dis J. 1992;11(1):43–7.

    Article  CAS  PubMed  Google Scholar 

  51. Sweeney DA, Caserta MT, Korones DN, Casadevall A, Goldman DL. A ten-year-old boy with a pulmonary nodule secondary to Cryptococcus neoformans: case report and review of the literature. Pediatr Infect Dis J. 2003;22(12):1089–93.

    Article  PubMed  Google Scholar 

  52. Hage CA, Wood KL, Winer-Muram HT, Wilson SJ, Sarosi G, Knox KS. Pulmonary cryptococcosis after initiation of anti-tumor necrosis factor-alpha therapy. Chest. 2003;124(6):2395–7.

    Article  PubMed  Google Scholar 

  53. Meletiadis J, Walsh TJ, Choi EH, Pappas PG, Ennis D, Douglas J, et al. Study of common functional genetic polymorphisms of FCGR2A, 3A and 3B genes and the risk for cryptococcosis in HIV-uninfected patients. Med Mycol. 2007;45(6):513–8.

    Article  CAS  PubMed  Google Scholar 

  54. Rohatgi S, Gohil S, Kuniholm MH, Schultz H, Dufaud C, Armour KL, et al. Fc gamma receptor 3A polymorphism and risk for HIV-associated cryptococcal disease. mBio. 2013;4(5):e00573–00513. Study that implicates Fc polymorphisms as a contributing risk factor for CME in HIV-infected patients.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Joshi NS, Fisher BT, Prasad PA, Zaoutis TE. Epidemiology of cryptococcal infection in hospitalized children. Pediatr Infect Dis J. 2010;29(12):e91–5.

    Article  PubMed  Google Scholar 

  56. Severo CB, Xavier MO, Gazzoni AF, Severo LC. Cryptococcosis in children. Paediatr Respir Rev. 2009;10(4):166–71.

    Article  PubMed  Google Scholar 

  57. Meiring ST, Quan VC, Cohen C, Dawood H, Karstaedt AS, McCarthy KM, et al. A comparison of paediatric- and adult-onset cryptococcosis detected through population-based surveillance in South Africa, 2005–2007. AIDS 2012.

  58. Lizarazo J, Escandon P, Agudelo CI, Castaneda E. Cryptococcosis in Colombian children and literature review. Mem Inst Oswaldo Cruz. 2014;109(6):797–804. Most recent description of pediatric cryptoccosis. Compares the Colombian experience with earlier pediatric reports.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Huang KY, Huang YC, Hung IJ, Lin TY. Cryptococcosis in nonhuman immunodeficiency virus-infected children. Pediatr Neurol. 2010;42(4):267–70.

    Article  PubMed  Google Scholar 

  60. Yuanjie Z, Jianghan C, Nan X, Xiaojun W, Hai W, Wanqing L, et al. Cryptococcal meningitis in immunocompetent children. Mycoses. 2012;55(2):168–71.

    PubMed  Google Scholar 

  61. Gumbo T, Kadzirange G, Mielke J, Gangaidzo IT, Hakim JG. Cryptococcus neoformans meningoencephalitis in African children with acquired immunodeficiency syndrome. Pediatr Infect Dis J. 2002;21(1):54–6.

    Article  PubMed  Google Scholar 

  62. Mullan PC, Steenhoff AP, Draper H, Wedin T, Bafana M, Anabwani G, et al. Etiology of meningitis among patients admitted to a tertiary referral hospital in Botswana. Pediatr Infect Dis J. 2011;30(7):620–2.

    Article  PubMed  Google Scholar 

  63. Owusu M, Nguah SB, Boaitey YA, Badu-Boateng E, Abubakr AR, Lartey RA, et al. Aetiological agents of cerebrospinal meningitis: a retrospective study from a teaching hospital in Ghana. Ann Clin Microbiol Antimicrob. 2012;11:28.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Patel M, Beckerman KP, Reznik S, Madan RP, Goldman DL. Transplacental transmission of Cryptococcus neoformans to an HIV-exposed premature neonate. J Perinatol. 2012;32(3):235–7.

    Article  CAS  PubMed  Google Scholar 

  65. Likasitwattanakul S, Poneprasert B, Sirisanthana V. Cryptococcosis in HIV-infected children. Southeast Asian J Trop Med Public Health. 2004;35(4):935–9.

    PubMed  Google Scholar 

  66. Gonzalez CE, Shetty D, Lewis LL, Mueller BU, Pizzo PA, Walsh TJ. Cryptococcosis in human immunodeficiency virus-infected children. Pediatr Infect Dis J. 1996;15(9):796–800.

    Article  CAS  PubMed  Google Scholar 

  67. Hansen J, Slechta ES, Gates-Hollingsworth MA, Neary B, Barker AP, Bauman S, et al. Large-scale evaluation of the immuno-mycologics lateral flow and enzyme-linked immunoassays for detection of cryptococcal antigen in serum and cerebrospinal fluid. Clin Vaccine Immunol. 2013;20(1):52–5. Large study that confirms the high sensitivity and specificity of LFA testing on serum and CSF in the diagnosis of CME.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Huang HR, Fan LC, Rajbanshi B, Xu JF. Evaluation of a new cryptococcal antigen lateral flow immunoassay in serum, cerebrospinal fluid and urine for the diagnosis of cryptococcosis: a meta-analysis and systematic review. PLoS One. 2015;10(5):e0127117. A meta-analysis that indicates high accuracy of serum and CSF LFA testing in CME diagnosis. Also reviews data on urine testing.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Kabanda T, Siedner MJ, Klausner JD, Muzoora C, Boulware DR. Point-of-care diagnosis and prognostication of cryptococcal meningitis with the cryptococcal antigen lateral flow assay on cerebrospinal fluid. Clin Infect Dis. 2014;58(1):113–6. Reports a correlation between high CSF LFA titers with both CSF fungal burden and mortality.

    Article  CAS  PubMed  Google Scholar 

  70. Lourens A, Jarvis JN, Meintjes G, Samuel CM. Rapid diagnosis of cryptococcal meningitis by use of lateral flow assay on cerebrospinal fluid samples: influence of the high-dose “hook” effect. J Clin Microbiol. 2014;52(12):4172–5. Details the importance of specimen dilution in LFA testing to avoid false negatives associated with antigen excess.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Perfect JR, Dismukes WE, Dromer F, Goldman DL, Graybill JR, Hamill RJ, et al. Clinical practice guidelines for the management of cryptococcal disease: 2010 update by the infectious diseases society of america. Clin Infect Dis. 2010;50(3):291–322.

    Article  PubMed  Google Scholar 

  72. van der Horst CM, Saag MS, Cloud GA, Hamill RJ, Graybill JR, Sobel JD, et al. Treatment of cryptococcal meningitis associated with the acquired immunodeficiency syndrome. National Institute of Allergy and Infectious Diseases Mycoses Study Group and AIDS Clinical Trials Group. N Engl J Med. 1997;337(1):15–21.

    Article  PubMed  Google Scholar 

  73. Dromer F, Bernede-Bauduin C, Guillemot D, Lortholary O. Major role for amphotericin B-flucytosine combination in severe cryptococcosis. PLoS ONE. 2008;3(8):e2870.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Bennett JE, Dismukes WE, Duma RJ, Medoff G, Sande MA, Gallis H, et al. A comparison of amphotericin B alone and combined with flucytosine in the treatment of cryptoccal meningitis. N Engl J Med. 1979;301(3):126–31.

    Article  CAS  PubMed  Google Scholar 

  75. Day JN, Chau TT, Lalloo DG. Combination antifungal therapy for cryptococcal meningitis. N Engl J Med. 2013;368(26):2522–3. A recent randomized control study that highligts the importances of combined amphotericin-5FC therapy in the initial treatement of CME.

    Article  CAS  PubMed  Google Scholar 

  76. Loyse A, Dromer F, Day J, Lortholary O, Harrison TS. Flucytosine and cryptococcosis: time to urgently address the worldwide accessibility of a 50-year-old antifungal. J Antimicrob Chemother. 2013;68(11):2435–44. A review of importance of 5-FC in the treatment of CME.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Nussbaum JC, Jackson A, Namarika D, Phulusa J, Kenala J, Kanyemba C, et al. Combination flucytosine and high-dose fluconazole compared with fluconazole monotherapy for the treatment of cryptococcal meningitis: a randomized trial in Malawi. Clin Infect Dis. 2010;50(3):338–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Jackson AT, Nussbaum JC, Phulusa J, Namarika D, Chikasema M, Kanyemba C, et al. A phase II randomized controlled trial adding oral flucytosine to high-dose fluconazole, with short-course amphotericin B, for cryptococcal meningitis. AIDS. 2012;26(11):1363–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Molefi M, Chofle AA, Molloy SF, Kalluvya S, Changalucha JM, Cainelli F, et al. AMBITION-cm: intermittent high dose Am Bisome on a high dose fluconazole backbone for cryptococcal meningitis induction therapy in sub-Saharan Africa: study protocol for a randomized controlled trial. Trials. 2015;16:276. A description of the pending tiral to examine the utility of short course of ambisome in conjuction with high dose fluconazole in the intial treatment of CME.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Bava AJ, Afeltra J, Negroni R, Diez RA. Interferon gamma increases survival in murine experimental cryptococcosis. Rev Inst Med Trop Sao Paulo. 1995;37(5):391–6.

    Article  CAS  PubMed  Google Scholar 

  81. Joly V, Saint-Julien L, Carbon C, Yeni P. In vivo activity of interferon-gamma in combination with amphotericin B in the treatment of experimental cryptococcosis. J Infect Dis. 1994;170(5):1331–4.

    Article  CAS  PubMed  Google Scholar 

  82. Jarvis JN, Meintjes G, Rebe K, Williams GN, Bicanic T, Williams A, et al. Adjunctive interferon-gamma immunotherapy for the treatment of HIV-associated cryptococcal meningitis: a randomized controlled trial. AIDS. 2012;26(9):1105–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Pappas PG, Bustamante B, Ticona E, Hamill RJ, Johnson PC, Reboli A, et al. Recombinant interferon- gamma 1b as adjunctive therapy for AIDS-related acute cryptococcal meningitis. J Infect Dis. 2004;189(12):2185–91.

    Article  CAS  PubMed  Google Scholar 

  84. Perfect JR, Granger DL, Durack DT. Effects of antifungal agents and gamma interferon on macrophage cytotoxicity for fungi and tumor cells. J Infect Dis. 1987;156(2):316–23.

    Article  CAS  PubMed  Google Scholar 

  85. Bicanic T, Meintjes G, Wood R, Hayes M, Rebe K, Bekker LG, et al. Fungal burden, early fungicidal activity, and outcome in cryptococcal meningitis in antiretroviral-naive or antiretroviral-experienced patients treated with amphotericin B or fluconazole. Clin Infect Dis. 2007;45(1):76–80.

    Article  CAS  PubMed  Google Scholar 

  86. Brizendine KD, Baddley JW, Pappas PG. Predictors of mortality and differences in clinical features among patients with Cryptococcosis according to immune status. PLoS One. 2013;8(3):e60431. A study that identifies cryptococcemia and increased ICP as risk factors for death in CME.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Guo J, Zhou J, Zhang S, Zhang X, Li J, Sun Y, et al. A case–control study of risk factors for HIV-negative children with cryptococcal meningitis in Shi Jiazhuang, China. BMC Infect Dis. 2012;12:376.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Denning DW, Armstrong RW, Lewis BH, Stevens DA. Elevated cerebrospinal fluid pressures in patients with cryptococcal meningitis and acquired immunodeficiency syndrome. Am J Med. 1991;91(3):267–72.

    Article  CAS  PubMed  Google Scholar 

  89. Hussey F, Schanzer B, Katzman R. A simple constant-infusion manometric test for measurement of CSF absorption. II. Clinical studies. Neurology. 1970;20(7):665–80.

    Article  CAS  PubMed  Google Scholar 

  90. Rolfes MA, Hullsiek KH, Rhein J, Nabeta HW, Taseera K, Schutz C, et al. The effect of therapeutic lumbar punctures on acute mortality from cryptococcal meningitis. Clin Infect Dis. 2014;59(11):1607–14. A study that highlights the importance of therapeutic lumbar puncture in reducing the mortality of CME.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Beardsley J, Wolbers M, Kibengo FM, Ggayi AB, Kamali A, Cuc NT, et al. Adjunctive dexamethasone in HIV-associated cryptococcal meningitis. N Engl J Med. 2016;374(6):542–54. Large, double blinded, controlled study documenting increased adverse effects associated with corticosteroid use in CME among HIV-infected indviduals.

    Article  CAS  PubMed  Google Scholar 

  92. Franco-Paredes C, Womack T, Bohlmeyer T, Sellers B, Hays A, Patel K, et al. Management of Cryptococcus gattii meningoencephalitis. Lancet Infect Dis. 2015;15(3):348–55. A review that includes a discussion on the management of increased ICP (including the use of corticosteroids) in patients with CME secondary to C. gattii.

    Article  PubMed  Google Scholar 

  93. Seaton RA, Verma N, Naraqi S, Wembri JP, Warrell DA. The effect of corticosteroids on visual loss in Cryptococcus neoformans var. gattii meningitis. Trans R Soc Trop Med Hyg. 1997;91(1):50–2.

    Article  CAS  PubMed  Google Scholar 

  94. Meya DB, Okurut S, Zziwa G, Rolfes MA, Kelsey M, Cose S, et al. Cellular immune activation in cerebrospinal fluid from ugandans with cryptococcal meningitis and immune reconstitution inflammatory syndrome. J Infect Dis. 2015;211(10):1597–606. Identifies the presence of CD4+ T cells and monocytes in the CSF as a risk factor for CME- associated IRIS.

    Article  PubMed  Google Scholar 

  95. Hashimoto H, Hatakeyama S, Yotsuyanagi H. Development of cryptococcal immune reconstitution inflammatory syndrome 41 months after the initiation of antiretroviral therapy in an AIDS patient. AIDS Res Ther. 2015;12:33. A report describing a delayed presentatiion of IRIS-associated CME.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Hassan H, Cotton MF, Rabie H. Complicated and protracted cryptococcal disease in HIV-infected children. Pediatr Infect Dis J. 2015;34(1):62–5. A small series of pediatric CME cases that highlights the potential contribution of IRIS to protracted cryptococcal disease.

    Article  PubMed  Google Scholar 

  97. Zolopa A, Andersen J, Powderly W, Sanchez A, Sanne I, Suckow C, et al. Early antiretroviral therapy reduces AIDS progression/death in individuals with acute opportunistic infections: a multicenter randomized strategy trial. PLoS One. 2009;4(5):e5575.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Bisson GP, Molefi M, Bellamy S, Thakur R, Steenhoff A, Tamuhla N, et al. Early versus delayed antiretroviral therapy and cerebrospinal fluid fungal clearance in adults with HIV and cryptococcal meningitis. Clin Infect Dis. 2013;56(8):1165–73. Study that suggest that early ART does not result in early CSF clearance but may increase the risk of IRIS.

    Article  CAS  PubMed  Google Scholar 

  99. Boulware DR, Meya DB, Muzoora C, Rolfes MA, Huppler Hullsiek K, Musubire A, et al. Timing of antiretroviral therapy after diagnosis of cryptococcal meningitis. N Engl J Med. 2014;370(26):2487–98. A recent report that describes significant increase in mortality associated with early ART in CME, espcially for those with low initial CSF white blood cell counts.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Scriven JE, Rhein J, Hullsiek KH, von Hohenberg M, Linder G, Rolfes MA, et al. Early ART after cryptococcal meningitis is associated with cerebrospinal fluid pleocytosis and macrophage activation in a multisite randomized trial. J Infect Dis. 2015;212(5):769–78. A characterization of the cellular response of the CSF in patients with CME that finds evidence for inappropriate macrophage activation in pateints with IRIS.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Chang CC, Lim A, Omarjee S, Levitz SM, Gosnell BI, Spelman T, et al. Cryptococcosis-IRIS is associated with lower cryptococcus-specific IFN-gamma responses before antiretroviral therapy but not higher T-cell responses during therapy. J Infect Dis. 2013;208(6):898–906. A study that reports low cryptococal specfic T-cells prior to ART therapy as a risk factor for the development of IRIS.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David L. Goldman.

Ethics declarations

Conflict of Interest

Drs Kao and Goldman declare no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain studies with human or animal subjects performed by the author.

Additional information

This article is part of the Topical Collection on Pediatric Infectious Diseases

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kao, C., Goldman, D.L. Cryptococcal Disease in HIV-Infected Children. Curr Infect Dis Rep 18, 27 (2016). https://doi.org/10.1007/s11908-016-0534-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11908-016-0534-9

Keywords

Navigation