Skip to main content

Advertisement

Log in

Sox6, A Potential Target for MicroRNAs in Cardiometabolic Disease

  • Mechanisms of Hypertension and Target-Organ Damage (JE Hall and ME Hall, Section Editors)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The study aims to review recent advances in knowledge on the interplay between miRNAs and the sex-determining Region Y (SRY)-related high-mobility-group box 6 (Sox6) in physiology and pathophysiology, highlighting an important role in autoimmune and cardiometabolic conditions.

Recent Findings

The transcription factor Sox6 is an important member of the SoxD family and plays an indispensable role in adult tissue homeostasis, regeneration, and physiology. Abnormal expression of the Sox6 gene has been implicated in several disease conditions including diabetes, cardiomyopathy, autoimmune diseases, and hypertension. Expression of Sox6 is regulated by miRNAs, which are RNAs of about 22 nucleotides, and have also been implicated in several pathophysiological conditions where Sox6 plays a role.

Summary

Regulation of Sox6 by miRNAs is important in diverse physiological tissues and organs. Dysregulation of the interplay between miRNAs and Sox6 is an important determinant of various disease conditions and may be actionable for therapeutic purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Ma Z, Jin X, He L, Wang Y. CXCL16 regulates renal injury and fibrosis in experimental renal artery stenosis. Am J Physiol Heart Circ Physiol. 2016;311(3):H815–21. https://doi.org/10.1152/ajpheart.00948.2015.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Roose J, Korver W, Oving E, Wilson A, Wagenaar G, Markman M, et al. High expression of the HMG box factor sox-13 in arterial walls during embryonic development. Nucleic Acids Res. 1998;26(2):469–76. https://doi.org/10.1093/nar/26.2.469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Takamatsu N, Kanda H, Tsuchiya I, Yamada S, Ito M, Kabeno S, et al. A gene that is related to SRY and is expressed in the testes encodes a leucine zipper-containing protein. Mol Cell Biol. 1995;15(7):3759–66. https://doi.org/10.1128/mcb.15.7.3759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Connor F, Wright E, Denny P, Koopman P, Ashworth A. The Sry-related HMG box-containing gene Sox6 is expressed in the adult testis and developing nervous system of the mouse. Nucleic Acids Res. 1995;23(17):3365–72. https://doi.org/10.1093/nar/23.17.3365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. •• Bowles J, Schepers G, Koopman P. Phylogeny of the SOX family of developmental transcription factors based on sequence and structural indicators. Dev Biol. 2000;227(2):239–55. https://doi.org/10.1006/dbio.2000.9883. This study reviewed the evolutionary history of the members of the Sox family using complete HMG domain sequencing data and protein structure.

    Article  CAS  PubMed  Google Scholar 

  6. Schepers GE, Teasdale RD, Koopman P. Twenty pairs of sox: extent, homology, and nomenclature of the mouse and human sox transcription factor gene families. Dev Cell. 2002;3(2):167–70. https://doi.org/10.1016/s1534-5807(02)00223-x.

    Article  CAS  PubMed  Google Scholar 

  7. Phochanukul N, Russell S. No backbone but lots of Sox: invertebrate Sox genes. Int J Biochem Cell Biol. 2010;42(3):453–64. https://doi.org/10.1016/j.biocel.2009.06.013.

    Article  CAS  PubMed  Google Scholar 

  8. Kamachi Y, Uchikawa M, Kondoh H. Pairing SOX off: with partners in the regulation of embryonic development. Trends Genet. 2000;16(4):182–7. https://doi.org/10.1016/s0168-9525(99)01955-1.

    Article  CAS  PubMed  Google Scholar 

  9. Lefebvre V. The SoxD transcription factors—Sox5, Sox6, and Sox13—are key cell fate modulators. Int J Biochem Cell Biol. 2010;42(3):429–32. https://doi.org/10.1016/j.biocel.2009.07.016.

    Article  CAS  PubMed  Google Scholar 

  10. Hiraoka Y, Ogawa M, Sakai Y, Kido S, Aiso S. The mouse Sox5 gene encodes a protein containing the leucine zipper and the Q box. Biochim Biophys Acta. 1998;1399(1):40–6. https://doi.org/10.1016/s0167-4781(98)00086-4.

    Article  CAS  PubMed  Google Scholar 

  11. Han Y, Lefebvre V. L-Sox5 and Sox6 drive expression of the aggrecan gene in cartilage by securing binding of Sox9 to a far-upstream enhancer. Mol Cell Biol. 2008;28(16):4999–5013. https://doi.org/10.1128/MCB.00695-08.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lefebvre V, Li P, de Crombrugghe B. A new long form of Sox5 (L-Sox5), Sox6 and Sox9 are coexpressed in chondrogenesis and cooperatively activate the type II collagen gene. EMBO J. 1998;17(19):5718–33. https://doi.org/10.1093/emboj/17.19.5718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Stolt CC, Schlierf A, Lommes P, Hillgartner S, Werner T, Kosian T, et al. SoxD proteins influence multiple stages of oligodendrocyte development and modulate SoxE protein function. Dev Cell. 2006;11(5):697–709. https://doi.org/10.1016/j.devcel.2006.08.011.

    Article  CAS  PubMed  Google Scholar 

  14. Stolt CC, Lommes P, Hillgartner S, Wegner M. The transcription factor Sox5 modulates Sox10 function during melanocyte development. Nucleic Acids Res. 2008;36(17):5427–40. https://doi.org/10.1093/nar/gkn527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hou L, Srivastava Y, Jauch R. Molecular basis for the genome engagement by Sox proteins. Semin Cell Dev Biol. 2017;63:2–12. https://doi.org/10.1016/j.semcdb.2016.08.005.

    Article  CAS  PubMed  Google Scholar 

  16. Leow SC, Poschmann J, Too PG, Yin J, Joseph R, McFarlane C, et al. The transcription factor SOX6 contributes to the developmental origins of obesity by promoting adipogenesis. Development. 2016;143(6):950–61. https://doi.org/10.1242/dev.131573.

    Article  CAS  PubMed  Google Scholar 

  17. Li X, Wang J, Jia Z, Cui Q, Zhang C, Wang W, et al. MiR-499 regulates cell proliferation and apoptosis during late-stage cardiac differentiation via Sox6 and cyclin D1. PLoS One. 2013;8(9): e74504. https://doi.org/10.1371/journal.pone.0074504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhao X, He X, Han X, Yu Y, Ye F, Chen Y, et al. MicroRNA-mediated control of oligodendrocyte differentiation. Neuron. 2010;65(5):612–26. https://doi.org/10.1016/j.neuron.2010.02.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yi Z, Cohen-Barak O, Hagiwara N, Kingsley PD, Fuchs DA, Erickson DT, et al. Sox6 directly silences epsilon globin expression in definitive erythropoiesis. PLoS Genet. 2006;2(2): e14. https://doi.org/10.1371/journal.pgen.0020014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Iguchi H, Ikeda Y, Okamura M, Tanaka T, Urashima Y, Ohguchi H, et al. SOX6 attenuates glucose-stimulated insulin secretion by repressing PDX1 transcriptional activity and is down-regulated in hyperinsulinemic obese mice. J Biol Chem. 2005;280(45):37669–80. https://doi.org/10.1074/jbc.M505392200.

    Article  CAS  PubMed  Google Scholar 

  21. Saleem M, Barturen-Larrea P, Gomez JA. Emerging roles of Sox6 in the renal and cardiovascular system. Physiol Rep. 2020;8(22): e14604. https://doi.org/10.14814/phy2.14604.

    Article  PubMed  PubMed Central  Google Scholar 

  22. •• Hagiwara N. Sox6, jack of all trades: a versatile regulatory protein in vertebrate development. Dev Dyn. 2011;240(6):1311–21. https://doi.org/10.1002/dvdy.22639This review described the versatile nature of Sox6 in details during early developmental stages in vertebrates.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jiang ZH, Tang YZ, Song HN, Yang M, Li B, Ni CL. miRNA342 suppresses renal interstitial fibrosis in diabetic nephropathy by targeting SOX6. Int J Mol Med. 2020;45(1):45–52. https://doi.org/10.3892/ijmm.2019.4388.

    Article  CAS  PubMed  Google Scholar 

  24. Qi H, Yao L, Liu Q. MicroRNA-96 regulates pancreatic beta cell function under the pathological condition of diabetes mellitus through targeting Foxo1 and Sox6. Biochem Biophys Res Commun. 2019;519(2):294–301. https://doi.org/10.1016/j.bbrc.2019.09.001.

    Article  CAS  PubMed  Google Scholar 

  25. •• Ding J, Chen J, Wang Y, Kataoka M, Ma L, Zhou P, et al. Trbp regulates heart function through microRNA-mediated Sox6 repression. Nat Genet. 2015;47(7):776–83. https://doi.org/10.1038/ng.3324. This study showed that Sox6 has a role in cardiomyopathy. Using cardiomyocyte specific Trbp (Tarbp2) knockout mice, it showed that inactivation of Trbp results in increasing expression of Sox6 causing progressive cardiomyopathy and heart failure. Overexpression of Mir208a repressed Sox6 expression and rescued cardiac function in Trbp KO mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hagiwara N, Klewer SE, Samson RA, Erickson DT, Lyon MF, Brilliant MH. Sox6 is a candidate gene for p100H myopathy, heart block, and sudden neonatal death. Proc Natl Acad Sci U S A. 2000;97(8):4180–5. https://doi.org/10.1073/pnas.97.8.4180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang J, Ding S, Duan Z, Xie Q, Zhang T, Zhang X, et al. Role of p14ARF-HDM2-p53 axis in SOX6-mediated tumor suppression. Oncogene. 2016;35(13):1692–702. https://doi.org/10.1038/onc.2015.234.

    Article  CAS  PubMed  Google Scholar 

  28. Kinchen J, Chen HH, Parikh K, Antanaviciute A, Jagielowicz M, Fawkner-Corbett D, et al. Structural remodeling of the human colonic mesenchyme in inflammatory bowel disease. Cell. 2018;175(2):372–86 e17. https://doi.org/10.1016/j.cell.2018.08.067.

  29. •• McCarthy JJ, Esser KA, Peterson CA, Dupont-Versteegden EE. Evidence of MyomiR network regulation of beta-myosin heavy chain gene expression during skeletal muscle atrophy. Physiol Genomics. 2009;39(3):219–26. https://doi.org/10.1152/physiolgenomics.00042.2009. An early study showing that gene expression in skeletal muscle is dependent on an interplay between miRNAs and Sox6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sluijter JP, van Mil A, van Vliet P, Metz CH, Liu J, Doevendans PA, et al. MicroRNA-1 and -499 regulate differentiation and proliferation in human-derived cardiomyocyte progenitor cells. Arterioscler Thromb Vasc Biol. 2010;30(4):859–68. https://doi.org/10.1161/ATVBAHA.109.197434.

    Article  CAS  PubMed  Google Scholar 

  31. Duran B, Dal-Pai-Silva M, Garcia de la Serrana D. Rainbow trout slow myoblast cell culture as a model to study slow skeletal muscle, and the characterization of mir-133 and mir-499 families as a case study. J Exp Biol. 2020;223(Pt 2). https://doi.org/10.1242/jeb.216390.

  32. Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB. Prediction of mammalian microRNA targets. Cell. 2003;115(7):787–98. https://doi.org/10.1016/s0092-8674(03)01018-3.

    Article  CAS  PubMed  Google Scholar 

  33. Goljanek-Whysall K, Sweetman D, Munsterberg AE. microRNAs in skeletal muscle differentiation and disease. Clin Sci (Lond). 2012;123(11):611–25. https://doi.org/10.1042/CS20110634.

    Article  CAS  Google Scholar 

  34. van Rooij E, Liu N, Olson EN. MicroRNAs flex their muscles. Trends Genet. 2008;24(4):159–66. https://doi.org/10.1016/j.tig.2008.01.007.

    Article  CAS  PubMed  Google Scholar 

  35. Fagard M, Boutet S, Morel JB, Bellini C, Vaucheret H. AGO1, QDE-2, and RDE-1 are related proteins required for post-transcriptional gene silencing in plants, quelling in fungi, and RNA interference in animals. Proc Natl Acad Sci U S A. 2000;97(21):11650–4. https://doi.org/10.1073/pnas.200217597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Khan J, Lieberman JA, Lockwood CM. Variability in, variability out: best practice recommendations to standardize pre-analytical variables in the detection of circulating and tissue microRNAs. Clin Chem Lab Med. 2017;55(5):608–21. https://doi.org/10.1515/cclm-2016-0471.

    Article  CAS  PubMed  Google Scholar 

  37. •• Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843–54. https://doi.org/10.1016/0092-8674(93)90529-y. Early description of the existence of non-coding RNAs.

  38. Cai X, Hagedorn CH, Cullen BR. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA. 2004;10(12):1957–66. https://doi.org/10.1261/rna.7135204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 2004;23(20):4051–60. https://doi.org/10.1038/sj.emboj.7600385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lee Y, Jeon K, Lee JT, Kim S, Kim VN. MicroRNA maturation: stepwise processing and subcellular localization. EMBO J. 2002;21(17):4663–70. https://doi.org/10.1093/emboj/cdf476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, et al. The nuclear RNase III Drosha initiates microRNA processing. Nature. 2003;425(6956):415–9. https://doi.org/10.1038/nature01957.

    Article  CAS  PubMed  Google Scholar 

  42. Yi R, Qin Y, Macara IG, Cullen BR. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev. 2003;17(24):3011–6. https://doi.org/10.1101/gad.1158803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Grishok A, Pasquinelli AE, Conte D, Li N, Parrish S, Ha I, et al. Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell. 2001;106(1):23–34. https://doi.org/10.1016/s0092-8674(01)00431-7.

  44. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97. https://doi.org/10.1016/s0092-8674(04)00045-5.

    Article  CAS  PubMed  Google Scholar 

  45. Dugas JC, Cuellar TL, Scholze A, Ason B, Ibrahim A, Emery B, et al. Dicer1 and miR-219 Are required for normal oligodendrocyte differentiation and myelination. Neuron. 2010;65(5):597–611. https://doi.org/10.1016/j.neuron.2010.01.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wu L, Belasco JG. Let me count the ways: mechanisms of gene regulation by miRNAs and siRNAs. Mol Cell. 2008;29(1):1–7. https://doi.org/10.1016/j.molcel.2007.12.010.

    Article  CAS  PubMed  Google Scholar 

  47. Bartel DP. Metazoan MicroRNAs. Cell. 2018;173(1):20–51. https://doi.org/10.1016/j.cell.2018.03.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jonas S, Izaurralde E. Towards a molecular understanding of microRNA-mediated gene silencing. Nat Rev Genet. 2015;16(7):421–33. https://doi.org/10.1038/nrg3965.

    Article  CAS  PubMed  Google Scholar 

  49. • Ipsaro JJ, Joshua-Tor L. From guide to target: molecular insights into eukaryotic RNA-interference machinery. Nat Struct Mol Biol. 2015;22(1):20–8. https://doi.org/10.1038/nsmb.2931. This reviewed studies that showed the versatility of RNA-induced silencing complexes and emphasized the importance of both upstream biogenesis and downstream silencing factors. In addition, it focuses on describing and depicting the mechanisms and structures that govern RNA silencing in higher organisms.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lee R, Feinbaum R, Ambros V. A short history of a short RNA. Cell. 2004;116(2 Suppl):S89–92, 1 following S6. https://doi.org/10.1016/s0092-8674(04)00035-2.

  51. Virani SS, Alonso A, Aparicio HJ, Benjamin EJ, Bittencourt MS, Callaway CW, et al. Heart disease and stroke statistics—2021 update: a report from the American Heart Association. Circulation. 2021;143(8):e254–743. https://doi.org/10.1161/CIR.0000000000000950.

    Article  PubMed  Google Scholar 

  52. Callis TE, Pandya K, Seok HY, Tang RH, Tatsuguchi M, Huang ZP, et al. MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. J Clin Invest. 2009;119(9):2772–86. https://doi.org/10.1172/JCI36154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ikeda S, Kong SW, Lu J, Bisping E, Zhang H, Allen PD, et al. Altered microRNA expression in human heart disease. Physiol Genomics. 2007;31(3):367–73. https://doi.org/10.1152/physiolgenomics.00144.2007.

    Article  CAS  PubMed  Google Scholar 

  54. van Rooij E, Sutherland LB, Qi X, Richardson JA, Hill J, Olson EN. Control of stress-dependent cardiac growth and gene expression by a microRNA. Science. 2007;316(5824):575–9. https://doi.org/10.1126/science.1139089.

    Article  CAS  PubMed  Google Scholar 

  55. Zhao Y, Samal E, Srivastava D. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature. 2005;436(7048):214–20. https://doi.org/10.1038/nature03817.

    Article  CAS  PubMed  Google Scholar 

  56. •• Barwari T, Joshi A, Mayr M. MicroRNAs in cardiovascular disease. J Am Coll Cardiol. 2016;68(23):2577–84. https://doi.org/10.1016/j.jacc.2016.09.945. Description of the network of MyomiR, a subgroup of miRNAs regulating differentiation of skeletal and cardiac muscle.

    Article  CAS  PubMed  Google Scholar 

  57. Yeung F, Chung E, Guess MG, Bell ML, Leinwand LA. Myh7b/miR-499 gene expression is transcriptionally regulated by MRFs and Eos. Nucleic Acids Res. 2012;40(15):7303–18. https://doi.org/10.1093/nar/gks466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Shieh JT, Huang Y, Gilmore J, Srivastava D. Elevated miR-499 levels blunt the cardiac stress response. PLoS One. 2011;6(5): e19481. https://doi.org/10.1371/journal.pone.0019481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Quiat D, Voelker KA, Pei J, Grishin NV, Grange RW, Bassel-Duby R, et al. Concerted regulation of myofiber-specific gene expression and muscle performance by the transcriptional repressor Sox6. Proc Natl Acad Sci U S A. 2011;108(25):10196–201. https://doi.org/10.1073/pnas.1107413108.

    Article  PubMed  PubMed Central  Google Scholar 

  60. van Rooij E, Quiat D, Johnson BA, Sutherland LB, Qi X, Richardson JA, et al. A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance. Dev Cell. 2009;17(5):662–73. https://doi.org/10.1016/j.devcel.2009.10.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yousefzadeh N, Jeddi S, Ghiasi R, Alipour MR. Effect of fetal hypothyroidism on MyomiR network and its target gene expression profiles in heart of offspring rats. Mol Cell Biochem. 2017;436(1–2):179–87. https://doi.org/10.1007/s11010-017-3089-7.

    Article  CAS  PubMed  Google Scholar 

  62. Huang X, Li Z, Bai B, Li X, Li Z. High expression of microRNA-208 is associated with cardiac hypertrophy via the negative regulation of the sex-determining region Y-box 6 protein. Exp Ther Med. 2015;10(3):921–6. https://doi.org/10.3892/etm.2015.2645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Azibani F, Devaux Y, Coutance G, Schlossarek S, Polidano E, Fazal L, et al. Aldosterone inhibits the fetal program and increases hypertrophy in the heart of hypertensive mice. PLoS One. 2012;7(5): e38197. https://doi.org/10.1371/journal.pone.0038197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Jia Z, Wang J, Shi Q, Liu S, Wang W, Tian Y, et al. SOX6 and PDCD4 enhance cardiomyocyte apoptosis through LPS-induced miR-499 inhibition. Apoptosis. 2016;21(2):174–83. https://doi.org/10.1007/s10495-015-1201-6.

    Article  CAS  PubMed  Google Scholar 

  65. Huang L, Yang L, Ding Y, Jiang X, Xia Z, You Z. Human umbilical cord mesenchymal stem cells-derived exosomes transfers microRNA-19a to protect cardiomyocytes from acute myocardial infarction by targeting SOX6. Cell Cycle. 2020;19(3):339–53. https://doi.org/10.1080/15384101.2019.1711305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Shi Y, Han Y, Niu L, Li J, Chen Y. MiR-499 inhibited hypoxia/reoxygenation induced cardiomyocytes injury by targeting SOX6. Biotechnol Lett. 2019;41(6–7):837–47. https://doi.org/10.1007/s10529-019-02685-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Fornari TA, Lanaro C, Albuquerque DM, Ferreira R, Costa FF. Featured Article: Modulation of fetal hemoglobin in hereditary persistence of fetal hemoglobin deletion type-2, compared to Sicilian deltabeta-thalassemia, by BCL11A and SOX6-targeting microRNAs. Exp Biol Med (Maywood). 2017;242(3):267–74. https://doi.org/10.1177/1535370216668052.

    Article  CAS  Google Scholar 

  68. Saleem M, Hodgkinson CP, Xiao L, Gimenez-Bastida JA, Rasmussen ML, Foss J, et al. Sox6 as a new modulator of renin expression in the kidney. Am J Physiol Renal Physiol. 2020;318(2):F285–97. https://doi.org/10.1152/ajprenal.00095.2019.

    Article  CAS  PubMed  Google Scholar 

  69. Saleem M, Saavedra-Sánchez L, Barturen-Larrea P, Gomez JA. The transcription factor Sox6 controls renin expression during renal artery stenosis. Kidney360. 2021;2(5):842–56. https://doi.org/10.34067/kid.0002792020.

  70. Johnson T, Gaunt TR, Newhouse SJ, Padmanabhan S, Tomaszewski M, Kumari M, et al. Blood pressure loci identified with a gene-centric array. Am J Hum Genet. 2011;89(6):688–700. https://doi.org/10.1016/j.ajhg.2011.10.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lu X, Wang L, Lin X, Huang J, Charles GuC, He M, et al. Genome-wide association study in Chinese identifies novel loci for blood pressure and hypertension. Hum Mol Genet. 2015;24(3):865–74. https://doi.org/10.1093/hmg/ddu478.

    Article  CAS  PubMed  Google Scholar 

  72. Dong C, Beecham A, Slifer S, Wang L, Blanton SH, Wright CB, et al. Genomewide linkage and peakwide association analyses of carotid plaque in Caribbean Hispanics. Stroke. 2010;41(12):2750–6. https://doi.org/10.1161/STROKEAHA.110.596981.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Schiaffino S, Reggiani C. Fiber types in mammalian skeletal muscles. Physiol Rev. 2011;91(4):1447–531. https://doi.org/10.1152/physrev.00031.2010.

    Article  CAS  PubMed  Google Scholar 

  74. Hagiwara N, Yeh M, Liu A. Sox6 is required for normal fiber type differentiation of fetal skeletal muscle in mice. Dev Dyn. 2007;236(8):2062–76. https://doi.org/10.1002/dvdy.21223.

    Article  CAS  PubMed  Google Scholar 

  75. Hagiwara N, Ma B, Ly A. Slow and fast fiber isoform gene expression is systematically altered in skeletal muscle of the Sox6 mutant, p100H. Dev Dyn. 2005;234(2):301–11. https://doi.org/10.1002/dvdy.20535.

    Article  CAS  PubMed  Google Scholar 

  76. Taglietti V, Maroli G, Cermenati S, Monteverde S, Ferrante A, Rossi G, et al. Nfix induces a switch in Sox6 transcriptional activity to regulate MyHC-I expression in fetal muscle. Cell Rep. 2016;17(9):2354–66. https://doi.org/10.1016/j.celrep.2016.10.082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Jackson HE, Ono Y, Wang X, Elworthy S, Cunliffe VT, Ingham PW. The role of Sox6 in zebrafish muscle fiber type specification. Skelet Muscle. 2015;5(1):2. https://doi.org/10.1186/s13395-014-0026-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lin S, Lin X, Zhang Z, Jiang M, Rao Y, Nie Q, et al. Copy number variation in SOX6 contributes to chicken muscle development. Genes (Basel). 2018;9(1). https://doi.org/10.3390/genes9010042.

  79. Mok GF, Lozano-Velasco E, Munsterberg A. microRNAs in skeletal muscle development. Semin Cell Dev Biol. 2017;72:67–76. https://doi.org/10.1016/j.semcdb.2017.10.032.

    Article  CAS  PubMed  Google Scholar 

  80. Horak M, Novak J, Bienertova-Vasku J. Muscle-specific microRNAs in skeletal muscle development. Dev Biol. 2016;410(1):1–13. https://doi.org/10.1016/j.ydbio.2015.12.013.

    Article  CAS  PubMed  Google Scholar 

  81. Ge Y, Chen J. MicroRNAs in skeletal myogenesis. Cell Cycle. 2011;10(3):441–8. https://doi.org/10.4161/cc.10.3.14710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Honda M, Hidaka K, Fukada SI, Sugawa R, Shirai M, Ikawa M, et al. Vestigial-like 2 contributes to normal muscle fiber type distribution in mice. Sci Rep. 2017;7(1):7168. https://doi.org/10.1038/s41598-017-07149-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Duran BO, Fernandez GJ, Mareco EA, Moraes LN, Salomao RA, Gutierrez de Paula T, et al. Differential microRNA expression in fast- and slow-twitch skeletal muscle of Piaractus mesopotamicus during growth. PLoS One. 2015;10(11):e0141967. https://doi.org/10.1371/journal.pone.0141967.

  84. Nachtigall PG, Dias MC, Carvalho RF, Martins C, Pinhal D. MicroRNA-499 expression distinctively correlates to target genes sox6 and rod1 profiles to resolve the skeletal muscle phenotype in Nile tilapia. PLoS One. 2015;10(3): e0119804. https://doi.org/10.1371/journal.pone.0119804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wu L, Ran L, Lang H, Zhou M, Yu L, Yi L, et al. Myricetin improves endurance capacity by inducing muscle fiber type conversion via miR-499. Nutr Metab (Lond). 2019;16:27. https://doi.org/10.1186/s12986-019-0353-8.

    Article  CAS  Google Scholar 

  86. Huang S, Jin L, Shen J, Shang P, Jiang X, Wang X. Electrical stimulation influences chronic intermittent hypoxia-hypercapnia induction of muscle fibre transformation by regulating the microRNA/Sox6 pathway. Sci Rep. 2016;6:26415. https://doi.org/10.1038/srep26415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Liu Y, Zhang M, Shan Y, Ji G, Ju X, Tu Y, et al. miRNA-mRNA network regulation in the skeletal muscle fiber phenotype of chickens revealed by integrated analysis of miRNAome and transcriptome. Sci Rep. 2020;10(1):10619. https://doi.org/10.1038/s41598-020-67482-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wang XY, Chen XL, Huang ZQ, Chen DW, Yu B, He J, et al. MicroRNA-499-5p regulates porcine myofiber specification by controlling Sox6 expression. Animal. 2017;11(12):2268–74. https://doi.org/10.1017/S1751731117001008.

    Article  CAS  PubMed  Google Scholar 

  89. Zhang Y, Yu B, Yu J, Zheng P, Huang Z, Luo Y, et al. Butyrate promotes slow-twitch myofiber formation and mitochondrial biogenesis in finishing pigs via inducing specific microRNAs and PGC-1alpha expression1. J Anim Sci. 2019;97(8):3180–92. https://doi.org/10.1093/jas/skz187.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Zhang R, Grosse-Brinkhaus C, Heidt H, Uddin MJ, Cinar MU, Tesfaye D, et al. Polymorphisms and expression analysis of SOX-6 in relation to porcine growth, carcass, and meat quality traits. Meat Sci. 2015;107:26–32. https://doi.org/10.1016/j.meatsci.2015.04.007.

    Article  CAS  PubMed  Google Scholar 

  91. Cho NH, Shaw JE, Karuranga S, Huang Y, da Rocha Fernandes JD, Ohlrogge AW, et al. IDF Diabetes Atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract. 2018;138:271–81. https://doi.org/10.1016/j.diabres.2018.02.023.

    Article  CAS  PubMed  Google Scholar 

  92. Reddy MA, Zhang E, Natarajan R. Epigenetic mechanisms in diabetic complications and metabolic memory. Diabetologia. 2015;58(3):443–55. https://doi.org/10.1007/s00125-014-3462-y.

    Article  CAS  PubMed  Google Scholar 

  93. Atkinson MA, Eisenbarth GS, Michels AW. Type 1 diabetes. Lancet. 2014;383(9911):69–82. https://doi.org/10.1016/S0140-6736(13)60591-7.

    Article  PubMed  Google Scholar 

  94. Eliasson L, Regazzi R. Micro(RNA) Management and mismanagement of the islet. J Mol Biol. 2020;432(5):1419–28. https://doi.org/10.1016/j.jmb.2019.09.017.

    Article  CAS  PubMed  Google Scholar 

  95. Ventriglia G, Nigi L, Sebastiani G, Dotta F. MicroRNAs: novel players in the dialogue between pancreatic islets and immune system in autoimmune diabetes. Biomed Res Int. 2015;2015: 749734. https://doi.org/10.1155/2015/749734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. •• Kaur P, Kotru S, Singh S, Behera BS, Munshi A. Role of miRNAs in the pathogenesis of T2DM, insulin secretion, insulin resistance, and beta cell dysfunction: the story so far. J Physiol Biochem. 2020;76(4):485–502. https://doi.org/10.1007/s13105-020-00760-2. An extensive review on how multiple miRNAs regulate pancreatic beta-cell function and insulin resistance, hence how they participate in the pathogenesis of diabetes and other metabolic disorders.

    Article  PubMed  Google Scholar 

  97. Landrier JF, Derghal A, Mounien L. MicroRNAs in obesity and related metabolic disorders. Cells. 2019;8(8). https://doi.org/10.3390/cells8080859.

  98. Zhang HN, Xu QQ, Thakur A, Alfred MO, Chakraborty M, Ghosh A, et al. Endothelial dysfunction in diabetes and hypertension: role of microRNAs and long non-coding RNAs. Life Sci. 2018;213:258–68. https://doi.org/10.1016/j.lfs.2018.10.028.

    Article  CAS  PubMed  Google Scholar 

  99. Miao C, Chang J, Zhang G, Fang Y. MicroRNAs in type 1 diabetes: new research progress and potential directions. Biochem Cell Biol. 2018;96(5):498–506. https://doi.org/10.1139/bcb-2018-0027.

    Article  CAS  PubMed  Google Scholar 

  100. Kaviani M, Azarpira N, Karimi MH, Al-Abdullah I. The role of microRNAs in islet beta-cell development. Cell Biol Int. 2016;40(12):1248–55. https://doi.org/10.1002/cbin.10691.

    Article  CAS  PubMed  Google Scholar 

  101. Kaspi H, Pasvolsky R, Hornstein E. Could microRNAs contribute to the maintenance of beta cell identity? Trends Endocrinol Metab. 2014;25(6):285–92. https://doi.org/10.1016/j.tem.2014.01.003.

    Article  CAS  PubMed  Google Scholar 

  102. Hamar P. Role of regulatory micro RNAs in type 2 diabetes mellitus-related inflammation. Nucleic Acid Ther. 2012;22(5):289–94. https://doi.org/10.1089/nat.2012.0381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Iguchi H, Urashima Y, Inagaki Y, Ikeda Y, Okamura M, Tanaka T, et al. SOX6 suppresses cyclin D1 promoter activity by interacting with beta-catenin and histone deacetylase 1, and its down-regulation induces pancreatic beta-cell proliferation. J Biol Chem. 2007;282(26):19052–61. https://doi.org/10.1074/jbc.M700460200.

    Article  CAS  PubMed  Google Scholar 

  104. Iguchi H, Sakai J. SOX6 attenuates glucose-stimulated insulin secretion by repressing PDX1 transcriptional activity. Nihon Yakurigaku Zasshi. 2006;128(4):219–24. https://doi.org/10.1254/fpj.128.219.

    Article  CAS  PubMed  Google Scholar 

  105. • Melkman-Zehavi T, Oren R, Kredo-Russo S, Shapira T, Mandelbaum AD, Rivkin N, et al. miRNAs control insulin content in pancreatic beta-cells via downregulation of transcriptional repressors. EMBO J. 2011;30(5):835–45. https://doi.org/10.1038/emboj.2010.361. This pioneering study showed that several miRNAs are involved in insulin synthesis and regulation in mice. Further, they revealed that miRNA-dependent regulation of insulin expression is associated with upregulation of transcriptional repressor Sox6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Bai C, Gao Y, Li X, Wang K, Xiong H, Shan Z, et al. MicroRNAs can effectively induce formation of insulin-producing cells from mesenchymal stem cells. J Tissue Eng Regen Med. 2017;11(12):3457–68. https://doi.org/10.1002/term.2259.

    Article  CAS  PubMed  Google Scholar 

  107. • Li Y, Deng S, Peng J, Wang X, Essandoh K, Mu X, et al. MicroRNA-223 is essential for maintaining functional beta-cell mass during diabetes through inhibiting both FOXO1 and SOX6 pathways. J Biol Chem. 2019;294(27):10438–48. https://doi.org/10.1074/jbc.RA119.007755. Using diabetic mice, they showed that miR-223 inhibits both forkhead box O1 (FOXO1) and SRY-box 6 (SOX6) signaling and modulates expression of several β-cell markers (pancreatic and duodenal homeobox 1 (PDX1), NK6 homeobox 1 (NKX6.1), and urocortin 3 (UCN3)) and cell cycle-related genes (cyclin D1, cyclin E1, and cyclin-dependent kinase inhibitor P27 (P27)) and therefore maintain the integrity and mass of beta cell mass and function.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Bai C, Li X, Gao Y, Wang K, Fan Y, Zhang S, et al. Role of microRNA-21 in the formation of insulin-producing cells from pancreatic progenitor cells. Biochim Biophys Acta. 2016;1859(2):280–93. https://doi.org/10.1016/j.bbagrm.2015.12.001.

    Article  CAS  PubMed  Google Scholar 

  109. Martinez-Sanchez A, Nguyen-Tu MS, Rutter GA. DICER inactivation identifies pancreatic beta-cell “disallowed” genes targeted by microRNAs. Mol Endocrinol. 2015;29(7):1067–79. https://doi.org/10.1210/me.2015-1059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Gai HY, Wu C, Zhang Y, Wang D. Long non-coding RNA CHRF modulates the progression of cerebral ischemia/reperfusion injury via miR-126/SOX6 signaling pathway. Biochem Biophys Res Commun. 2019;514(2):550–7. https://doi.org/10.1016/j.bbrc.2019.04.161.

    Article  CAS  PubMed  Google Scholar 

  111. Liu S, Ren C, Qu X, Wu X, Dong F, Chand YK, et al. miR-219 attenuates demyelination in cuprizone-induced demyelinated mice by regulating monocarboxylate transporter 1. Eur J Neurosci. 2017;45(2):249–59. https://doi.org/10.1111/ejn.13485.

    Article  PubMed  Google Scholar 

  112. Zeng Z, Liu Y, Zheng W, Liu L, Yin H, Zhang S, et al. MicroRNA-129-5p alleviates nerve injury and inflammatory response of Alzheimer’s disease via downregulating SOX6. Cell Cycle. 2019;18(22):3095–110. https://doi.org/10.1080/15384101.2019.1669388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Zhang L, Xue Z, Yan J, Wang J, Liu Q, Jiang H. LncRNA Riken-201 and Riken-203 modulates neural development by regulating the Sox6 through sequestering miRNAs. Cell Prolif. 2019;52(3): e12573. https://doi.org/10.1111/cpr.12573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Chen J, Wu X. MicroRNA-103 contributes to osteoarthritis development by targeting Sox6. Biomed Pharmacother. 2019;118: 109186. https://doi.org/10.1016/j.biopha.2019.109186.

    Article  CAS  PubMed  Google Scholar 

  115. Georgieva VS, Etich J, Bluhm B, Zhu M, Frie C, Wilson R, et al. Ablation of the miRNA cluster 24 has profound effects on extracellular matrix protein abundance in cartilage. Int J Mol Sci. 2020;21(11). https://doi.org/10.3390/ijms21114112.

  116. Yamashita S, Miyaki S, Kato Y, Yokoyama S, Sato T, Barrionuevo F, et al. L-Sox5 and Sox6 proteins enhance chondrogenic miR-140 microRNA expression by strengthening dimeric Sox9 activity. J Biol Chem. 2012;287(26):22206–15. https://doi.org/10.1074/jbc.M112.343194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. McIver SC, Roman SD, Nixon B, McLaughlin EA. miRNA and mammalian male germ cells. Hum Reprod Update. 2012;18(1):44–59. https://doi.org/10.1093/humupd/dmr041.

    Article  CAS  PubMed  Google Scholar 

  118. Yan N, Lu Y, Sun H, Tao D, Zhang S, Liu W, et al. A microarray for microRNA profiling in mouse testis tissues. Reproduction. 2007;134(1):73–9. https://doi.org/10.1530/REP-07-0056.

    Article  CAS  PubMed  Google Scholar 

  119. Zhang D, Li Y, Tian J, Zhang H, Wang S. MiR-202 promotes endometriosis by regulating SOX6 expression. Int J Clin Exp Med. 2015;8(10):17757–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Liew WC, Sundaram GM, Quah S, Lum GG, Tan JSL, Ramalingam R, et al. Belinostat resolves skin barrier defects in atopic dermatitis by targeting the dysregulated miR-335:SOX6 axis. J Allergy Clin Immunol. 2020;146(3):606–20 e12. https://doi.org/10.1016/j.jaci.2020.02.007.

  121. Yu Y, Wang Z, Sun D, Zhou X, Wei X, Hou W, et al. miR-671 promotes prostate cancer cell proliferation by targeting tumor suppressor SOX6. Eur J Pharmacol. 2018;823:65–71. https://doi.org/10.1016/j.ejphar.2018.01.016.

    Article  CAS  PubMed  Google Scholar 

  122. Li Z, Wang Y. miR-96 targets SOX6 and promotes proliferation, migration, and invasion of hepatocellular carcinoma. Biochem Cell Biol. 2018;96(3):365–71. https://doi.org/10.1139/bcb-2017-0183.

    Article  CAS  PubMed  Google Scholar 

  123. Li YC, Li CF, Chen LB, Li DD, Yang L, Jin JP, et al. MicroRNA-766 targeting regulation of SOX6 expression promoted cell proliferation of human colorectal cancer. Onco Targets Ther. 2015;8:2981–8. https://doi.org/10.2147/OTT.S89459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Li H, Zheng D, Zhang B, Liu L, Ou J, Chen W, et al. Mir-208 promotes cell proliferation by repressing SOX6 expression in human esophageal squamous cell carcinoma. J Transl Med. 2014;12:196. https://doi.org/10.1186/1479-5876-12-196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Jin RH, Yu DJ, Zhong M. MiR-1269a acts as an onco-miRNA in non-small cell lung cancer via down-regulating SOX6. Eur Rev Med Pharmacol Sci. 2018;22(15):4888–97. https://doi.org/10.26355/eurrev_201808_15625.

    Article  PubMed  Google Scholar 

  126. Dang Y, Liu T, Yan J, Reinhardt JD, Yin C, Ye F, et al. Gastric cancer proliferation and invasion is reduced by macrocalyxin C via activation of the miR-212-3p/Sox6 Pathway. Cell Signal. 2020;66: 109430. https://doi.org/10.1016/j.cellsig.2019.109430.

    Article  CAS  PubMed  Google Scholar 

  127. Chen Y, Song Y, Mi Y, Jin H, Cao J, Li H, et al. microRNA-499a promotes the progression and chemoresistance of cervical cancer cells by targeting SOX6. Apoptosis. 2020;25(3–4):205–16. https://doi.org/10.1007/s10495-019-01588-y.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Graphics were produced using Biorender.com.

Funding

This work was supported by National Institutes of Health grants K01HL130497, R03HL155041, and R01HL144941 to AK.

Author information

Authors and Affiliations

Authors

Contributions

M.S. and S.R. wrote the initial draft of the manuscript. F.E. and C.L.L edited the manuscript and figures. L.A.E. and and S.K.M. prepared the figures, edited, and improved the manuscript. A.K. edited and approved the final version.

Corresponding author

Correspondence to Annet Kirabo.

Ethics declarations

Conflict of Interest

Authors declare that they do not have any conflict of interest/competing interests except Dr. Annet Kirabo. Dr. Kirabo has a patent entitled “Methods for Treating Inflammation and Hypertension with Gamma-Ketoaldehyde Scavengers (U.S. Patent # 14/232,615). Dr. Kirabo is an associate editor for circulation research with compensation.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Mechanisms of Hypertension and Target-Organ Damage

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saleem, M., Rahman, S., Elijovich, F. et al. Sox6, A Potential Target for MicroRNAs in Cardiometabolic Disease. Curr Hypertens Rep 24, 145–156 (2022). https://doi.org/10.1007/s11906-022-01175-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11906-022-01175-8

Keywords

Navigation