Skip to main content

Advertisement

Log in

Human genetic variability and HIV treatment response

  • Published:
Current HIV/AIDS Reports Aims and scope Submit manuscript

Abstract

Access to potent antiretroviral medications greatly reduces morbidity and mortality due to HIV/AIDS, but drug toxicity limits treatment success in many individuals. The field of pharmacogenomics strives to understand the influence of human genetic variants in response to medications. Investigators have begun to identify associations among human genetic variants, predisposition to HIV drug toxicities, and likelihood of virologic response. These include associations among abacavir hypersensitivity reactions, HLA type, and hsp70-hom genotypes, and among CYP2B6 polymorphisms, efavirenz pharmacokinetics, and central nervous system symptoms. Pharmacogenomics also holds great promise to suggest novel targets for drug development. The discovery that a naturally occurring, nonfunctional variant of the HIV receptor gene CCR5 protected against HIV infection encouraged the development of CCR5 antagonists. Through continued translational and applied research, pharmacogenomics will ultimately benefit persons living with HIV worldwide by identifying new therapeutic targets and through individualized drug prescribing that is informed by human genetic testing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Deng H, Liu R, Ellmeier W, et al.: Identification of a major co-receptor for primary isolates of HIV-1. Nature 1996, 381:661–666.

    Article  PubMed  CAS  Google Scholar 

  2. Dragic T, Litwin V, Allaway GP, et al.: HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CCCKR-5. Nature 1996, 381:667–673.

    Article  PubMed  CAS  Google Scholar 

  3. Dean M, Carrington M, Winkler C, et al.: Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Hemophilia Growth and Development Study, Multicenter AIDS Cohort Study, Multicenter Hemophilia Cohort Study, San Francisco City Cohort, ALIVE Study. Science 1996, 273:1856–1862.

    Article  PubMed  CAS  Google Scholar 

  4. Mangeat B, Turelli P, Caron G, et al.: Broad antiretroviral defense by human APOBEC3G through lethal editing of nascent reverse transcripts. Nature 2003, 424:99–103.

    Article  PubMed  CAS  Google Scholar 

  5. Stremlau M, Owens CM, Perron MJ, et al.: The cytoplasmic body component TRIM5alpha restricts HIV-1 infection in Old World monkeys. Nature 2004, 427:848–853.

    Article  PubMed  CAS  Google Scholar 

  6. Dong X, Li H, Derdowski A, et al.: AP-3 directs the intracellular trafficking of HIV-1 gag and plays a key role in particle assembly. Cell 2005, 120:663–674.

    Article  PubMed  CAS  Google Scholar 

  7. Haas DW, Wilkinson GR, Kuritzkes DR, et al.: A multiinvestigator/ institutional DNA bank for AIDS-related human genetic studies: AACTG protocol A5128. HIV Clinical Trials 2003, 4/5:287–300.

    Google Scholar 

  8. Peyrieere H, Nicolas J, Siffert M, et al.: Hypersensitivity related to abacavir in two members of a family. Ann Pharmacother 2001, 35:1291–1292.

    Article  PubMed  CAS  Google Scholar 

  9. Symonds W, Cutrell A, Edwards M, et al.: Risk factor analysis of hypersensitivity reactions to abacavir. Clin Ther 2002, 24:565–573.

    Article  PubMed  CAS  Google Scholar 

  10. Mallal S, Nolan D, Witt C, et al.: Association between presence of HLA-B5701, HLA-DR7, and HLA-DQ3 and hypersensitivity to HIV-1 reverse-transcriptase inhibitor abacavir. Lancet 2002, 359:727–732. This seminal report identified an underlying immunogenetic predisposition to abacavir hypersensitivity.

    Article  PubMed  CAS  Google Scholar 

  11. Hetherington S, Hughes AR, Mosteller M, et al.: Genetic variations in HLA-B region and hypersensitivity reactions to abacavir. Lancet 2002, 359:1121–1122.

    Article  PubMed  CAS  Google Scholar 

  12. Martin AM, Nolan D, Gaudieri S, et al.: Predisposition to abacavir hypersensitivity conferred by HLA-B5701 and a haplotypic Hsp70-Hom variant. Proc Natl Acad Sci U S A 2004, 101:4180–4185.

    Article  PubMed  CAS  Google Scholar 

  13. Beutler E, Gelbart T, Demina A: Racial variability in the UDP-glucuronosyltransferase 1 (UGT1A1) promoter: a balanced polymorphism for regulation of bilirubin metabolism? Proc Natl Acad Sci U S A 1998, 95:8170–8174.

    Article  PubMed  CAS  Google Scholar 

  14. Zucker SD, Qin X, Rouster SD, et al.: Mechanism of indinavir-induced hyperbilirubinemia. Proc Natl Acad Sci U S A 2001, 98:12671–12676.

    Article  PubMed  CAS  Google Scholar 

  15. O‘Mara E, Randall D, Passarell J, et al.: Population pharmacodynamic assessment of atazanavir exposure, uridine diphosphate-glucuronosyl transferase (UGT) 1A1 genotype and safety in healthy subjects [abstract 3051]. Presented at the 41st Interscience Conference on Antimicrobial Agents and Chemotherapy. Chicago, IL; December 16–19, 2001.

  16. Staszewski S, Morales-Ramirez J, Tashima KT, et al.: Efavirenz plus zidovudine and lamivudine, efavirenz plus indinavir, and indinavir plus zidovudine and lamivudine in the treatment of HIV-1 infection in adults. Study 006 Team. New Engl J Med 1999, 341:1865–1873.

    Article  PubMed  CAS  Google Scholar 

  17. Marzolini C, Telenti A, Decosterd LA, et al.: Efavirenz plasma levels can predict treatment failure and central nervous system side effects in HIV-1-infected patients. AIDS 2001, 15:71–75.

    Article  PubMed  CAS  Google Scholar 

  18. Barrett JS, Joshi AS, Chai M, et al.: Population pharmacokinetic meta-analysis with efavirenz. Int J Clin Pharmacol Ther 2002, 40:507–519.

    PubMed  CAS  Google Scholar 

  19. Pfister M, Labbe L, Hammer SM, et al.: Population pharmacokinetics and pharmacodynamics of efavirenz, nelfinavir, and indinavir: Adult AIDS Clinical Trial Group Study 398. Antimicrob Agents Chemother 2003, 47:130–137.

    Article  PubMed  CAS  Google Scholar 

  20. Ribaudo H, Clifford D, Gulick R, et al.: Relationships between efavirenz pharmacokinetics, side effects, drug discontinuation, virologic response, and race: results from ACTG A5095/A5097s [abstract 132]. Paper presented at 11th Conference on Retroviruses and Opportunistic Infections. San Francisco, CA; February 8–11, 2004.

  21. Ward BA, Gorski JC, Jones DR, et al.: The cytochrome P450 2B6 (CYP2B6) is the main catalyst of efavirenz primary and secondary metabolism: implication for HIV/AIDS therapy and utility of efavirenz as a substrate marker of CYP2B6 catalytic activity. J Pharmacol Exp Ther 2003, 306:287–300.

    Article  PubMed  CAS  Google Scholar 

  22. Lamba V, Lamba J, Yasuda K, et al.: Hepatic CYP2B6 expression: gender and ethnic differences and relationship to CYP2B6 genotype and CAR expression. J Pharmacol Exp Ther 2003, 3:906–922.

    Article  CAS  Google Scholar 

  23. Lang T, Klein K, Fischer J, et al.: Extensive genetic polymorphism in the human CYP2B6 gene with impact on expression and function in human liver. Pharmacogenetics 2001, 11:399–415.

    Article  PubMed  CAS  Google Scholar 

  24. Kirchheiner J, Klein C, Meineke I, et al.: Bupropion and 4-OH-bupropion pharmacokinetics in relation to genetic polymorphisms in CYP2B6. Pharmacogenetics 2003, 13:619–626.

    Article  PubMed  CAS  Google Scholar 

  25. Haas DW, Ribaudo HJ, Kim RB, et al.: Pharmacogenetics of efavirenz and central nervous system side effects: an Adult AIDS Clinical Trials Group study. AIDS 2004, 18:2391–2400. This seminal study established that a frequent CYP2B6 polymorphism is associated with increased plasma efavirenz exposure and increased central nervous system side effects. This polymorphism may help to explain previously reported racial differences in plasma efavirenz clearance.

    PubMed  CAS  Google Scholar 

  26. Haas DW, Smeaton LM, Shafer RW, et al.: Pharmacogenetics of long-term responses to antiretroviral regimens containing efavirenz and/or nelfinavir: an Adult AIDS Clinical Trials Group study. J Infect Dis 2005, 192: 1931–1942.

    Article  PubMed  CAS  Google Scholar 

  27. Ribaudo HJ, Haas DW, Tierney C, et al.: Pharmacogenetics of plasma efavirenz exposure after treatment discontinuation: an Adult AIDS Clinical Trials Group Study. Clin Infect Dis 2006, 42:401–407.

    Article  PubMed  CAS  Google Scholar 

  28. Mallal SA, John M, Moore CB, et al.: Contribution of nucleoside analogue reverse transcriptase inhibitors to subcutaneous fat wasting in patients with HIV infection. AIDS 2000, 14:1309–1316.

    Article  PubMed  CAS  Google Scholar 

  29. Bastard JP, Caron M, Vidal H, et al.: Association between altered expression of adipogenic factor SREBP1 in lipoatrophic adipose tissue from HIV-1-infected patients and abnormal adipocyte differentiation and insulin resistance. Lancet 2002, 359:1026–1031.

    Article  PubMed  CAS  Google Scholar 

  30. Sethi JK, Hotamisligil GS: The role of TNF alpha in adipocyte metabolism. Semin Cell Dev Biol 1999, 10:19–29.

    Article  PubMed  CAS  Google Scholar 

  31. Maher B, Alfirevic A, Vilar FJ, et al.: TNF-alpha promoter region gene polymorphisms in HIV-positive patients with lipodystrophy. AIDS 2002, 16:2013–2018.

    Article  PubMed  CAS  Google Scholar 

  32. Nolan D, Moore C, Castley A, et al.: Tumor necrosis factoralpha gene -238G/A promoter polymorphism associated with a more rapid onset of lipodystrophy. AIDS 2003, 17:121–123.

    Article  PubMed  Google Scholar 

  33. Lee CG, Gottesman MM: HIV-1 protease inhibitors and the MDR1 multidrug transporter. J Clin Invest 1998, 101:287–288.

    Article  PubMed  CAS  Google Scholar 

  34. Kim RB, Fromm MF, Wandel C, et al.: The drug transporter P-glycoprotein limits oral absorption and brain entry of HIV-1 protease inhibitors. J Clin Invest 1998, 101:289–294.

    PubMed  CAS  Google Scholar 

  35. Srinivas RV, Middlemas D, Flynn P, Fridland A: Human immunodefiency virus protease inhibitors serve as substrates for multidrug transporter proteins MDR1 and MRP1 but retain antiviral efficy in cell lines expressing these transporters. Antimicrob Agents Chemo 1998, 42:3157–3162.

    CAS  Google Scholar 

  36. Polli JW, Jarrett JL, Studenberg SD, et al.: Role of Pglycoprotein on the CNS disposition of amprenavir (141W94), an HIV protease inhibitor. Pharmaceutical Res 1999, 16:1206–1212.

    Article  CAS  Google Scholar 

  37. Washington CB, Wiltshire HR, Man M, et al.: The disposition of saquinavir in normal and P-glycoprotein deficient mice, rats, and in cultured cells. Drug Metabol Disp 2000, 28:1058–1062.

    CAS  Google Scholar 

  38. Marzolini C, Paus E, Buclin T, Kim RB: Polymorphisms in human MDR1 (P-glycoprotein): recent advances and clinical relevance. Clin Pharmacol Ther 2004, 75:13–33. This excellent review summarized the state of knowledge regarding MDR1 genetic variants and their potential clinical relevance.

    Article  PubMed  CAS  Google Scholar 

  39. Fellay J, Marzolini C, Meaden ER, et al.: Response to antiretroviral treatment in HIV-1-infected individuals with allelic variants of the multidrug resistance transporter 1: a pharmacogenetics study. Lancet 2002, 359:30–36.

    Article  PubMed  CAS  Google Scholar 

  40. Brumme ZL, Dong WW, Chan KJ, et al.: Influence of polymorphisms within the CX3CR1 and MDR-1 genes on initial antiretroviral therapy response. AIDS 2003, 17:201–208.

    Article  PubMed  CAS  Google Scholar 

  41. Nasi M, Borghi V, Pinti M, et al.: MDR1 C3435T genetic polymorphism does not influence the response to antiretroviral therapy in drug-naive HIV-positive patients. AIDS 2003, 17:1696–1698.

    Article  PubMed  Google Scholar 

  42. Haas DW, Wu H, Li H, et al.: MDR1 gene polymorphisms and phase 1 viral decay during HIV-1 infection: an adult AIDS Clinical Trials Group study. J Acquir Immune Defic Syndr 2003, 34:295–298.

    Article  PubMed  CAS  Google Scholar 

  43. Rotger M, Colombo S, Furrer H, et al.: Influence of CYP2B6 polymorphism on plasma and intracellular concentrations and toxicity of efavirenz and nevirapine in HIV-infected patients. Pharmacogenet Genomics 2005, 15:1–5.

    Article  PubMed  CAS  Google Scholar 

  44. Price P, James I, Fernandez S, French MA: Alleles of the gene encoding IL-1alpha may predict control of plasma viraemia in HIV-1 patients on highly active antiretroviral therapy. AIDS 2004, 18:1495–1501.

    Article  PubMed  CAS  Google Scholar 

  45. Haas DW, Bartlett JA, Andersen JA, et al.: Pharmacogenetics of nevirapine (NVP) and hepatotoxicity: an AACTG Collaborative study. Presented at the 12th Conference on Retroviruses and Opportunistic Infections. Boston, MA; February 22–25, 2005.

  46. Ritchie MD, Haas DW, Motsinger AA, et al.: Genetic variation in drug transporter and metabolizing enzyme genes may be associated with non-nucleoside reverse transcriptase inhibitor (NNRTI) hepatotoxicity. Presented at the 12th Conference on Retroviruses and Opportunistic Infections. Boston, MA 2005; February 22–25, 2005.

  47. Hulgan T, Haas DW, Haines JL, et al.: Mitochondrial haplogroups and peripheral neuropathy during antiretroviral therapy: an adult AIDS clinical trials group study. AIDS 2005, 19:1341–1349. This is the first study to suggest that interindividual differences in mitochondrial genetics may predispose to NRTI toxicity.

    Article  PubMed  Google Scholar 

  48. Martin AM, Nolan D, James I, et al.: Predisposition to nevirapine hypersensitivity associated with HLADRB1 0101 and abrogated by low CD4 T-cell counts. AIDS 2005, 19:97–99.

    Article  PubMed  CAS  Google Scholar 

  49. Tarr PE, Taffe P, Bleiber G, et al.: Modeling the influence of APOC3, APOE, and TNF polymorphisms on the risk of antiretroviral therapy-associated lipid disorders. J Infect Dis 2005, 191:1419–1426. This study, with Foulkes et al. [50], highlights the complexity involved in attempting to discern an underlying genetic predisposition to drug-induced dyslipidemia.

    Article  PubMed  CAS  Google Scholar 

  50. Foulkes AS, Wohl DA, Frank I, et al.: Associations among race/ethnicity, ApoC-III genotypes, and lipids in HIV-1-infected individuals on antiretroviral therapy. PLoS Med 2006, 3-e53:0001–011. This study, with Tarr et al. [49], highlights the complexity involved in attempting to discern an underlying genetic predisposition to drug-induced dyslipidemia.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David W. Haas MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haas, D.W. Human genetic variability and HIV treatment response. Curr HIV/AIDS Rep 3, 53–58 (2006). https://doi.org/10.1007/s11904-006-0018-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11904-006-0018-x

Keywords

Navigation