Skip to main content

Advertisement

Log in

Relevance of microRNA 21 in Different Types of Hypertension

  • Resistant Hypertension (E Pimenta, Section Editor)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Hypertension (HTN) is a chronic medical condition that commonly affects the aging population worldwide. The prevalence of HTN is increasing in developing countries and is one of the leading causes of death in older individuals. HTN results from a complex interplay of genetic and environmental factors. Besides, HTN can result in various other health complications such as stroke and chronic kidney diseases, if not treated. Although various studies have explained the underlying mechanisms in the pathogenesis of HTN, limited information is available on their biomarkers. MicroRNAs (miRNAs) are RNA molecules that have been recognized as key regulators for HTN. miR-21 is a common microRNA that is has been reported to be significantly upregulated in HTN individuals. Hence, miR-21 can be a potential therapeutic target for HTN. The number of studies related to miR-21 on hypertension is limited. Therefore, the main thrust of this paper is to provide an overview of the current clinical evidence and significance of miR-21 in HTN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. •• Wei LK, Au A, Teh LK, Lye HS. Recent advances in the genetics of hypertension. Adv Exp Med Biol. 2017;956:561–581.

  2. •• Sarkar T, Singh NP. Epidemiology and genetics of hypertension. J Assoc Physicians India. 2015;63(9):61–98.

    PubMed  Google Scholar 

  3. •• Yip W, Wong TY, Jonas JB, Zheng Y, Lamoureux EL, Nangia V, Sabanayagam C. Prevalence, awareness, and control of hypertension among Asian Indians living in urban Singapore and rural India. J Hypertens. 2013;31(8):1539–46.

    Article  CAS  PubMed  Google Scholar 

  4. •• Gkaliagkousi E, Gavriilaki E, Triantafyllou A, Douma S. Clinical significance of endothelial dysfunction in essential hypertension. Curr Hypertens Rep. 2015;17(11):85.

    Article  PubMed  Google Scholar 

  5. •• Krishnan R, Mani P, Sivakumar P, Gopinath V, Sekar D. Expression and methylation of circulating microRNA-510 in essential hypertension. Hypertens Res. 2016; doi:10.1038/hr.2016.147.

  6. •• Kontaraki JE, Marketou ME, Zacharis EA, Parthenakis FI, Vardas PE. MicroRNA-9 and microRNA-126 expression levels in patients with essential hypertension: potential markers of target-organ damage. J Am Soc Hypertens. 2014;8(6):368–75.

    Article  CAS  PubMed  Google Scholar 

  7. •• Sekar D, Basam V, Krishnan R, Mani P, Sivakumar P, Gopinath V. Methylation dependent miR-510 in prostate cancer: a novel upcoming candidate for prostate cancer. Gene Reports. 2016;4:70–3.

    Article  Google Scholar 

  8. •• Cengiz M, Yavuzer S, Kılıçkıran Avcı B, Yürüyen M, Yavuzer H, Dikici SA, Karataş ÖF, Özen M, Uzun H, Öngen Z. Circulating miR-21 and eNOS in subclinical atherosclerosis in patients with hypertension. Clin Exp Hypertens. 2015;37(8):643–9.

    Article  CAS  PubMed  Google Scholar 

  9. •• Parikh VN, Park J, Nikolic I, Channick R, Yu PB, De Marco T, Hsue PY, Chan SY. Brief report: coordinated modulation of circulating miR-21 in HIV, HIV-associated pulmonary arterial hypertension, and HIV/hepatitis C virus coinfection. J Acquir Immune Defic Syndr. 2015;70(3):236–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. •• Kontaraki JE, Marketou ME, Parthenakis FI, Maragkoudakis S, Zacharis EA, Petousis S, Kochiadakis GE, Vardas PE. Hypertrophic and antihypertrophic microRNA levels in peripheral blood mononuclear cells and their relationship to left ventricular hypertrophy in patients with essential hypertension. J Am Soc Hypertens. 2015;9(10):802–10.

    Article  CAS  PubMed  Google Scholar 

  11. •• Cengiz M, Karatas OF, Koparir E, Yavuzer S, Ali C, Yavuzer H, Kirat E, Karter Y, Ozen M. Differential expression of hypertension-associated microRNAs in the plasma of patients with white coat hypertension. Medicine (Baltimore). 2015;94(13):e693.

    Article  CAS  Google Scholar 

  12. •• Bienertova-Vasku J, Novak J, Vasku A. MicroRNAs in pulmonary arterial hypertension:pathogenesis, diagnosis and treatment. J Am Soc Hypertens. 2015;9(3):221–34.

    Article  CAS  PubMed  Google Scholar 

  13. •• Boucherat O, Potus F, Bonnet S. microRNA and pulmonary hypertension. Adv Exp Med Biol. 2015;888:237–52.

    Article  PubMed  Google Scholar 

  14. •• Meloche J, Paulin R, Provencher S, Bonnet S. Therapeutic potential of microRNA modulation in pulmonary arterial hypertension. Curr Vasc Pharmacol. 2015;13(3):331–40.

    Article  CAS  PubMed  Google Scholar 

  15. •• Iannone L, Zhao L, Dubois O, Duluc L, Rhodes CJ, Wharton J, Wilkins MR, Leiper J, Wojciak-Stothard B. miR-21/DDAH1 pathway regulates pulmonary vascular responses to hypoxia. Biochem J. 2014;462(1):103–12.

    Article  CAS  PubMed  Google Scholar 

  16. •• Parikh VN, Jin RC, Rabello S, Gulbahce N, White K, Hale A, Cottrill KA, Shail RS, Waxman AB, Zhang YY, Maron BA, Hartner JC, Fujiwara Y, Orkin SH, Haley KJ, Barabasi AL, Loscalzo J, Chan SY, MicroRNA-21 integrates pathogenic signaling to control pulmonary hypertension:results of a network bioinformatics approach Circulation. 2012 Mar 27;125(12):1520–32.

  17. •• Yang S, Banerjee S, Ad F, Cui H, Xie N, Abraham E, Liu G. miR-21 regulates chronic hypoxia induced pulmonary vascular remodeling. AM J Physiol Lung Cell Mol Physiol. 2012;302(6):L521–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. •• Green DE, Murphy TC, Kang BY, Searles CD, Hart CM. PPAR gamma ligands attenuates hypoxia-induced proliferation in human pulmonary artery smooth muscle cells through modulation of microRNA-21. PLoS One. 2015 Jul 24;10(7):e0133391.

  19. •• Li H, Zhang X, Wang F, Zhou L, Yin Z, Fan J, Nie X, Wang P, Fu XD, Chen C, Wang DW. MicroRNA-21 lowers blood pressure in spontaneous hypertensive rats by upregulating mitochondrial translation. Circulation. 2016;134(10):734–51.

    Article  CAS  PubMed  Google Scholar 

  20. •• Wang G, Wu L, Chen Z, Sun J. Identification of crucial miRNAs and the targets in renal cortex of hypertensive patients by expression profiles. Ren Fail. 2016;2:1–8.

    CAS  Google Scholar 

  21. •• Joshi SR, Dhagia V, Gairhe S, Edwards JG, McMurtry IF, Gupte SA. MicroRNA-140 is elevated and mitofusin-1 is downregulated in the right ventricle of the Sugen5416/hypoxia/normoxia model of pulmonary arterial hypertension. Am J Physiol Heart Circ Physiol. 2016;311(3):H689–98.

    Article  PubMed  Google Scholar 

  22. •• Solayman MH, Langaee T, Patel A, El-Wakeel L, El-Hamamsy M, Badary O, Johnson JA. Identification of suitable endogenous normalizers for qRT-PCR analysis of plasma microRNA expression in essential hypertension. Mol Biotechnol. 2016;58(3):179–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. •• Yan M, Chen C, Gong W, Yin Z, Zhou L, Chaugai S, Wang DW. MiR-21-3p regulates cardiac hypertrophic response by targeting histone deacetylase-8. Cardiovasc Res. 2015;105(3):340–52.

    Article  CAS  PubMed  Google Scholar 

  24. •• White K, Dempsie Y, Caruso P, Wallace E, McDonald RA, Stevens H, Hatley ME, Van Rooij E, Morrell NW, MacLean MR, Baker AH. Endothelial apoptosis in pulmonary hypertension is controlled by a microRNA/programmed cell death 4/caspase-3 axis. Hypertension. 2014;64(1):185–94.

    Article  CAS  PubMed  Google Scholar 

  25. •• Parikh VN, Jin RC, Rabello S, Gulbahce N, White K, Hale A, Cottrill KA, Shaik RS, Waxman AB, Zhang YY, Maron BA, Hartner JC, Fujiwara Y, Orkin SH, Haley KJ, Barabási AL, Loscalzo J, Chan SY. MicroRNA-21 integrates pathogenic signaling to control pulmonary hypertension: results of a network bioinformatics approach. Circulation. 2012;125(12):1520–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. •• Denby L, Ramdas V, McBride MW, Wang J, Robinson H, McClure J, Crawford W, Lu R, Hillyard DZ, Khanin R, Agami R, Dominiczak AF, Sharpe CC, Baker AH. MiR-21 and miR-214 are consistently modulated during renal injury in rodent models. Am J Pathol. 2011;179(2):661–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. •• Sekar D, Venugopal B, Sekar P, Ramalingam K. Role of microRNA 21 in diabetes and associated/related diseases. Gene. 2016;582:14–8.

    Article  CAS  PubMed  Google Scholar 

  28. •• Sekar D, Krishnan R, Thirugnanasambantham K, Rajasekaran B, Islam VI, Sekar P. Significance of microRNA 21 in gastric cancer. Clin Res Hepatol Gastroenterol. 2016;40(5):538–45.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to express our sincere gratitude to our Chancellor Dr.P.Shamaraju, REVA university, Bangalore for giving moral support and motivation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Durairaj Sekar.

Ethics declarations

Conflict of Interest

The authors declare no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Resistant Hypertension

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sekar, D., Shilpa, B.R. & Das, A.J. Relevance of microRNA 21 in Different Types of Hypertension. Curr Hypertens Rep 19, 57 (2017). https://doi.org/10.1007/s11906-017-0752-z

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11906-017-0752-z

Keywords

Navigation