Skip to main content

Advertisement

Log in

Ongoing Healthcare Disparities in neuroHIV: Addressing Gaps in the Care Continuum

  • Published:
Current HIV/AIDS Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

We aim to review the neurological complications of HIV and the social, cultural, and economic inequalities that contribute to disparities in neuroHIV care.

Recent Findings

Disparities in diagnostics and care of patients with neurological infections and non-infectious conditions associated with HIV in both high-income and low-to-middle-income countries (LMIC) are common. The COVID-19 pandemic has exacerbated these disparities.

Summary

Factors, such as HIV-related stigma, may deter people from accessing HIV treatment. First-line recommended treatments for neurological infections are not available in many LMICs, leading to inadequate treatment and exposure to agents with more harmful side effect profiles. Access-related factors, such as lack of transportation, lack of health insurance, and inadequate telehealth access, may increase the risk of HIV-related neurological complications. Further research is needed to increase awareness of neurological complications among providers and PWH, and regional guidelines should be considered to better address these complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. World Health Organization. Global HIV programme. https://www.who.int/teams/global-hiv-hepatitis-and-stis-programmes/hiv/strategic-information/hiv-data-and-statistics. Accessed 15 Mar 2023.

  2. GBD 2017 HIV collaborators. Global, regional, and national incidence, prevalence, and mortality of HIV, 1980–2017, and forecasts to 2030, for 195 countries and territories: a systematic analysis for the Global Burden of Diseases, Injuries, and Risk Factors Study 2017. Lancet HIV. 2019;6:e831–e859. https://doi.org/10.1016/S2352-3018(19)30196-1.

  3. UNAIDS. Global HIV & AIDS statistics — Fact sheet. https://www.unaids.org/en/resources/fact-sheet [Accessed June 28, 2023]

  4. UNAIDS. In danger: UNAIDS global AIDS update 2022. Geneva: Joint United Nations Programme on HIV/AIDS (2022). https://www.unaids.org/sites/default/files/media_asset/2022-global-aids-update-summary_en.pdf. Accessed 16 Mar 2023.

  5. Waterfield KC, Shah GH, Etheredge GD, Ikhile O. Consequences of COVID-19 crisis for persons with HIV: the impact of social determinants of health. BMC Public Health. 2021;21:299. https://doi.org/10.1186/s12889-021-10296-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Saylor D, Dickens AM, Sacktor N, Haughey N, Slusher B, Pletnikov M, Mankowski JL, Brown A, Volsky DJ, McArthur JC. HIV-associated neurocognitive disorder–pathogenesis and prospects for treatment. Nat Rev Neurol. 2016;12:234–48. https://doi.org/10.1038/nrneurol.2016.27.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Balaji S, Chakraborty R, Aggarwal S. Neurological complications caused by human immunodeficiency virus (HIV) and associated opportunistic co-infections: a review on their diagnosis and therapeutic insights. CNS Neurol Disord Drug Targets. 2023. https://doi.org/10.2174/1871527322666230330083708.

    Article  PubMed  Google Scholar 

  8. Roomaney RA, van Wyk B, Pillay-van WV. Aging with HIV: increased risk of HIV comorbidities in older adults. Int J Environ Res Public Health. 2022;19:2359. https://doi.org/10.3390/ijerph19042359.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Gesesew HA, Tesfay Gebremedhin A, Demissie TD, Kerie MW, Sudhakar M, Mwanri L. Significant association between perceived HIV related stigma and late presentation for HIV/AIDS care in low and middle-income countries: a systematic review and meta-analysis. PLoS ONE. 2017;12:e0173928. https://doi.org/10.1371/journal.pone.0173928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. World Health Organization, African Region. HIV/AIDS. 2021. https://www.afro.who.int/health-topics/hivaids. Accessed 15 Mar 2023.

  11. Nguyen TT, Luong AN, Dao TDT, Nagot N, Laureillard D, Visier L, Le MG. What shapes late HIV diagnosis in Vietnam? A qualitative investigation of multilevel factors. AIDS Educ Prev. 2021;33:450–63. https://doi.org/10.1521/aeap.2021.33.5.450.

    Article  PubMed  Google Scholar 

  12. Kaplan JE, Benson C, Holmes KK, Brooks JT, Pau A, Masur H. Centers for Disease Control and Prevention (CDC), National Institutes of Health, HIV Medicine Association of the Infectious Diseases Society of America. Guidelines for prevention and treatment of opportunistic infections in HIV-infected adults and adolescents: recommendations from CDC, the National Institutes of Health, and the HIV Medicine Association of the Infectious Diseases Society of America. MMWR Recomm Rep. 2009;58:1–207.

    PubMed  Google Scholar 

  13. Consolidated guidelines on HIV prevention, testing, treatment, service delivery and monitoring: recommendations for a public health approach. Geneva: World Health Organization (2021). http://www.ncbi.nlm.nih.gov/books/NBK572729/ [Accessed June 28, 2023]

  14. Low A, Gavriilidis G, Larke N, B-Lajoie M-R, Drouin O, Stover J, Muhe L, Easterbrook P. Incidence of opportunistic infections and the impact of antiretroviral therapy among HIV-infected adults in low- and middle-income countries: a systematic review and meta-analysis. Clin Infect Dis. 2016;62:1595–603. https://doi.org/10.1093/cid/ciw125.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Gilbert L, Dear N, Esber A, Iroezindu M, Bahemana E, Kibuuka H, Owuoth J, Maswai J, Crowell TA, Polyak CS, et al. Prevalence and risk factors associated with HIV and syphilis co-infection in the African Cohort Study: a cross-sectional study. BMC Infect Dis. 2021;21:1123. https://doi.org/10.1186/s12879-021-06668-6.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Brignol S, Dourado I, Amorim LD, Kerr LRFS. Vulnerability in the context of HIV and syphilis infection in a population of men who have sex with men (MSM) in Salvador, Bahia State. Brazil Cad Saude Publica. 2015;31:1035–48. https://doi.org/10.1590/0102-311X00178313.

    Article  PubMed  Google Scholar 

  17. Gliddon HD, Peeling RW, Kamb ML, Toskin I, Wi TE, Taylor MM. A systematic review and meta-analysis of studies evaluating the performance and operational characteristics of dual point-of-care tests for HIV and syphilis. Sex Transm Infect. 2017;93:S3–15. https://doi.org/10.1136/sextrans-2016-053069.

    Article  PubMed  Google Scholar 

  18. Fan L, Yu A, Zhang D, Wang Z, Ma P. Consequences of HIV/syphilis co-infection on HIV viral load and immune response to antiretroviral therapy. Infect Drug Resist. 2021;14:2851–62. https://doi.org/10.2147/IDR.S320648.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Marra CM, Deutsch R, Collier AC, Morgello S, Letendre S, Clifford D, Gelman B, McArthur J, McCutchan JA, Simpson DM, et al. Neurocognitive impairment in HIV-infected individuals with previous syphilis. Int J STD AIDS. 2013;24:351–5. https://doi.org/10.1177/0956462412472827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kojima N, Klausner JD. An update on the global epidemiology of syphilis. Curr Epidemiol Rep. 2018;5:24–38. https://doi.org/10.1007/s40471-018-0138-z.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hamada Y, Getahun H, Tadesse BT, Ford N. HIV-associated tuberculosis. Int J STD AIDS. 2021;32:780–90. https://doi.org/10.1177/0956462421992257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gupta RK, Lucas SB, Fielding KL, Lawn SD. Prevalence of tuberculosis in post-mortem studies of HIV-infected adults and children in resource-limited settings: a systematic review and meta-analysis. AIDS. 2015;29:1987–2002. https://doi.org/10.1097/QAD.0000000000000802.

    Article  PubMed  Google Scholar 

  23. Hamilton DO, Nunes JV, Grobusch MP. Improving the diagnostics of tuberculosis and drug resistance with Xpert MTB/RIF in a district general hospital in Sierra Leone: a quality improvement project. BMJ Open Qual. 2019;8:e000478. https://doi.org/10.1136/bmjoq-2018-000478.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hanrahan CF, Haguma P, Ochom E, Kinera I, Cobelens F, Cattamanchi A, Davis L, Katamba A, Dowdy D. Implementation of Xpert MTB/RIF in Uganda: missed opportunities to improve diagnosis of tuberculosis. Open Forum Infect Dis. 2016;3:ofw068. https://doi.org/10.1093/ofid/ofw068.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hoang TTT, Nguyen NV, Dinh SN, Nguyen HB, Cobelens F, Thwaites G, Nguyen HT, Nguyen AT, Wright P, Wertheim HFL. Challenges in detection and treatment of multidrug resistant tuberculosis patients in Vietnam. BMC Public Health. 2015;15:980. https://doi.org/10.1186/s12889-015-2338-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Churchyard GJ, Stevens WS, Mametja LD, McCarthy KM, Chihota V, Nicol MP, Erasmus LK, Ndjeka NO, Mvusi L, Vassall A, et al. Xpert MTB/RIF versus sputum microscopy as the initial diagnostic test for tuberculosis: a cluster-randomised trial embedded in South African roll-out of Xpert MTB/RIF. Lancet Glob Health. 2015;3:e450–7. https://doi.org/10.1016/S2214-109X(15)00100-X.

    Article  PubMed  Google Scholar 

  27. Brown S, Leavy JE, Jancey J. Implementation of GeneXpert for TB testing in low- and middle-income countries: a systematic review. Glob Health Sci Pract. 2021;9:698–710. https://doi.org/10.9745/GHSP-D-21-00121.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Stosic M, Vukovic D, Babic D, Antonijevic G, Foley KL, Vujcic I, Grujicic SS. Risk factors for multidrug-resistant tuberculosis among tuberculosis patients in Serbia: a case-control study. BMC Public Health. 2018;18:1114. https://doi.org/10.1186/s12889-018-6021-5.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Fang X-H, Dan Y-L, Liu J, Jun L, Zhang Z-P, Kan X-H, Ma D-C, Wu G-C. Factors influencing completion of treatment among pulmonary tuberculosis patients. Patient Prefer Adherence. 2019;13:491–6. https://doi.org/10.2147/PPA.S198007.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Izudi J, Tamwesigire IK, Bajunirwe F. Treatment success and mortality among adults with tuberculosis in rural eastern Uganda: a retrospective cohort study. BMC Public Health. 2020;20:501. https://doi.org/10.1186/s12889-020-08646-0.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kebede A, Wabe NT. Medication adherence and its determinants among patients on concomitant tuberculosis and antiretroviral therapy in South west Ethiopia. N Am J Med Sci. 2012;4:67–71. https://doi.org/10.4103/1947-2714.93376.

    Article  PubMed  PubMed Central  Google Scholar 

  32. World Health Organization. Rapid communication on updated guidance on the management of tuberculosis in children and adolescents. https://www.who.int/publications-detail-redirect/9789240033450 [Accessed June 28, 2023]

  33. World Health Organization. WHO consolidated guidelines on tuberculosis. Module 4: treatment - drug-susceptible tuberculosis treatment. Geneva: World Health Organization. https://www.who.int/publications-detail-redirect/9789240048126 [Accessed June 28, 2023]

  34. Dian S, Ganiem AR, Ekawardhani S. Cerebral toxoplasmosis in HIV-infected patients: a review. Pathog Glob Health. 2023;117:14–23. https://doi.org/10.1080/20477724.2022.2083977.

    Article  CAS  PubMed  Google Scholar 

  35. Wang Z-D, Wang S-C, Liu H-H, Ma H-Y, Li Z-Y, Wei F, Zhu X-Q, Liu Q. Prevalence and burden of Toxoplasma gondii infection in HIV-infected people: a systematic review and meta-analysis. Lancet HIV. 2017;4:e177–88. https://doi.org/10.1016/S2352-3018(17)30005-X.

    Article  PubMed  Google Scholar 

  36. Ducrocq J, Simon A, Lemire M, De Serres G, Lévesque B. Exposure to Toxoplasma gondii through consumption of raw or undercooked meat: a systematic review and meta-analysis. Vector Borne Zoonotic Dis. 2021;21:40–9. https://doi.org/10.1089/vbz.2020.2639.

    Article  PubMed  Google Scholar 

  37. Rostami A, Riahi SM, Abdollahzadeh Sagha S, Taghipour A, Sepidarkish M, Mohammadnia-Afrouzi M, Ebrahimpour S, Hotez PJ, Gamble R, Gasser RB. Seroprevalence estimates of latent and acute toxoplasma infections in HIV+ people-call for action in underprivileged communities. Microorganisms. 2021;9:2034. https://doi.org/10.3390/microorganisms9102034.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Rajasingham R, Smith RM, Park BJ, Jarvis JN, Govender NP, Chiller TM, Denning DW, Loyse A, Boulware DR. Global burden of disease of HIV-associated cryptococcal meningitis: an updated analysis. Lancet Infect Dis. 2017;17:873–81. https://doi.org/10.1016/S1473-3099(17)30243-8.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Letang E, Müller MC, Ntamatungiro AJ, Kimera N, Faini D, Furrer H, Battegay M, Tanner M, Hatz C, Boulware DR, et al. Cryptococcal antigenemia in immunocompromised human immunodeficiency virus patients in rural Tanzania: a preventable cause of early mortality. Open Forum Infect Dis. 2015;2:ofv046. https://doi.org/10.1093/ofid/ofv046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jarvis JN, Lawrence DS, Meya DB, Kagimu E, Kasibante J, Mpoza E, Rutakingirwa MK, Ssebambulidde K, Tugume L, Rhein J, et al. Single-dose liposomal amphotericin B treatment for cryptococcal meningitis. N Engl J Med. 2022;386:1109–20. https://doi.org/10.1056/NEJMoa2111904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. World Health Organization. Guidelines for diagnosing, preventing and managing cryptococcal disease among adults, adolescents and children living with HIV. Geneva: World Health Organization (2022). https://www.who.int/publications-detail-redirect/9789240052178 [Accessed June 28, 2023]

  42. Burry J, Casas CP, Ford N. Access to medicines for treating people with cryptococcal meningitis. Clin Infect Dis. 2023;76:e773–5. https://doi.org/10.1093/cid/ciac689.

    Article  PubMed  Google Scholar 

  43. Saylor D, Elafros M, Bearden D, Dallah I, Mathews M, Mwenechanya M, Siddiqi OK, Sikazwe I, Birbeck GL. Factors associated with lumbar puncture performance in Zambia. Am J Trop Med Hyg. 2021;105:1429–33. https://doi.org/10.4269/ajtmh.21-0091.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Bowen L, Nath A, Smith B. CNS immune reconstitution inflammatory syndrome. Handb Clin Neurol. 2018;152:167–76. https://doi.org/10.1016/B978-0-444-63849-6.00013-X.

    Article  PubMed  Google Scholar 

  45. Mateen FJ, Nath A. Central nervous system–immune reconstitution inflammatory syndrome in resource-limited settings: current burden and future needs. AIDS. 2012;26:1851–5. https://doi.org/10.1097/QAD.0b013e3283574e1a.

    Article  PubMed  Google Scholar 

  46. Cole JW, Pinto AN, Hebel JR, Buchholz DW, Earley CJ, Johnson CJ, Macko RF, Price TR, Sloan MA, Stern BJ, et al. Acquired immunodeficiency syndrome and the risk of stroke. Stroke. 2004;35:51–6. https://doi.org/10.1161/01.STR.0000105393.57853.11.

    Article  PubMed  Google Scholar 

  47. Hoffmann M, Berger JR, Nath A, Rayens M. Cerebrovascular disease in young, HIV-infected, black Africans in the KwaZulu Natal province of South Africa. J Neurovirol. 2000;6:229–36. https://doi.org/10.3109/13550280009015825.

    Article  CAS  PubMed  Google Scholar 

  48. Chow FC, Bacchetti P, Kim AS, Price RW, Hsue PY. Effect of CD4+ cell count and viral suppression on risk of ischemic stroke in HIV infection. AIDS. 2014;28:2573–7. https://doi.org/10.1097/QAD.0000000000000452.

    Article  Google Scholar 

  49. Sabin CA, Ryom L, De Wit S, Mocroft A, Phillips AN, Worm SW, Weber R, D’Arminio Monforte A, Reiss P, Kamara D, et al. Associations between immune depression and cardiovascular events in HIV infection. AIDS. 2013;27:2735–48. https://doi.org/10.1097/01.aids.0000432457.91228.f3.

    Article  PubMed  Google Scholar 

  50. Desai M, Joyce V, Bendavid E, Olshen RA, Hlatky M, Chow A, Holodniy M, Barnett P, Owens DK. Risk of cardiovascular events associated with current exposure to HIV antiretroviral therapies in a US veteran population. Clin Infect Dis. 2015;61:445–52. https://doi.org/10.1093/cid/civ316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ryom L, Lundgren JD, El-Sadr W, Reiss P, Kirk O, Law M, Phillips A, Weber R, Fontas E, d’ Arminio Monforte A, et al. Cardiovascular disease and use of contemporary protease inhibitors: the D:A:D international prospective multicohort study. Lancet HIV. 2018;5:e291–300. https://doi.org/10.1016/S2352-3018(18)30043-2.

    Article  PubMed  Google Scholar 

  52. Chow FC, Wilson MR, Wu K, Ellis RJ, Bosch RJ, Linas BP. Stroke incidence is highest in women and non-Hispanic blacks living with HIV in the AIDS Clinical Trials Group Longitudinal Linked Randomized Trials cohort. AIDS. 2018;32:1125–35. https://doi.org/10.1097/QAD.0000000000001799.

    Article  PubMed  Google Scholar 

  53. Benjamin LA, Corbett EL, Connor MD, Mzinganjira H, Kampondeni S, Choko A, Hopkins M, Emsley HCA, Bryer A, Faragher B, et al. HIV, antiretroviral treatment, hypertension, and stroke in Malawian adults. Neurology. 2016;86:324–33. https://doi.org/10.1212/WNL.0000000000002278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Jaberinezhad M, Farhoudi M, Nejadghaderi SA, Alizadeh M, Sullman MJM, Carson-Chahhoud K, Collins GS, Safiri S. The burden of stroke and its attributable risk factors in the Middle East and North Africa region, 1990–2019. Sci Rep. 2022;12:2700. https://doi.org/10.1038/s41598-022-06418-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Uthman OA, Hartley L, Rees K, Taylor F, Ebrahim S, Clarke A. Multiple risk factor interventions for primary prevention of cardiovascular disease in low- and middle-income countries. Cochrane Database Syst Rev. 2015;2015:CD011163. https://doi.org/10.1002/14651858.CD011163.pub2.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Bogorodskaya M, Chow FC, Triant VA. Stroke in HIV. Can J Cardiol. 2019;35:280–7. https://doi.org/10.1016/j.cjca.2018.11.032.

    Article  PubMed  Google Scholar 

  57. GBD 2016 Stroke Collaborators. Global, regional, and national burden of stroke, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019;18:439–458. https://doi.org/10.1016/S1474-4422(19)30034-1.

  58. Langhorne P, O’Donnell MJ, Chin SL, Zhang H, Xavier D, Avezum A, Mathur N, Turner M, MacLeod MJ, Lopez-Jaramillo P, et al. Practice patterns and outcomes after stroke across countries at different economic levels (INTERSTROKE): an international observational study. Lancet. 2018;391:2019–27. https://doi.org/10.1016/S0140-6736(18)30802-X.

    Article  PubMed  Google Scholar 

  59. Khatib R, Arevalo YA, Berendsen MA, Prabhakaran S, Huffman MD. Presentation, evaluation, management, and outcomes of acute stroke in low- and middle-income countries: a systematic review and meta-analysis. Neuroepidemiology. 2018;51:104–12. https://doi.org/10.1159/000491442.

    Article  PubMed  Google Scholar 

  60. Cabrera DM, Diaz MM, Grimshaw A, Salvatierra J, Garcia PJ, Hsieh E. Aging with HIV in Latin America and the Caribbean: a systematic review. Curr HIV/AIDS Rep. 2021;18:1–47. https://doi.org/10.1007/s11904-020-00538-7.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Zenebe Y, Necho M, Yimam W, Akele B. Worldwide occurrence of HIV-associated neurocognitive disorders and its associated factors: a systematic review and meta-analysis. Front Psychiatry. 2022;13:814362. https://doi.org/10.3389/fpsyt.2022.814362.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Troncoso FT, de Conterno LO. Prevalence of neurocognitive disorders and depression in a Brazilian HIV population. Rev Soc Bras Med Trop. 2015;48:390–8. https://doi.org/10.1590/0037-8682-0034-2015.

    Article  PubMed  Google Scholar 

  63. Zamudio-Rodríguez A, Belaunzarán-Zamudio PF, Sierra-Madero JG, Cuellar-Rodríguez J, Crabtree-Ramírez BE, Alcala-Zermeno JL, Amieva H, Avila-Funes JA. Association between frailty and HIV-associated neurodegenerative disorders among older adults living with HIV. AIDS Res Hum Retroviruses. 2018;34:449–55. https://doi.org/10.1089/AID.2017.0100.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Pinheiro CAT, de Mattossouza LD, Motta JVDS, Kelbert EF, de Martins CSR, de Souza MS, Pinheiro KAT, da Coelho FMC, Pinheiro RT. Aging, neurocognitive impairment and adherence to antiretroviral therapy in human immunodeficiency virus-infected individuals. Braz J Infect Dis. 2016;20:599–604. https://doi.org/10.1016/j.bjid.2016.09.006.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Tsegaw M, Andargie G, Alem G, Tareke M. Screening HIV-associated neurocognitive disorders (HAND) among HIV positive patients attending antiretroviral therapy in South Wollo. Ethiopia J Psychiatr Res. 2017;85:37–41. https://doi.org/10.1016/j.jpsychires.2016.10.016.

    Article  PubMed  Google Scholar 

  66. Debalkie Animut M, Sorrie MB, Birhanu YW, Teshale MY. High prevalence of neurocognitive disorders observed among adult people living with HIV/AIDS in Southern Ethiopia: a cross-sectional study. PLoS ONE. 2019;14:e0204636. https://doi.org/10.1371/journal.pone.0204636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yitbarek GY, Ayehu GW, Ayele BA, Bayih WA, Gebremariam AD, Tiruneh SA. Cognitive impairment and its associated factors among HIV/AIDS patients on anti retro -viral therapy in Sub-Saharan Africa: systematic review and meta-analysis. Neurol Psychiatry Brain Res. 2020;38:83–91. https://doi.org/10.1016/j.npbr.2020.11.002.

    Article  Google Scholar 

  68. Belete T, Medfu G, Yemiyamrew E. Prevalence of HIV associated neurocognitive deficit among HIV positive people in Ethiopia: a cross sectional study at Ayder Referral Hospital. Ethiop J Health Sci. 2017;27:67–76.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Salahuddin M, Manzar MD, Hassen HY, Unissa A, Abdul Hameed U, Spence DW, Pandi-Perumal SR. Prevalence and predictors of neurocognitive impairment in Ethiopian population living with HIV. HIV AIDS (Auckl). 2020;12:559–72. https://doi.org/10.2147/HIV.S260831.

    Article  PubMed  Google Scholar 

  70. Nakku J, Kinyanda E, Hoskins S. Prevalence and factors associated with probable HIV dementia in an African population: a cross-sectional study of an HIV/AIDS clinic population. BMC Psychiatry. 2013;13:126. https://doi.org/10.1186/1471-244X-13-126.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Mugendi AG, Kubo MN, Nyamu DG, Mwaniki LM, Wahome SK, Haberer JE. Prevalence and correlates of neurocognitive disorders among HIV patients on antiretroviral therapy at a Kenyan hospital. Neurol Res Int. 2019;2019:5173289. https://doi.org/10.1155/2019/5173289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Gouse H, Masson CJ, Henry M, Marcotte TD, London L, Kew G, Rourke S, Robbins RN. Assessing HIV provider knowledge, screening practices, and training needs for HIV-associated neurocognitive disorders. A short report AIDS Care. 2021;33:468–72. https://doi.org/10.1080/09540121.2020.1736256.

    Article  Google Scholar 

  73. Ma Q, Vaida F, Wong J, Sanders CA, Kao Y, Croteau D, Clifford DB, Collier AC, Gelman BB, Marra CM, et al. Long-term efavirenz use is associated with worse neurocognitive functioning in HIV-infected patients. J Neurovirol. 2016;22:170–8. https://doi.org/10.1007/s13365-015-0382-7.

    Article  CAS  PubMed  Google Scholar 

  74. Gutiérrez F, Navarro A, Padilla S, Antón R, Masiá M, Borrás J, Martín-Hidalgo A. Prediction of neuropsychiatric adverse events associated with long-term efavirenz therapy, using plasma drug level monitoring. Clin Infect Dis. 2005;41:1648–53. https://doi.org/10.1086/497835.

    Article  PubMed  Google Scholar 

  75. Costa B, Vale N. Efavirenz: history, development and future. Biomolecules. 2022;13:88. https://doi.org/10.3390/biom13010088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ayalew MB, Kumilachew D, Belay A, Getu S, Teju D, Endale D, Tsegaye Y, Wale Z. First-line antiretroviral treatment failure and associated factors in HIV patients at the University of Gondar Teaching Hospital, Gondar. Northwest Ethiopia HIV AIDS (Auckl). 2016;8:141–6. https://doi.org/10.2147/HIV.S112048.

    Article  PubMed  Google Scholar 

  77. Eneh PC, Hullsiek KH, Kiiza D, Rhein J, Meya DB, Boulware DR, Nicol MR. Prevalence and nature of potential drug-drug interactions among hospitalized HIV patients presenting with suspected meningitis in Uganda. BMC Infect Dis. 2020;20:572. https://doi.org/10.1186/s12879-020-05296-w.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Nanfuka M, Forrest JI, Zhang W, Okoboi S, Birungi J, Kaleebu P, Zhu J, Tibenganas S, Moore DM. Durability of non-nucleotide reverse transcriptase inhibitor-based first-line ART regimens after 7 years of treatment in rural Uganda: a prospective cohort study. Medicine (Baltimore). 2021;100:e25763. https://doi.org/10.1097/MD.0000000000025763.

    Article  CAS  PubMed  Google Scholar 

  79. World Health Organization. Updated recommendations on first-line and second-line antiretroviral regimens and post-exposure prophylaxis and recommendations on early infant diagnosis of HIV. Geneva: World Health Organization (2018). https://www.who.int/publications/i/item/WHO-CDS-HIV-18.51 [Accessed June 28, 2023]

  80. Bengtson AM, Pence BW, Eaton EF, Edwards JK, Eron JJ, Mathews WC, Mollan K, Moore RD, O’Cleirigh C, Geng E, et al. Patterns of efavirenz use as first-line antiretroviral therapy in the United States: 1999–2015. Antivir Ther. 2018;23:363–72. https://doi.org/10.3851/IMP3223.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Murphy DA, Johnston Roberts K, Hoffman D, Molina A, Lu MC. Barriers and successful strategies to antiretroviral adherence among HIV-infected monolingual Spanish-speaking patients. AIDS Care. 2003;15:217–30. https://doi.org/10.1080/0954012031000068362.

    Article  CAS  PubMed  Google Scholar 

  82. Ahmed A, Dujaili JA, Jabeen M, Umair MM, Chuah L-H, Hashmi FK, Awaisu A, Chaiyakunapruk N. Barriers and enablers for adherence to antiretroviral therapy among people living with HIV/AIDS in the era of COVID-19: a qualitative study from Pakistan. Front Pharmacol. 2021;12:807446. https://doi.org/10.3389/fphar.2021.807446.

    Article  CAS  PubMed  Google Scholar 

  83. Kiviniemi MT, Orom H, Waters EA, McKillip M, Hay JL. Education-based disparities in knowledge of novel health risks: the case of knowledge gaps in HIV risk perceptions. Br J Health Psychol. 2018;23:420–35. https://doi.org/10.1111/bjhp.12297.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Goldhammer H, Marc LG, Psihopaidas D, Chavis NS, Massaquoi M, Cahill S, Rebchook G, Reisner S, Mayer KA, Cohen SM, et al. HIV care continuum interventions for transgender women: a topical review. Public Health Rep. 2023;138:19–30. https://doi.org/10.1177/00333549211065517.

    Article  PubMed  Google Scholar 

  85. Fauk NK, Gesesew HA, Seran AL, Raymond C, Tahir R, Ward PR. Barriers to accessing HIV care services in host low and middle income countries: views and experiences of Indonesian male ex-migrant workers living with HIV. Int J Environ Res Public Health. 2022;19:14377. https://doi.org/10.3390/ijerph192114377.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Babel RA, Wang P, Alessi EJ, Raymond HF, Wei C. Stigma, HIV risk, and access to HIV prevention and treatment services among men who have sex with men (MSM) in the United States: a scoping review. AIDS Behav. 2021;25:3574–604. https://doi.org/10.1007/s10461-021-03262-4.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Yuvaraj A, Mahendra VS, Chakrapani V, Yunihastuti E, Santella AJ, Ranauta A, Doughty J. HIV and stigma in the healthcare setting. Oral Dis. 2020;26:103–11. https://doi.org/10.1111/odi.13585.

    Article  PubMed  Google Scholar 

  88. MacLean JR, Wetherall K. The association between HIV-stigma and depressive symptoms among people living with HIV/AIDS: a systematic review of studies conducted in South Africa. J Affect Disord. 2021;287:125–37. https://doi.org/10.1016/j.jad.2021.03.027.

    Article  PubMed  Google Scholar 

  89. Scott W, Garcia Calderon Mendoza Del Solar M, Kemp H, McCracken LM, de Williams CCA, Rice ASC. A qualitative study of the experience and impact of neuropathic pain in people living with HIV. Pain. 2020;161:970–8. https://doi.org/10.1097/j.pain.0000000000001783.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Nguyen T, Li X. Understanding public-stigma and self-stigma in the context of dementia: a systematic review of the global literature. Dementia. 2020;19:148–81. https://doi.org/10.1177/1471301218800122.

    Article  PubMed  Google Scholar 

  91. Kaddumukasa M, Nalubwama H, Blixen C, Sewankambo N, Sajatovic M, Katabira E. A mixed-methods, cross-sectional study of perceived stigma among Ugandans with epilepsy. Afr Health Sci. 2022;22:252–62. https://doi.org/10.4314/ahs.v22i1.32.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Nickoloff-Bybel EA, Festa L, Meucci O, Gaskill PJ. Co-receptor signaling in the pathogenesis of neuroHIV. Retrovirology. 2021;18:24. https://doi.org/10.1186/s12977-021-00569-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Lanman T, Letendre S, Ma Q, Bang A, Ellis R. CNS neurotoxicity of antiretrovirals. J Neuroimmune Pharmacol. 2021;16:130–43. https://doi.org/10.1007/s11481-019-09886-7.

    Article  PubMed  Google Scholar 

  94. Quinn TC. Forty years of AIDS: a retrospective and the way forward. J Clin Invest. 2021;131(18):e154196. https://doi.org/10.1172/JCI154196.

  95. Lynch S, Ford N, van Cutsem G, Bygrave H, Janssens B, Decroo T, Andrieux-Meyer I, Roberts T, Balkan S, Casas E, et al. Public health. Getting HIV treatment to the most people. Science. 2012;337:298–300. https://doi.org/10.1126/science.1225702.

    Article  PubMed  Google Scholar 

  96. Nakagawa F, May M, Phillips A. Life expectancy living with HIV: recent estimates and future implications. Curr Opin Infect Dis. 2013;26:17–25. https://doi.org/10.1097/QCO.0b013e32835ba6b1.

    Article  PubMed  Google Scholar 

  97. Beer L, Bradley H, Mattson CL, Johnson CH, Hoots B, Shouse RL. Trends in racial and ethnic disparities in antiretroviral therapy prescription and viral suppression in the United States, 2009–2013. J Acquir Immune Defic Syndr. 2016;73:446–53. https://doi.org/10.1097/QAI.0000000000001125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wood E, Montaner JS, Bangsberg DR, Tyndall MW, Strathdee SA, O’Shaughnessy MV, Hogg RS. Expanding access to HIV antiretroviral therapy among marginalized populations in the developed world. AIDS. 2003;17:2419.

    Article  PubMed  Google Scholar 

  99. Endalamaw A, Gilks CF, Ambaw F, Habtewold TD, Assefa Y. Universal health coverage for antiretroviral treatment: a review. Infectious Disease Reports. 2023;15:1–15. https://doi.org/10.3390/idr15010001.

    Article  Google Scholar 

  100. Landovitz RJ, Desmond KA, Leibowitz AA. Antiretroviral therapy: racial disparities among publicly insured Californians with HIV. J Health Care Poor Underserved. 2017;28:406–29. https://doi.org/10.1353/hpu.2017.0031.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Power C, Boissé L, Rourke S, Gill MJ. NeuroAIDS: an evolving epidemic. Can J Neurol Sci. 2009;36:285–95. https://doi.org/10.1017/s0317167100007009.

    Article  PubMed  Google Scholar 

  102. Frentz D, Boucher CA, van de Vijver DA. Temporal changes in the epidemiology of transmission of drug-resistant HIV-1 across the world. AIDS Rev. 2012;14(1):17–27.

    PubMed  Google Scholar 

  103. Boerma RS, Sigaloff KCE, Akanmu AS, Inzaule S, Boele van Hensbroek M, Rinke de Wit TF, Calis JC. Alarming increase in pretreatment HIV drug resistance in children living in sub-Saharan Africa: a systematic review and meta-analysis. J Antimicrob Chemother. 2017;72:365–71. https://doi.org/10.1093/jac/dkw463.

    Article  CAS  PubMed  Google Scholar 

  104. Zucman D, Camara S, Gravisse J, Dimi S, Vasse M, Goudjo A, Choquet M, Peytavin G. Generic antiretroviral drugs in developing countries: friends or foes? AIDS. 2014;28:607. https://doi.org/10.1097/QAD.0000000000000170.

    Article  PubMed  Google Scholar 

  105. Gwaza L, Gordon J, Welink J, Potthast H, Leufkens H, Stahl M, García-Arieta A. Interchangeability between first-line generic antiretroviral products prequalified by WHO using adjusted indirect comparisons. Antivir Ther. 2017;22:135–44. https://doi.org/10.3851/IMP3089.

    Article  CAS  PubMed  Google Scholar 

  106. McCree DH, Chesson HW, Eppink ST, Beer L, Henny KD. Changes in racial and ethnic disparities in estimated diagnosis rates of heterosexually acquired HIV infection among heterosexual males in the United States, 2014–2018. J Acquir Immune Defic Syndr. 2020;85:588–92. https://doi.org/10.1097/QAI.0000000000002495.

    Article  PubMed  Google Scholar 

  107. Petersen KJ, Lu T, Wisch J, Roman J, Metcalf N, Cooley SA, Babulal GM, Paul R, Sotiras A, Vaida F, et al. Effects of clinical, comorbid, and social determinants of health on brain ageing in people with and without HIV: a retrospective case-control study. Lancet HIV. 2023;10:e244–53. https://doi.org/10.1016/S2352-3018(22)00373-3.

    Article  CAS  PubMed  Google Scholar 

  108. Wien S, Guest JL, Luisi N, Taussig J, Kramer MR, Stephenson R, Millett G, Del Rio C, Sullivan PS. Racial differences in the association of undetectable HIV viral load and transportation to an HIV provider among men who have sex with men in Atlanta, Georgia: a health equity perspective. AIDS Care. 2023;35:1154–63. https://doi.org/10.1080/09540121.2023.2182871.

    Article  PubMed  Google Scholar 

  109. Giannouchos TV, Crouch E, Merrell MA, Brown MJ, Harrison SE, Pearson WS. Racial, ethnic, and rural/urban disparities in HIV and sexually transmitted infections in South Carolina. J Community Health. 2023;48:152–9. https://doi.org/10.1007/s10900-022-01165-6.

    Article  PubMed  Google Scholar 

  110. Mayo NE, Brouillette M-J, Nadeau L, Dendukuri N, Harris M, Smaill F, Smith G, Thomas R, Fellows LK. A longitudinal view of successful aging with HIV: role of resilience and environmental factors. Qual Life Res. 2022;31:1135–45. https://doi.org/10.1007/s11136-021-02970-7.

    Article  PubMed  Google Scholar 

Download references

Funding

There is no direct funding to report for this article. MMD is funded by the National Institute of Mental Health at the NIH (1-K23-MH131466-01), the Alzheimer’s Association (AARGD-22–924896), and the American Academy of Neurology.

Author information

Authors and Affiliations

Authors

Contributions

DTJ, PMC and MMD wrote the main manuscript text and MMD prepared Tables 1-2. All authors reviewed the manuscript.

Corresponding author

Correspondence to Monica M. Diaz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of Interest

DTJ has no disclosures to report.

PMC has no disclosures to report.

MMD has no disclosures to report.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, D.T., Carcamo, P.M. & Diaz, M.M. Ongoing Healthcare Disparities in neuroHIV: Addressing Gaps in the Care Continuum. Curr HIV/AIDS Rep 20, 368–378 (2023). https://doi.org/10.1007/s11904-023-00683-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11904-023-00683-9

Keywords

Navigation