Skip to main content
Log in

Multidrug-resistant pathogens: Mechanisms of resistance and epidemiology

  • Published:
Current Infectious Disease Reports Aims and scope Submit manuscript

Abstract

Resistance to antimicrobial agents among bacteria and fungi is a persistent problem complicating the management of critically ill patients. To understand the issues involved in resistance in critical care, it is essential to understand the epidemiology and mechanisms of resistance. β-lactam resistance in pneumococci, and penicillin and chloramphenicol resistance in Neisseria meningitidis, have complicated the management of meningitis. Vancomycin resistance in enterococci and methicillin resistance in Staphylococcus aureus have disseminated among hospitals, nursing homes and, in some cases, community patients. Glycopeptide resistance in S. aureus has recently been described in clinical isolates; the potential for spread of this resistance trait is concerning. Resistance to broad-spectrum cephalosporins is a persistent challenge in the management of infections caused by Pseudomonas areuginosa, and Enterobacter species, as well as other Enterobacteriaceae. Azole resistance in Candida species. has also complicated the treatment of nosocomial infections. Resistance to antimicrobial drugs is a persistent and emerging problem and presents major therapeutic challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Neu HC: The crisis in antibiotic resistance. Science 1992, 257:1064–1073.

    Article  PubMed  CAS  Google Scholar 

  2. Hakenbeck R, Briese T, Chalkley L, et al.: Antigenic variation of penicillin-binding proteins from penicillin-resistant clinical strains of Streptococcus pneumoniae. J Infect Dis 1991, 164:313–319.

    PubMed  CAS  Google Scholar 

  3. Spratt BG: Resistance to antibiotics mediated by target alterations. Science 1994, 264:388–393.

    Article  PubMed  CAS  Google Scholar 

  4. Doern GV, Pfaller MA, Kugler K, et al.: Prevalence of antimicrobial resistance among respiratory tract isolates of Streptococcus pneumoniae in North America: 1997 results from the SENTRY antimicrobial surveillance program. Clin Infect Dis 1998, 27:764–770.

    PubMed  CAS  Google Scholar 

  5. Friedland IR, McCracken GH Jr: Management of infections caused by antibiotic-resistant Streptococcus pneumoniae. N Engl J Med 1994, 331:377–382.

    Article  PubMed  CAS  Google Scholar 

  6. Klugman KP: Management of antibiotic-resistant pneumococcal infections. J Antimicrob Chemother 1994, 34:191–193.

    Article  PubMed  CAS  Google Scholar 

  7. Tomasz A: Antibiotic resistance in Streptococcus pneumoniae. Clin Infect Dis 1997, 24(Suppl 1):S85-S88.

    PubMed  CAS  Google Scholar 

  8. Campbell GD Jr, Silberman R: Drug-resistant Streptococcus pneumoniae. Clin Infect Dis 1998, 26:1188–1195. This is a good overview of the mechanisms of pneumococcal resistance, molecular and clinical epidemiology, and treatment options.

    PubMed  Google Scholar 

  9. Pankuch GA, Visalli MA, Jacobs MR, Appelbaum PC: Susceptibilities of penicillin- and erythromycin-susceptible and - resistant pneumococci to HMR 3647 (RU 66647), a new ketolide, compared with susceptibilities to 17 other agents. Antimicrob Agents Chemother 1998, 42:624–630.

    PubMed  CAS  Google Scholar 

  10. Petersen PJ, Jacobus NV, Weiss WJ, et al.: In vitro and in vivo antibacterial activities of a novel glycylcycline, the 9-t-butylglycylamido derivative of minocycline (GAR-936). Antimicrob Agents Chemother 1999, 43:738–744.

    PubMed  CAS  Google Scholar 

  11. Nakashio S, Iwasawa H, Dun FY, et al.: Everninomicin, a new oligosaccharide antibiotic: its antimicrobial activity, post-antibiotic effect and synergistic bactericidal activity. Drugs Exp Clin Res 1995, 21:7–16.

    PubMed  CAS  Google Scholar 

  12. Williamson R, le Bouguenec C, Gutmann L, Horaud T: One or two low affinity penicillin-binding proteins may be responsible for the range of susceptibility of Enterococcus faecium to benzylpenicillin. J Gen Microbiol 1985, 131:1933–1940.

    PubMed  CAS  Google Scholar 

  13. Klare I, Heier H, Claus H, et al.: Enterococcus faecium strains with vanA-mediated high-level glycopeptide resistance isolated from animal foodstuffs and fecal samples of humans in the community. Microb Drug Resist 1995, 1:265–272.

    PubMed  CAS  Google Scholar 

  14. Eliopoulos GM: Vancomycin-resistant enterococci. Mechanism and clinical relevance. Infect Dis Clin North Am 1997, 11:851–865. This article offers a thorough review of the resistance mechanisms in VRE, phenotypic and genotypic classifications, epidemiology, and treatment options.

    Article  PubMed  CAS  Google Scholar 

  15. Kaye KS, Fraimow HS, Abrutyn E: Pathogens resistant to antimicrobial agents: epidemiology, molecular mechanisms, and clinical management. Infect Dis Clin North Am 2000, 14:293–319. This article reviews the epidemiology, mechanisms of resistance and treatment options for bacterial pathogens resistant to multiple antimicrobial agents.

    Article  PubMed  CAS  Google Scholar 

  16. Linden PK: Clinical implications of nosocomial grampositive bacteremia and superimposed antimicrobial resistance. Am J Med 1998, 104:24S-33S.

    Article  PubMed  CAS  Google Scholar 

  17. Rybak MJ, Cappelletty DM, Moldovan T, et al.: Comparative in vitro activities and postantibiotic effects of the oxazolidinone compounds eperezolid (PNU-100592) and linezolid (PNU-100766) versus vancomycin against Staphylococcus aureus, coagulase-negative staphylococci, Enterococcus faecalis, and Enterococcus faecium. Antimicrob Agents Chemother 1998, 42:721–724.

    Article  PubMed  CAS  Google Scholar 

  18. Herold BC, Immergluck LC, Maranan MC, et al.: Communityacquired methicillin-resistant Staphylococcus aureus in children with no identified predisposing risk. JAMA 1998, 279:593–598.

    Article  PubMed  CAS  Google Scholar 

  19. Smith TL, Pearson ML, Wilcox KR, et al.: Emergence of vancomycin resistance in Staphylococcus aureus. Glycopeptide-Intermediate Staphylococcus aureus Working Group. N Engl J Med 1999, 340:493–501. Using thorough investigation, this report describes the molecular and clinical characteristics of vancomycin-intermediate-susceptible-Staphylococcus aureus (VISA) isolates, with insight into potential risk factors for patient acquisition and mechanisms of resistance. It also provides recommendations for preventing the spread of glycopeptideresistant S. aureus.

    Article  PubMed  CAS  Google Scholar 

  20. Tenover FC, Lancaster MV, Hill BC, et al.: Characterization of staphylococci with reduced susceptibilities to vancomycin and other glycopeptides [erratum: J Clin Microbiol 1998, 36(7):2167]. J Clin Microbiol 1998, 36:1020–1027.

    PubMed  CAS  Google Scholar 

  21. Sieradzki K, Tomasz A: Suppression of glycopeptide resistance in a highly teicoplanin-resistant mutant of Staphylococcus aureus by transposon inactivation of genes involved in cell wall synthesis. Microb Drug Resist 1998, 4:159–168.

    PubMed  CAS  Google Scholar 

  22. Moreira B, Boyle-Vavra S, deJonge BL, Daum RS: Increased production of penicillin-binding protein 2, increased detection of other penicillin-binding proteins, and decreased coagulase activity associated with glycopeptide resistance in Staphylococcus aureus. Antimicrob Agents Chemother 1997, 41:1788–1793.

    PubMed  CAS  Google Scholar 

  23. Hiramatsu K, Aritaka N, Hanaki H, et al.: Dissemination in Japanese hospitals of strains of Staphylococcus aureus heterogeneously resistant to vancomycin. Lancet 1997, 350:1670–1673.

    Article  PubMed  CAS  Google Scholar 

  24. Hoogkamp-Korstanje JA: In-vitro activities of ciprofloxacin, levofloxacin, lomefloxacin, ofloxacin, pefloxacin, sparfloxacin and trovafloxacin against gram-positive and gramnegative pathogens from respiratory tract infections. J Antimicrob Chemother 1997, 40:427–431.

    Article  PubMed  CAS  Google Scholar 

  25. Klugman KP, Madhi SA: Emergence of drug resistance. Impact on bacterial meningitis. Infect Dis Clin North Am 1999, 13:637–646. This article reviews the epidemiology and mechanisms of antimicrobial resistance in Neisseria meningitidis, and discusses the clinical implications.

    Article  PubMed  CAS  Google Scholar 

  26. Fermer C, Kristiansen BE, Skold O, Swedberg G: Sulfonamide resistance in Neisseria meningitidis as defined by site-directed mutagenesis could have its origin in other species. J Bacteriol 1995, 177:4669–4675.

    PubMed  CAS  Google Scholar 

  27. Abadi FJ, Yakubu DE, Pennington TH: In vitro activities of meropenem and other antimicrobial agents against British meningococcal isolates. Chemotherapy 1999, 45:253–257.

    Article  PubMed  CAS  Google Scholar 

  28. Saez Nieto JA, Vazquez JA: Moderate resistance to penicillin in Neisseria meningitidis. Microbiologia 1997, 13:337–342.

    Google Scholar 

  29. Rosenstein NE, Stocker SA, Popovic T, et al.: Antimicrobial resistance of Neisseria meningitidis in the United States, 1997. The Active Bacterial Core Surveillance (ABCs) Team. Clin Infect Dis 2000, 30:212–213.

    Article  PubMed  CAS  Google Scholar 

  30. Galimand M, Gerbaud G, Guibourdenche M, et al.: High-level chloramphenicol resistance in Neisseria meningitidis [erratum: N Engl J Med 1999, 340(10):824]. N Engl J Med 1998, 339:868–874.

    Article  PubMed  CAS  Google Scholar 

  31. Abadi FJ, Carter PE, Cash P, Pennington TH: Rifampin resistance in Neisseria meningitidis due to alterations in membrane permeability. Antimicrob Agents Chemother 1996, 40:646–651.

    PubMed  CAS  Google Scholar 

  32. van de Beek D, Hensen EF, Spanjaard L, et al.: Meropenem susceptibility of Neisseria meningitidis and Streptococcus pneumoniae from meningitis patients in The Netherlands. J Antimicrob Chemother 1997, 40:895–897.

    Article  PubMed  Google Scholar 

  33. Jacobs C, Frere JM, Normark S: Cytosolic intermediates for cell wall biosynthesis and degradation control inducible β-lactam resistance in gram-negative bacteria. Cell 1997, 88:823–832. This article offers recent molecular insights into the development and cellular control of AmpC hyperproduction.

    Article  PubMed  CAS  Google Scholar 

  34. Jacobs C: Life in the balance: cell walls and antibiotic resistance. Science 1997, 278:1731–1732. Pharmacia Biotech & Science 1997 grand prize winning paper provides recent molecular insights into the development and cellular control of AmpC hyperproduction.

    Article  PubMed  CAS  Google Scholar 

  35. Sanders CC: Cefepime: the next generation? Clin Infect Dis 1993, 17:369–379.

    PubMed  CAS  Google Scholar 

  36. Livermore DM: Acquired carbapenemases. J Antimicrob Chemother 1997, 39:673–676.

    Article  PubMed  CAS  Google Scholar 

  37. Andriole VT: The Quinolones edn 2. New York: Academic Press; 1998.

    Google Scholar 

  38. Jones RN, Pfaller MA, Doern GV, et al.: Antimicrobial activity and spectrum investigation of eight broad-spectrum β-lactam drugs: a 1997 surveillance trial in 102 medical centers in the United States. Cefepime Study Group. Diagn Microbiol Infect Dis 1998, 30:215–228.

    Article  PubMed  CAS  Google Scholar 

  39. Jacoby GA: Extended-spectrum β-lactamases and other enzymes providing resistance to oxyimino-β -lactams. Infect Dis Clin North Am 1997, 11:875–887. This report offers a thorough summary of the mechanisms, epidemiology, laboratory detection and treatment of ESBL-producing Enterobacteriaceae.

    Article  PubMed  CAS  Google Scholar 

  40. Jacoby G: 1999. Amino acid sequences for TEM, SHV and OXA extended-spectrum β -lactamases.

  41. Livermore DM: b-Lactamases in laboratory and clinical resistance. Clin Microbiol Rev 1995, 8:557–584. This thorough review of the different types of β-lactamases produced by both gram-negative and gram-positive bacteria focuses on mechanisms and control of β-lactamase production and the patterns of antimicrobial drug resistance manifested.

    PubMed  CAS  Google Scholar 

  42. Beck-Sague C, Jarvis WR: Secular trends in the epidemiology of nosocomial fungal infections in the United States, 1980–1990. National Nosocomial Infections Surveillance System. J Infect Dis 1993, 167:1247–1251.

    PubMed  CAS  Google Scholar 

  43. Klepser ME, Lewis RE, Pfaller MA: Therapy of Candida infections: susceptibility testing, resistance, and therapeutic options. Ann Pharmacother 1998, 32:1353–1361. This article offers an in-depth review of Candida species, focusing on their mechanisms of resistance to anti-fungal agents, epidemiology of infections, in-vitro susceptibility testing, and treatment options.

    Article  PubMed  CAS  Google Scholar 

  44. Vanden Bossche H, Dromer F, Improvisi I, et al.: Antifungal drug resistance in pathogenic fungi. Med Mycol 1998, 36:119–128.

    Article  Google Scholar 

  45. Pfaller MA, Jones RN, Doern GV, et al.: Bloodstream infections due to Candida species: SENTRY antimicrobial surveillance program in North America and Latin America, 1997–1998. Antimicrob Agents Chemother 2000, 44:747–751.

    Article  PubMed  CAS  Google Scholar 

  46. Fidel PL Jr, Vazquez JA, Sobel JD: Candida glabrata: review of epidemiology, pathogenesis, and clinical disease with comparison to C. albicans. Clin Microbiol Rev 1999, 12:80–96.

    PubMed  Google Scholar 

  47. Oleinik EM, Della-Latta P, Rinaldi MG, Saiman L: Candida lusitaniae osteomyelitis in a premature infant. Am J Perinatol 1993, 10:313–315.

    Article  PubMed  CAS  Google Scholar 

  48. Patterson JE, Zervos MJ: High-level gentamicin resistance in Enterococcus: microbiology, genetic basis, and epidemiology. Rev Infect Dis 1990, 12:644–652.

    PubMed  CAS  Google Scholar 

  49. Hospital Infections Program, National Center for Infectious Diseases, Centers for Disease Control and Prevention. National Nosocomial Infections Surveillance (NNIS) System Report, Data, Summary from October 1986-April 1998, Issued June 1998. Atlanta: Public Health Service, US Department of Health and Human Services; 1998:1–25.

    Google Scholar 

  50. Reichler MR, Allphin AA, Breiman RF, et al.: The spread of multiply resistant Streptococcus pneumoniae at a day care center in Ohio. J Infect Dis 1992, 166:1346–1353.

    PubMed  CAS  Google Scholar 

  51. Crossley K, Loesch D, Landesman B, et al.: An outbreak of infections caused by strains of Staphylococcus aureus resistant to methicillin and aminoglycosides. I. Clinical studies. J Infect Dis 1979, 139:273–279.

    PubMed  CAS  Google Scholar 

  52. Onorato M, Borucki MJ, Baillargeon G, et al.: Risk factors for colonization or infection due to methicillin-resistant Staphylococcus aureus in HIV-positive patients: a retrospective case-control study. Infect Control Hosp Epidemiol 1999, 20:26–30.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaye, K.S., Kaye, D. Multidrug-resistant pathogens: Mechanisms of resistance and epidemiology. Curr Infect Dis Rep 2, 391–398 (2000). https://doi.org/10.1007/s11908-000-0065-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11908-000-0065-1

Keywords

Navigation