Skip to main content

Advertisement

Log in

Urinary tract infection in women: New pathogenic considerations

  • Published:
Current Infectious Disease Reports Aims and scope Submit manuscript

Abstract

Urinary tract infection (UTI) is a common clinical syndrome in women. Most UTIs are caused by Escherichia coli. UTI has become a productive and accessible model system for studying the molecular details of how bacteria interact with mucosal surfaces and the nature of the host response. Important advances in the past year include the discovery of new virulence determinants; better understanding the pathogenic role of the ubiquitous motility organelle, the flagellum; and defining aspects of coordinate regulation of virulence determinants in the pathogenesis of UTI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Hooton T: The current management strategies for community- acquired urinary tract infection. Infect Dis Clin North Am 2003, 17:303–332.

    Article  PubMed  Google Scholar 

  2. Bent S, Nallamothu BK, Simel DL, et al.: Does this woman have an acute uncomplicated urinary tract infection? JAMA 2002, 287:2701–2710.

    Article  PubMed  Google Scholar 

  3. Hooton TM, Scholes D, Hughes JP, et al.: A prospective study of risk factors for symptomatic urinary tract infection in young women. N Engl J Med 1996, 335:468–474. [Published comments appear in N Engl J Med 1996, 335:511–512 and N Engl J Med 1997, 336:381; author reply 381–382.]

    Article  PubMed  CAS  Google Scholar 

  4. Foxman B, Barlow R, D’Arcy H, et al.: Urinary tract infection. self-reported incidence and associated costs. Ann Epidemiol 2000, 10:509–515.

    Article  PubMed  CAS  Google Scholar 

  5. Ronald A, Harding G: Complicated urinary tract infections. Infect Dis Clin North Am 1997, 11:583–592.

    Article  PubMed  CAS  Google Scholar 

  6. Ferri C, Marchetti F, Nickel JC, Naber KG: Prevalence and clinical management of complicated urinary tract infections in Italy: a prospective multicenter epidemiological study in urological outpatients. J Chemother 2005, 17:601–606.

    PubMed  CAS  Google Scholar 

  7. Hooton TM, Scholes D, Stapleton AE, et al.: A prospective study of asymptomatic bacteriuria in sexually active young women. N Engl J Med 2000, 343:992–997. [Published comment appears in N Engl J Med 2000, 343:1037-1039.]

    Article  PubMed  CAS  Google Scholar 

  8. Johnson J: Microbial virulence determinants and the pathogenesis of urinary tract infection. Infect Dis Clin North Am 2003, 17:261–278, viii.

    Article  PubMed  Google Scholar 

  9. Johnson JR: Virulence factors in Escherichia coli urinary tract infection. Clin Microbiol Rev 1991, 4:80–128.

    PubMed  CAS  Google Scholar 

  10. Roberts JA, Marklund BI, Ilver D, et al.: The Gal(alpha 1–4)Gal-specific tip adhesin of Escherichia coli P-fimbriae is needed for pyelonephritis to occur in the normal urinary tract. Proc Natl Acad Sci USA 1994, 91:11889–11893.

    Article  PubMed  CAS  Google Scholar 

  11. Winberg J, Mollby R, Bergstrom J, et al.: The PapG-adhesin at the tip of P-fimbriae provides Escherichia coli with a competitive edge in experimental bladder infections of cynomolgus monkeys. J Exp Med 1995, 182:1695–1702.

    Article  PubMed  CAS  Google Scholar 

  12. Leffler H, Svanborg-Eden C: Chemical identification of a glycosphingolipid receptor for Escherichia coli attaching to human urinary tract cells and agglutinating human erythrocytes. FEMS Microbiol Lett 1980, 8:127–134.

    Article  CAS  Google Scholar 

  13. Leffier H, Svanborg-Eden C: Glycolipid receptors for uropathogenic Escherichia coli on human erythrocytes and uroepithelial cells. Infect Immun 1981, 34:920–929.

    Google Scholar 

  14. Leffier H, Lomberg H, Svanborg-Eden C: Glycolipid receptors for bacterial adhesion on human urinary tract epithelium: relation to blood group and age. In Host Parasite Interactions in Urinary Tract Infections. Edited by Kass EH, Svanborg-Eden C. Chicago, IL: University of Chicago Press; 1989:93–99.

    Google Scholar 

  15. Otto G, Burdick M, Strieter R, Godaly G: Chemokine response to febrile urinary tract infection. Kidney Int 2005, 68:62–70.

    Article  PubMed  CAS  Google Scholar 

  16. Hedlund M, Svensson M, Nilsson A, et al.: Role of the ceramide-signaling pathway in cytokine responses to P-fimbriated Escherichia coli. J Exp Med 1996, 183:1037–1044.

    Article  PubMed  CAS  Google Scholar 

  17. Hedlund M, Duan RD, Nilsson A, Svanborg C: Sphingomyelin, glycosphingolipids and ceramide signalling in cells exposed to P-fimbriated Escherichia coli. Mol Microbiol 1998, 29:1297–1306.

    Article  PubMed  CAS  Google Scholar 

  18. Hedlund M, Wachtler C, Johansson E, et al.: P fimbriaedependent, lipopolysaccharide-independent activation of epithelial cytokine responses. Mol Microbiol 1999, 33:693–703.

    Article  PubMed  CAS  Google Scholar 

  19. Frendeus B, Wachtler C, Hedlund M, et al.: Escherichia coli P fimbriae utilize the Toll-like receptor 4 pathway for cell activation. Mol Microbiol 2001, 40:37–51.

    Article  PubMed  CAS  Google Scholar 

  20. Wullt B, Bergsten G, Carstensen J, et al.: Mucosal host responses to bacteriuria in colonic and ileal neobladders. Eur Urol 2006, Epub ahead of print.

  21. Wullt B, Bergsten G, Connell H, et al.: P-fimbriae trigger mucosal responses to Escherichia coli in the human urinary tract. Cell Microbiol 2001, 3:255–264.

    Article  PubMed  CAS  Google Scholar 

  22. Jones CH, Pinkner JS, Roth R, et al.: FimH adhesin of type 1 pili is assembled into a fibrillar tip structure in the Enterobacteriaceae. Proc Natl Acad Sci USA 1995, 92:2081–2085.

    Article  PubMed  CAS  Google Scholar 

  23. Xu Z, Jones CH, Haslam D, et al.: Molecular dissection of PapD interaction with PapG reveals two chaperone-binding sites. Mol Microbiol 1995, 16:1011–1020.

    Article  PubMed  CAS  Google Scholar 

  24. Mulvey MA, Schilling JD, Martinez JJ, Hultgren SJ: Bad bugs and beleaguered bladders: interplay between uropathogenic Escherichia coli and innate host defenses. Proc Natl Acad Sci USA 2000, 97:8829–8835.

    Article  PubMed  CAS  Google Scholar 

  25. Mulvey MA, Hultgren SJ: Cell biology. Bacterial spelunkers. Science 2000, 289:732–733.

    Article  PubMed  CAS  Google Scholar 

  26. Justice SS, Hung C, Theriot JA, et al.: Differentiation and developmental pathways of uropathogenic Escherichia coli in urinary tract pathogenesis. Proc Natl Acad Sci USA 2004, 101:1333–1338.

    Article  PubMed  CAS  Google Scholar 

  27. Eto DS, Sundsbak JL, Mulvey MA: Actin-gated intracellular growth and resurgence of uropathogenic Escherichia coli. Cell Microbiol 2006, 8:704–717.

    Article  PubMed  CAS  Google Scholar 

  28. Duncan MJ, Mann EL, Cohen MS, et al.: The distinct binding specificities exhibited by enterobacterial type 1 fimbriae are determined by their fimbrial shafts. J Biol Chem 2005, 280:37707–37716. In this elegant study, the authors dissect various functions of Type 1 fimbriae, revealing a critical but previously unsuspected role for the shaft in determining binding specificity of the pilus.

    Article  PubMed  CAS  Google Scholar 

  29. Das M, Hart-Van Tassell A, Urvil PT, et al.: Hydrophilic domain II of Escherichia coli Dr fimbriae facilitates cell invasion. Infect Immun 2005, 73:6119–6126.

    Article  PubMed  CAS  Google Scholar 

  30. Davis JM, Rasmussen SB, O’Brien AD: Cytotoxic necrotizing factor type 1 production by uropathogenic Escherichia coli modulates polymorphonuclear leukocyte function. Infect Immun 2005, 73:5301–5310.

    Article  PubMed  CAS  Google Scholar 

  31. Kouokam JC, Wai SN, Fallman M, et al.: Active cytotoxic necrotizing factor 1 associated with outer membrane vesicles from uropathogenic Escherichia coli. Infect Immun 2006, 74:2022–2030.

    Article  PubMed  CAS  Google Scholar 

  32. Tomenius H, Pernestig A-K, Jonas K, et al.: The Escherichia coli BarA-UvrY two-component system is a virulence determinant in the urinary tract. BMC Microbiol 2006, 6:27.

    Article  PubMed  Google Scholar 

  33. Johnson JR, Jelacic S, Schoening LM, et al.: The IrgA homologue adhesin Iha is an Escherichia coli virulence factor in murine urinary tract infection. Infect Immun 2005, 73:965–971. This study describes a unique new virulence determinant of UPEC, Iha, the first known UPEC adhesin that is also part of an iron regulatory system.

    Article  PubMed  CAS  Google Scholar 

  34. Leveille S, Caza M, Johnson JR, et al.: Iha from an Escherichia coli urinary tract infection outbreak clonal group A strain is expressed in vivo in the mouse urinary tract and functions as a catecholate siderophore receptor. Infect Immun 2006, 74:3427–3436.

    Article  PubMed  CAS  Google Scholar 

  35. Lane MC, Lockatell V, Monterosso G, et al.: Role of motility in the colonization of uropathogenic Escherichia coli in the urinary tract. Infect Immun 2005, 73:7644–7656. This study demonstrates the logical and long-suspected concept that bacterial motility confers an advantage to UPEC in the urinary tract.

    Article  PubMed  CAS  Google Scholar 

  36. Wright KJ, Seed PC, Hultgren SJ: Uropathogenic Escherichia coli flagella aid in efficient urinary tract colonization. Infect Immun 2005, 73:7657–7668. As does the above study, this demonstrates the concept that bacterial motility confers an advantage to UPEC in the urinary tract.

    Article  PubMed  CAS  Google Scholar 

  37. Bidet P, Bonacorsi S, Clermont O, et al.: Multiple insertional events, restricted by the genetic background, have led to acquisition of pathogenicity Island IIJ96-like domains among Escherichia coli strains of different clinical origins. Infect Immun 2005, 73:4081–4087.

    Article  PubMed  CAS  Google Scholar 

  38. Soto SM, Jimenez de Anta MT, Vila J: Quinolones induce partial or total loss of pathogenicity islands in uropathogenic Escherichia coli by SOS-dependent or -independent pathways, respectively. Antimicrob Agents Chemother 2006, 50:649–653.

    Article  PubMed  CAS  Google Scholar 

  39. Roos V, Klemm P: Global gene expression profiling of the asymptomatic bacteriuria Escherichia coli strain 83972 in the human urinary tract. Infect Immun 2006, 74:3565–3575.

    Article  PubMed  CAS  Google Scholar 

  40. Hull R, Rudy D, Donovan W, et al.: Urinary tract infection prophylaxis using Escherichia coli 83972 in spinal cord injured patients. J Urol 2000, 163:872–877.

    Article  PubMed  CAS  Google Scholar 

  41. Hull RA, Rudy DC, Donovan WH, et al.: Virulence properties of Escherichia coli 83972, a prototype strain associated with asymptomatic bacteriuria. Infect Immun 1999, 67:429–432.

    PubMed  CAS  Google Scholar 

  42. Klemm P, Roos V, Ulett GC, et al.: Molecular characterization of the Escherichia coli asymptomatic bacteriuria Strain 83972: the taming of a pathogen. Infect Immun 2006, 74:781–785.

    Article  PubMed  CAS  Google Scholar 

  43. Roos V, Schembri MA, Ulett GC, Klemm P: Asymptomatic bacteriuria Escherichia coli strain 83972 carries mutations in the foc locus and is unable to express F1C fimbriae. Microbiology 2006, 152:1799–1806.

    Article  PubMed  CAS  Google Scholar 

  44. Bergsten G, Samuelsson M, Wullt B, et al.: PapG-dependent adherence breaks mucosal inertia and triggers the innate host response. J Infect Dis 2004, 189:1734–1742.

    Article  PubMed  CAS  Google Scholar 

  45. Holden NJ, Totsika M, Mahler E, et al.: Demonstration of regulatory cross-talk between P fimbriae and type 1 fimbriae in uropathogenic Escherichia coli. Microbiology 2006, 152:1143–1153. This study demonstrates coordinate regulation of two of the most prevalent and well-known UPEC virulence determinants, P and Type 1 fimbriae. This important concept may explain how bacteria adapt extemporaneously and sequentially to differing environmental conditions prevalent in the human urogenital tract.

    Article  PubMed  CAS  Google Scholar 

  46. Snyder JA, Haugen BJ, Lockatell CV, et al.: Coordinate expression of fimbriae in uropathogenic Escherichia coli. Infect Immun 2005, 73:7588–7596. As with the reference above, this study demonstrates coordinate regulation of two of the most prevalent and well-known UPEC virulence determinants, P and Type 1 fimbriae.

    Article  PubMed  CAS  Google Scholar 

  47. Roos V, Ulett GC, Schembri MA, Klemm P: The asymptomatic bacteriuria Escherichia coli strain 83972 outcompetes uropathogenic E. coli strains in human urine. Infect Immun 2006, 74:615–624.

    Article  PubMed  CAS  Google Scholar 

  48. Godaly G, Bergsten G, Hang L, et al.: Neutrophil recruitment, chemokine receptors, and resistance to mucosal infection. J Leukoc Biol 2001, 69:899–906.

    PubMed  CAS  Google Scholar 

  49. Smithson A, Sarrias MR, Barcelo J, et al.: Expression of interleukin-8 receptors (CXCR1 and CXCR2) in premenopausal women with recurrent urinary tract infections. Clin Diagn Lab Immunol 2005, 12:1358–1363.

    Article  PubMed  CAS  Google Scholar 

  50. Benfield TL, Dahl M, Nordestgaard BG, Tybjaerg-Hansen A: Influence of the Factor V Leiden mutation on infectious disease susceptibility and outcome: A population-based study. J Infect Dis 2005, 192:1851–1857.

    Article  PubMed  CAS  Google Scholar 

  51. Hunstad DA, Justice SS, Hung CS, et al.: Suppression of bladder epithelial cytokine responses by uropathogenic Escherichia coli. Infect Immun 2005, 73:3999–4006.

    Article  PubMed  CAS  Google Scholar 

  52. Patole PS, Schubert S, Hildinger K, et al.: Toll-like receptor- 4: Renal cells and bone marrow cells signal for neutrophil recruitment during pyelonephritis. Kidney Int 2005, 68:2582–2587.

    Article  PubMed  CAS  Google Scholar 

  53. Sadeghi M, Daniel V, Naujokat C, et al.: Strikingly higher interleukin (IL)-1alpha, IL-1beta and soluble interleukin-1 receptor antagonist (sIL-1RA) but similar IL-2, sIL-2R, IL-3, IL-4, IL-6, sIL-6R, IL-10, tumour necrosis factor (TNF)-alpha, transforming growth factor (TGF)-beta2 and interferon IFN-gamma urine levels in healthy females compared to healthy males: protection against urinary tract injury? Clin and Exper Immun 2005, 142:312–317.

    Article  CAS  Google Scholar 

  54. Meyer-Siegler KL, Iczkowski KA, Vera PL: Macrophage migration inhibitory factor is increased in the urine of patients with urinary tract infection: Macrophage migration inhibitory factor-protein complexes in human urine. J Urol 2006, 175:1523–1528.

    Article  PubMed  CAS  Google Scholar 

  55. Tartof SY, Solberg OD, Manges AR, Riley LW: Analysis of a uropathogenic Escherichia coli clonal group by multilocus sequence typing. J Clin Microbiol 2005, 43:5860–5864.

    Article  PubMed  CAS  Google Scholar 

  56. Redondo-Lopez V, Cook RL, Sobel JD: Emerging role of lactobacilli in the control and maintenance of the vaginal microflora. Rev Infect Dis 1990, 12:856–872.

    PubMed  CAS  Google Scholar 

  57. Antonio MA, Hawes SE, Hillier SL: The identification of vaginal Lactobacillus species and the demographic and microbiologic characteristics of women colonized by these species. J Infect Dis 1999, 180:1950–1956.

    Article  PubMed  CAS  Google Scholar 

  58. Gupta K, Hillier SL, Hooton TM, et al.: Effects of contraceptive method on the vaginal microbial flora: a prospective evaluation. J Infect Dis 2000, 181:595–601.

    Article  PubMed  CAS  Google Scholar 

  59. Gupta K, Stapleton AE, Hooton TM, et al.: Inverse association of H2O2-producing lactobacilli and vaginal Escherichia coli colonization in women with recurrent urinary tract infections. J Infect Dis 1998, 178:446–450.

    PubMed  CAS  Google Scholar 

  60. Hawes SE, Hillier SL, Benedetti J, et al.: Hydrogen peroxide-producing lactobacilli and acquisition of vaginal infections. J Infect Dis 1996, 174:1058–1063.

    PubMed  CAS  Google Scholar 

  61. Atassi F, Brassart D, Grob P, et al.: Vaginal Lactobacillus isolates inhibit uropathogenic Escherichia coli. FEMS Microbiol Lett 2006, 257:132–138.

    Article  PubMed  CAS  Google Scholar 

  62. Kwok L, Stapleton AE, Stamm WE, et al.: Adherence of Lactobacillus crispatus to vaginal epithelial cells from women with and without a history of recurrent UTI. J Urol 2006, In press.

  63. Jepson RG, Mihaljevic L, Craig J: Cranberries for preventing urinary tract infections. Cochrane Database Syst Rev 2001, 3:CD001321.

    PubMed  Google Scholar 

  64. Howell AB, Vorsa N, Der Marderosian A, Foo L: Inhibition of the adherence of P-fimbriated Escherichia coli to uroepithelial-cell surfaces by proanthocyanidin extracts from cranberries. N Engl J Med 1998, 339:1085–1086.

    Article  PubMed  CAS  Google Scholar 

  65. Foo L, Lu Y, Howell AB, Vorsa N: A-type proanthocyanidin trimers from cranbery that inhibit adherence of uropathogenic P-fimbriated Eschericha coli. J Nat Prods 2000, 63:1225–1229.

    Article  CAS  Google Scholar 

  66. Turner A, Chen SN, Joike MK, et al.: Inhibition of uropathogenic Escherichia coli by cranberry juice: a new antiadherence assay. J Agric Food Chem 2005, 53:8940–8947.

    Article  PubMed  CAS  Google Scholar 

  67. Di Martino P, Agniel R, David K, et al.: Reduction of Escherichia coli adherence to uroepithelial bladder cells after consumption of cranberry juice: a double-blind randomized placebo-controlled cross-over trial. World J Urol 2006, 24:21–27.

    Article  PubMed  Google Scholar 

  68. Greenberg JA, Newmann SJ, Howell AB: Consumption of sweetened dried cranberries versus unsweetened raisins for inhibition of uropathogenic Escherichia coli adhesion in human urine: A pilot study. J Altern Complement Med 2005, 11:875–878.

    Article  PubMed  Google Scholar 

  69. Chen SL, Hung C-S, Xu J, et al.: Identification of genes subject to positive selection in uropathogenic strains of Escherichia coli: A comparative genomics approach. PNAS 2006, 103:5977–5982.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ann E. Stapleton MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stapleton, A.E. Urinary tract infection in women: New pathogenic considerations. Curr Infect Dis Rep 8, 465–472 (2006). https://doi.org/10.1007/s11908-006-0021-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11908-006-0021-9

Keywords

Navigation