Skip to main content
Log in

Opportunities for Targeting the Angiotensin-Converting Enzyme 2/Angiotensin-(1-7)/Mas Receptor Pathway in Hypertension

  • Hypertension and the Kidney (RM Carey and A Mimran, Section Editors)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

It is well known that the renin-angiotensin system (RAS) plays a pivotal role in the pathophysiology of cardiovascular diseases. This is well illustrated by the great success of ACE inhibitors and angiotensin (Ang) II AT1 blockers in the treatment of hypertension and its complications. In the past decade, the classical concept of RAS orchestrated by a series of enzymatic reactions culminating in the linear generation and action of Ang II has expanded and become more complex. From the discoveries of new components such as the angiotensin converting enzyme 2 and the receptor Mas emerged a novel concept of dual opposite branches of the RAS: one vasoconstrictor and pro-hypertensive composed of ACE/Ang II/AT1; and other vasodilator and anti-hypertensive composed of ACE2/Ang-(1-7)/Mas. In this review we will discuss recent findings concerning the biological role of the ACE2/Ang-(1-7)/Mas arm in the cardiovascular system and highlight the initiatives to develop potential therapeutic strategies based on this axis for treating hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Unger T. The role of the renin-angiotensin system in the development of cardiovascular disease. Am J Cardiol. 2002;89(2A):3A–9. discussion 10A.

    Article  PubMed  CAS  Google Scholar 

  2. Bader M. Tissue renin-angiotensin-aldosterone systems: targets for pharmacological therapy. Annu Rev Pharmacol Toxicol. 2010;50:439–65.

    Article  PubMed  CAS  Google Scholar 

  3. Nicholls MG, Richards AM, Agarwal M. The importance of the renin-angiotensin system in cardiovascular disease. J Hum Hypertens. 1998;12(5):295–9.

    Article  PubMed  CAS  Google Scholar 

  4. Schiffrin EL. Vascular and cardiac benefits of angiotensin receptor blockers. Am J Med. 2002;113(5):409–18.

    Article  PubMed  CAS  Google Scholar 

  5. Ma TK, et al. Renin-angiotensin-aldosterone system blockade for cardiovascular diseases: current status. Br J Pharmacol. 2010;160(6):1273–92.

    Article  PubMed  CAS  Google Scholar 

  6. Matsusaka T, Ichikawa I. Biological functions of angiotensin and its receptors. Annu Rev Physiol. 1997;59:395–412.

    Article  PubMed  CAS  Google Scholar 

  7. Allen AM, Zhuo J, Mendelsohn FA. Localization and function of angiotensin AT1 receptors. Am J Hypertens. 2000;13(1 Pt 2):31S–8.

    Article  PubMed  CAS  Google Scholar 

  8. de Gasparo M, et al. International union of pharmacology. XXIII. The angiotensin II receptors. Pharmacol Rev. 2000;52(3):415–72.

    PubMed  Google Scholar 

  9. Vickers C, et al. Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase. J Biol Chem. 2002;277(17):14838–43.

    Article  PubMed  CAS  Google Scholar 

  10. Tipnis SR, et al. A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase. J Biol Chem. 2000;275(43):33238–43.

    Article  PubMed  CAS  Google Scholar 

  11. Donoghue M, et al. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ Res. 2000;87(5):E1–9.

    Article  PubMed  CAS  Google Scholar 

  12. Santos RA, et al. Angiotensin-(1-7) is an endogenous ligand for the G protein-coupled receptor Mas. Proc Natl Acad Sci U S A. 2003;100(14):8258–63.

    Article  PubMed  CAS  Google Scholar 

  13. Zisman LS, et al. Angiotensin-(1-7) formation in the intact human heart: in vivo dependence on angiotensin II as substrate. Circulation. 2003;108(14):1679–81.

    Article  PubMed  CAS  Google Scholar 

  14. Ferrario CM, et al. Counterregulatory actions of angiotensin-(1-7). Hypertension. 1997;30(3 Pt 2):535–41.

    Article  PubMed  CAS  Google Scholar 

  15. Ferreira AJ, et al. Therapeutic implications of the vasoprotective axis of the renin-angiotensin system in cardiovascular diseases. Hypertension. 2010;55(2):207–13.

    Article  PubMed  CAS  Google Scholar 

  16. Ferreira AJ, et al. New cardiovascular and pulmonary therapeutic strategies based on the angiotensin-converting enzyme 2/angiotensin-(1-7)/mas receptor axis. Int J Hypertens. 2012;2012:147825.

    PubMed  Google Scholar 

  17. Bindom SM, Lazartigues E. The sweeter side of ACE2: physiological evidence for a role in diabetes. Mol Cell Endocrinol. 2009;302(2):193–202.

    Article  PubMed  CAS  Google Scholar 

  18. Ferreira AJ, Santos RA. Cardiovascular actions of angiotensin-(1-7). Braz J Med Biol Res. 2005;38(4):499–507.

    Article  PubMed  CAS  Google Scholar 

  19. Santos RA, Ferreira AJ, Simoes ESAC. Recent advances in the angiotensin-converting enzyme 2-angiotensin(1-7)-Mas axis. Exp Physiol. 2008;93(5):519–27.

    Article  PubMed  CAS  Google Scholar 

  20. Kokubu T, et al. Purification and properties of angiotensin I-converting enzyme in human lung and its role on the metabolism of vasoactive peptides in pulmonary circulation. Adv Exp Med Biol. 1979;120B:467–75.

    PubMed  CAS  Google Scholar 

  21. Touyz RM, Berry C. Recent advances in angiotensin II signaling. Braz J Med Biol Res. 2002;35(9):1001–15.

    Article  PubMed  CAS  Google Scholar 

  22. Steckelings UM, Unger T. Angiotensin II type 2 receptor agonists–where should they be applied? Expert Opin Investig Drugs. 2012;21(6):763–6.

    Article  PubMed  CAS  Google Scholar 

  23. Widdop RE, et al. AT2 receptor-mediated relaxation is preserved after long-term AT1 receptor blockade. Hypertension. 2002;40(4):516–20.

    Article  PubMed  CAS  Google Scholar 

  24. Savoia C, et al. Angiotensin type 2 receptor in hypertensive cardiovascular disease. Curr Opin Nephrol Hypertens. 2011;20(2):125–32.

    Article  PubMed  CAS  Google Scholar 

  25. Fyhrquist F, Saijonmaa O. Renin-angiotensin system revisited. J Intern Med. 2008;264(3):224–36.

    Article  PubMed  CAS  Google Scholar 

  26. Bosnyak S, et al. Relative affinity of angiotensin peptides and novel ligands at AT1 and AT2 receptors. Clin Sci (Lond). 2011;121(7):297–303.

    CAS  Google Scholar 

  27. Albiston AL, et al. Evidence that the angiotensin IV (AT(4)) receptor is the enzyme insulin-regulated aminopeptidase. J Biol Chem. 2001;276(52):48623–6.

    Article  PubMed  CAS  Google Scholar 

  28. Chai SY, et al. The angiotensin IV/AT4 receptor. Cell Mol Life Sci. 2004;61(21):2728–37.

    Article  PubMed  CAS  Google Scholar 

  29. Schiavone MT, et al. Release of vasopressin from the rat hypothalamo-neurohypophysial system by angiotensin-(1-7) heptapeptide. Proc Natl Acad Sci U S A. 1988;85(11):4095–8.

    Article  PubMed  CAS  Google Scholar 

  30. Rice GI, et al. Evaluation of angiotensin-converting enzyme (ACE), its homologue ACE2 and neprilysin in angiotensin peptide metabolism. Biochem J. 2004;383(Pt 1):45–51.

    PubMed  CAS  Google Scholar 

  31. Brosnihan KB, Li P, Ferrario CM. Angiotensin-(1-7) dilates canine coronary arteries through kinins and nitric oxide. Hypertension. 1996;27(3 Pt 2):523–8.

    Article  PubMed  CAS  Google Scholar 

  32. Sampaio WO, Nascimento AA, Santos RA. Systemic and regional hemodynamic effects of angiotensin-(1-7) in rats. Am J Physiol Heart Circ Physiol. 2003;284(6):H1985–94.

    PubMed  CAS  Google Scholar 

  33. Freeman EJ, et al. Angiotensin-(1-7) inhibits vascular smooth muscle cell growth. Hypertension. 1996;28(1):104–8.

    Article  PubMed  CAS  Google Scholar 

  34. Gava E, et al. Angiotensin-(1-7) receptor Mas is an essential modulator of extracellular matrix protein expression in the heart. Regul Pept. 2012;175(1–3):30–42.

    Article  PubMed  CAS  Google Scholar 

  35. Xu P, et al. Endothelial dysfunction and elevated blood pressure in MAS gene-deleted mice. Hypertension. 2008;51(2):574–80.

    Article  PubMed  CAS  Google Scholar 

  36. Rabelo LA, Alenina N, Bader M. ACE2-angiotensin-(1-7)-Mas axis and oxidative stress in cardiovascular disease. Hypertens Res. 2011;34(2):154–60.

    Article  PubMed  CAS  Google Scholar 

  37. Fraga-Silva RA, et al. The antithrombotic effect of angiotensin-(1-7) involves mas-mediated NO release from platelets. Mol Med. 2008;14(1–2):28–35.

    PubMed  CAS  Google Scholar 

  38. •• Fraga-Silva RA, et al. An orally active formulation of angiotensin-(1-7) produces an antithrombotic effect. Clinics (Sao Paulo). 2011;66(5):837–41. This work shows that the oral formulations Ang-(1-7)-CyD produces biological activity through increasing Ang-(1-7) plasma level and in a Mas-dependent manner.

    Article  Google Scholar 

  39. Fraga-Silva RA, et al. The angiotensin-converting enzyme 2/angiotensin-(1-7)/Mas receptor axis: a potential target for treating thrombotic diseases. Thromb Haemost. 2012;108(6). doi:10.1160/TH12-06-0396.

  40. Santos RA, Campagnole-Santos MJ, Andrade SP. Angiotensin-(1-7): an update. Regul Pept. 2000;91(1–3):45–62.

    Article  PubMed  CAS  Google Scholar 

  41. Silva DM, et al. Evidence for a new angiotensin-(1-7) receptor subtype in the aorta of Sprague-Dawley rats. Peptides. 2007;28(3):702–7.

    Article  PubMed  CAS  Google Scholar 

  42. •• Verano-Braga T, et al. Time-resolved quantitative phosphoproteomics: new insights into angiotensin-(1-7) signaling networks in human endothelial cells. J Proteome Res. 2012;11(6):3370–81. This study provides new concepts and new understanding of the Ang-(17) signal transduction, shedding light on the mechanisms underlying Mas activation.

  43. Heitsch H, et al. Angiotensin-(1-7)-stimulated nitric oxide and superoxide release from endothelial cells. Hypertension. 2001;37(1):72–6.

    Article  PubMed  CAS  Google Scholar 

  44. Sampaio WO, et al. Angiotensin-(1-7) through receptor Mas mediates endothelial nitric oxide synthase activation via Akt-dependent pathways. Hypertension. 2007;49(1):185–92.

    Article  PubMed  CAS  Google Scholar 

  45. Sampaio WO, et al. Angiotensin-(1-7) counterregulates angiotensin II signaling in human endothelial cells. Hypertension. 2007;50(6):1093–8.

    Article  PubMed  CAS  Google Scholar 

  46. Greer EL, Brunet A. FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene. 2005;24(50):7410–25.

    Article  PubMed  CAS  Google Scholar 

  47. Zhao Y, Wang Y, Zhu WG. Applications of post-translational modifications of FoxO family proteins in biological functions. J Mol Cell Biol. 2011;3(5):276–82.

    Article  PubMed  CAS  Google Scholar 

  48. Brunet A, et al. Akt promotes cell survival by phosphorylating and inhibiting a forkhead transcription factor. Cell. 1999;96(6):857–68.

    Article  PubMed  CAS  Google Scholar 

  49. Zhu Z, et al. Angiotensin-(1-7) inhibits angiotensin II-induced signal transduction. J Cardiovasc Pharmacol. 2002;40(5):693–700.

    Article  PubMed  CAS  Google Scholar 

  50. Giani JF, et al. Angiotensin-(1-7) has a dual role on growth-promoting signalling pathways in rat heart in vivo by stimulating STAT3 and STAT5a/b phosphorylation and inhibiting angiotensin II-stimulated ERK1/2 and Rho kinase activity. Exp Physiol. 2008;93(5):570–8.

    PubMed  CAS  Google Scholar 

  51. Mercure C, et al. Angiotensin(1-7) blunts hypertensive cardiac remodeling by a direct effect on the heart. Circ Res. 2008;103(11):1319–26.

    Article  PubMed  CAS  Google Scholar 

  52. Gomes ER, et al. Angiotensin-(1-7) prevents cardiomyocyte pathological remodeling through a nitric oxide/guanosine 3',5'-cyclic monophosphate-dependent pathway. Hypertension. 2010;55(1):153–60.

    Article  PubMed  CAS  Google Scholar 

  53. Iyer SN, Ferrario CM, Chappell MC. Angiotensin-(1-7) contributes to the antihypertensive effects of blockade of the renin-angiotensin system. Hypertension. 1998;31(1 Pt 2):356–61.

    Article  PubMed  CAS  Google Scholar 

  54. Iyer SN, et al. Vasodepressor actions of angiotensin-(1-7) unmasked during combined treatment with lisinopril and losartan. Hypertension. 1998;31(2):699–705.

    Article  PubMed  CAS  Google Scholar 

  55. Collister JP, Hendel MD. The role of Ang (1-7) in mediating the chronic hypotensive effects of losartan in normal rats. J Renin Angiotensin Aldosterone Syst. 2003;4(3):176–9.

    Article  PubMed  CAS  Google Scholar 

  56. Kucharewicz I, et al. Antithrombotic effect of captopril and losartan is mediated by angiotensin-(1-7). Hypertension. 2002;40(5):774–9.

    Article  PubMed  CAS  Google Scholar 

  57. Yamada K, et al. Converting enzyme determines plasma clearance of angiotensin-(1-7). Hypertension. 1998;32(3):496–502.

    Article  PubMed  CAS  Google Scholar 

  58. Wiemer G, et al. AVE 0991, a nonpeptide mimic of the effects of angiotensin-(1-7) on the endothelium. Hypertension. 2002;40(6):847–52.

    Article  PubMed  CAS  Google Scholar 

  59. Santos RA, Ferreira AJ. Pharmacological effects of AVE 0991, a nonpeptide angiotensin-(1-7) receptor agonist. Cardiovasc Drug Rev. 2006;24(3–4):239–46.

    Article  PubMed  CAS  Google Scholar 

  60. da Costa-Goncalves AC, et al. AVE 0991, a non-peptide Mas-receptor agonist, facilitates penile erection. Exp Physiol. 2012. doi:10.1113/expphysiol.2012.068551.

  61. Pinheiro SV, et al. Nonpeptide AVE 0991 is an angiotensin-(1-7) receptor Mas agonist in the mouse kidney. Hypertension. 2004;44(4):490–6.

    Article  PubMed  CAS  Google Scholar 

  62. Lemos VS, et al. The endothelium-dependent vasodilator effect of the nonpeptide Ang(1-7) mimic AVE 0991 is abolished in the aorta of mas-knockout mice. J Cardiovasc Pharmacol. 2005;46(3):274–9.

    Article  PubMed  CAS  Google Scholar 

  63. Ferreira AJ, et al. The nonpeptide angiotensin-(1-7) receptor Mas agonist AVE-0991 attenuates heart failure induced by myocardial infarction. Am J Physiol Heart Circ Physiol. 2007;292(2):H1113–9.

    Article  PubMed  CAS  Google Scholar 

  64. Ferreira AJ, et al. Isoproterenol-induced impairment of heart function and remodeling are attenuated by the nonpeptide angiotensin-(1-7) analogue AVE 0991. Life Sci. 2007;81(11):916–23.

    Article  PubMed  CAS  Google Scholar 

  65. Benter IF, et al. Angiotensin-(1-7) prevents development of severe hypertension and end-organ damage in spontaneously hypertensive rats treated with L-NAME. Am J Physiol Heart Circ Physiol. 2006;290(2):H684–91.

    Article  PubMed  CAS  Google Scholar 

  66. Faria-Silva R, Duarte FV, Santos RA. Short-term angiotensin(1-7) receptor MAS stimulation improves endothelial function in normotensive rats. Hypertension. 2005;46(4):948–52.

    Article  PubMed  CAS  Google Scholar 

  67. Carvalho MB, et al. Evidence for Mas-mediated bradykinin potentiation by the angiotensin-(1-7) nonpeptide mimic AVE 0991 in normotensive rats. Hypertension. 2007;50(4):762–7.

    Article  PubMed  CAS  Google Scholar 

  68. Singh Y, Singh K, Sharma PL. Effect of combination of renin inhibitor and Mas-receptor agonist in DOCA-salt-induced hypertension in rats. Mol Cell Biochem. 2012. doi:10.1007/s11010-012-1489-2.

  69. Shemesh R, et al. Discovery and validation of novel peptide agonists for G-protein-coupled receptors. J Biol Chem. 2008;283(50):34643–9.

    Article  PubMed  CAS  Google Scholar 

  70. • Savergnini SQ, et al. Vascular relaxation, antihypertensive effect, and cardioprotection of a novel peptide agonist of the MAS receptor. Hypertension. 2010;56(1):112–20. This recent study was the first indicating that the novel Mas agonist, CGEN-856S, might have a therapeutic value, since it induces vasorelaxation, antihypertensive, and cardioprotective effects.

    Article  PubMed  CAS  Google Scholar 

  71. Lula I, et al. Study of angiotensin-(1-7) vasoactive peptide and its beta-cyclodextrin inclusion complexes: complete sequence-specific NMR assignments and structural studies. Peptides. 2007;28(11):2199–210.

    Article  PubMed  CAS  Google Scholar 

  72. Uekama K. Design and evaluation of cyclodextrin-based drug formulation. Chem Pharm Bull (Tokyo). 2004;52(8):900–15.

    Article  CAS  Google Scholar 

  73. •• Marques FD, et al. An oral formulation of angiotensin-(1-7) produces cardioprotective effects in infarcted and isoproterenol-treated rats. Hypertension. 2011;57(3):477–83. This work is the first showing the cardioprotective effects of Ang-(1-7) formulation, Ang-(1-7)-CyD.

    Article  PubMed  CAS  Google Scholar 

  74. • Kluskens LD, et al. Angiotensin-(1-7) with thioether bridge: an angiotensin-converting enzyme-resistant, potent angiotensin-(1-7) analog. J Pharmacol Exp Ther. 2009;328(3):849–54. In this work it was developed the cyclized Ang-(1-7) compound which was proposed as an excellent method to render more resistance against proteolytic breakdown but preserving its activity.

    Article  PubMed  CAS  Google Scholar 

  75. Durik M, et al. The effect of the thioether-bridged, stabilized Angiotensin-(1-7) analogue cyclic ang-(1-7) on cardiac remodeling and endothelial function in rats with myocardial infarction. Int J Hypertens. 2012;2012:536426.

    PubMed  Google Scholar 

  76. Hernandez Prada JA, et al. Structure-based identification of small-molecule angiotensin-converting enzyme 2 activators as novel antihypertensive agents. Hypertension. 2008;51(5):1312–7.

    Article  PubMed  CAS  Google Scholar 

  77. Ferreira AJ, et al. Angiotensin-converting enzyme 2 activation protects against hypertension-induced cardiac fibrosis involving extracellular signal-regulated kinases. Exp Physiol. 2011;96(3):287–94.

    Article  PubMed  CAS  Google Scholar 

  78. Ferreira AJ, et al. Evidence for angiotensin-converting enzyme 2 as a therapeutic target for the prevention of pulmonary hypertension. Am J Respir Crit Care Med. 2009;179(11):1048–54.

    Article  PubMed  CAS  Google Scholar 

  79. Fraga-Silva RA, et al. ACE2 activation promotes antithrombotic activity. Mol Med. 2010;16(5–6):210–5.

    PubMed  CAS  Google Scholar 

  80. Murca TM, et al. Oral administration of an angiotensin-converting enzyme 2 activator ameliorates diabetes-induced cardiac dysfunction. Regul Pept. 2012;177(1–3):107–15.

    Article  PubMed  CAS  Google Scholar 

  81. Murca TM, et al. Chronic activation of endogenous angiotensin-converting enzyme 2 protects diabetic rats from cardiovascular autonomic dysfunction. Exp Physiol. 2012;97(6):699–709.

    PubMed  CAS  Google Scholar 

  82. Sasaki S, et al. Effects of angiotensin-(1-7) on forearm circulation in normotensive subjects and patients with essential hypertension. Hypertension. 2001;38(1):90–4.

    Article  PubMed  CAS  Google Scholar 

  83. Davie AP, McMurray JJ. Effect of angiotensin-(1-7) and bradykinin in patients with heart failure treated with an ACE inhibitor. Hypertension. 1999;34(3):457–60.

    Article  PubMed  CAS  Google Scholar 

Download references

Disclosure

Dr. R.A. Fraga-Silva: grant from the Brazilian Swiss Joint Research Program. Dr. A.J. Ferreira: none. Dr. R.A.S. Santos: one of the authors of the patent “Process of Preparation of Formulations of the Peptide Angiotensin-(1-7) and its Analogues, Agonistic and Antagonists Using Cyclodextrins, Lipossomes and Biodegradable Polymers and/or Mixtures and Products Thereof” - WO/2003/039434.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robson Augusto Souza dos Santos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fraga-Silva, R.A., Ferreira, A.J. & dos Santos, R.A.S. Opportunities for Targeting the Angiotensin-Converting Enzyme 2/Angiotensin-(1-7)/Mas Receptor Pathway in Hypertension. Curr Hypertens Rep 15, 31–38 (2013). https://doi.org/10.1007/s11906-012-0324-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11906-012-0324-1

Keywords

Navigation