Skip to main content

Advertisement

Log in

Pediatric Germline Predisposition to Myeloid Neoplasms

  • Germline Predisposition to Myeloid Neoplasms (M Patnaik, Section Editor)
  • Published:
Current Hematologic Malignancy Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Advances in the understanding of germline predisposition to pediatric cancers, particularly myeloid neoplasms, have increased rapidly over the last 20 years. Here, we highlight the most up-to-date knowledge regarding known pathogenic germline variants that contribute to the development of myeloid neoplasms in children.

Recent Findings

This discussion enumerates the most notable myeloid neoplasm-causing germline mutations. These mutations may be organized based on their molecular underpinnings—transcriptional control, splicing and signal transduction control, and a group of heterogeneous bone marrow failure syndromes. We review recent findings related to the biochemical mechanisms that predispose to malignant transformation in each condition. Key genetic discoveries such as novel mutations, degrees of penetrance, principles of the two-hit hypothesis, and co-occurrence of multiple mutations are shared. Clinical pearls, such as information regarding epidemiology, natural history, or prognosis, are also discussed.

Summary

Germline mutations predisposing to pediatric myeloid neoplasms are frequent, but underrecognized. They hold major clinical implications regarding prognosis, treatment strategies, and screening for other malignancies. Further research is warranted to better characterize each of these conditions, as well as identify additional novel germline pathogenic variants of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Zhang J, et al. Germline mutations in predisposition genes in pediatric cancer. N Engl J Med. 2015;373:2336–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Böhles H. Die perniziöse Fanconi-Anämie, 1927. In: Historische Fälle aus der Medizin. Springer, Berlin, Heidelberg. (2020). https://doi.org/10.1007/978-3-662-59833-7_27.

  3. Smith MA, Ries LA, Gurney JG, et al. Leukemia. In: Ries LA, Smith MA, Gurney JG, et al., eds.: Cancer incidence and survival among children and adolescents: United States SEER Program 1975–1995. National Cancer Institute, SEER Program, 1999;NIH 17–34.

  4. Samaraweera SE, Wang PPS, Li KL, Casolari DA, Feng J, Pinese M, Maung KZY, Leo P, Cowley M, Perkins K, Smith AM, Ellis J, Wee A, Hiwase DK, Scott HS, Schreiber AW, Brown AL, Deans AJ, Ross DM, Moore AS, Gonda TJ, Hahn CN, D’Andrea RJ. Childhood acute myeloid leukemia shows a high level of germline predisposition. Blood. 2021;138(22):2293–8. https://doi.org/10.1182/blood.2021012666.

    Article  CAS  PubMed  Google Scholar 

  5. Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, Bloomfield CD, Cazzola M, Vardiman JW. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391–405. https://doi.org/10.1182/blood-2016-03-643544.

    Article  CAS  PubMed  Google Scholar 

  6. Desai AV, Perpich M, Godley LA. Clinical assessment and diagnosis of germline predisposition to hematopoietic malignancies: the University of Chicago Experience. Front Pediatr. 2017;6(5):252. https://doi.org/10.3389/fped.2017.00252.

    Article  Google Scholar 

  7. Smith ML, Cavenagh JD, Lister TA, Fitzgibbon J. Mutation of CEBPA in familial acute myeloid leukemia. N Engl J Med. 2004;351(23):2403–7. https://doi.org/10.1056/NEJMoa041331.

    Article  CAS  PubMed  Google Scholar 

  8. Mannelli F, Ponziani V, Bencini S, Bonetti MI, Benelli M, Cutini I, Gianfaldoni G, Scappini B, Pancani F, Piccini M, Rondelli T, Caporale R, Gelli AM, Peruzzi B, Chiarini M, Borlenghi E, Spinelli O, Giupponi D, Zanghì P, Bassan R, Bosi A. CEBPA-double-mutated acute myeloid leukemia displays a unique phenotypic profile: a reliable screening method and insight into biological features. Haematologica. 2017;102(3):529–40. https://doi.org/10.3324/haematol.2016.151910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cheson BD, Bennett JM, Kopecky KJ, Büchner T, Willman CL, Estey EH, Schiffer CA, Doehner H, Tallman MS, Lister TA, Lo-Coco F, Willemze R, Biondi A, Hiddemann W, Larson RA, Löwenberg B, Sanz MA, Head DR, Ohno R, Bloomfield CD; International Working Group for Diagnosis, Standardization of Response Criteria, Treatment Outcomes, and Reporting Standards for Therapeutic Trials in Acute Myeloid Leukemia. Revised recommendations of the International Working Group for Diagnosis, Standardization of Response Criteria, Treatment Outcomes, and Reporting Standards for Therapeutic Trials in Acute Myeloid Leukemia. J Clin Oncol. 2003 Dec 15;21(24):4642–9. https://doi.org/10.1200/JCO.2003.04.036. Erratum in: J Clin Oncol. 2004;Feb 1;22(3):576. LoCocco, Francesco [corrected to Lo-Coco, Francesco].

  10. Boddu P, Kantarjian HM, Garcia-Manero G, Ravandi F, Verstovsek S, Jabbour E, Borthakur G, Konopleva M, Bhalla KN, Daver N, DiNardo CD, Benton CB, Takahashi K, Estrov Z, Pierce SR, Andreeff M, Cortes JE, Kadia TM. Treated secondary acute myeloid leukemia: a distinct high-risk subset of AML with adverse prognosis. Blood Adv. 2017;1(17):1312–23. https://doi.org/10.1182/bloodadvances.2017008227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wurm AA, Zjablovskaja P, Kardosova M, Gerloff D, Bräuer-Hartmann D, Katzerke C, Hartmann JU, Benoukraf T, Fricke S, Hilger N, Müller AM, Bill M, Schwind S, Tenen DG, Niederwieser D, Alberich-Jorda M, Behre G. Disruption of the C/EBPα-miR-182 balance impairs granulocytic differentiation. Nat Commun. 2017;8(1):46. https://doi.org/10.1038/s41467-017-00032-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. •• Kimura Y, Iwanaga E, Iwanaga K, et al. A regulatory element in the 3′-untranslated region of CEBPA is associated with myeloid/NK/T-cell leukemia. Eur J Haematol. 2021;106:327–39. https://doi.org/10.1111/ejh.13551. DNA methylation in the CEBPA 3′-untranslated region (UTR) is associated with myeloid/NK/T-cell leukemia and CEBPA downregulation. The CEBPA 3′-UTR has the enhancer-like activity that is positively controlled by IKZF1. The methylation testing of CEBPA 3′-UTR helps to classify myeloid/NK/T-cell leukemia.

    Article  CAS  PubMed  Google Scholar 

  13. Wen XM, Hu JB, Yang J, Qian W, Yao DM, Deng ZQ, Zhang YY, Zhu XW, Guo H, Lin J, et al. CEBPA methylation and mutation in myelodysplastic syndrome. Med Oncol. 2015;32:192. https://doi.org/10.1007/s12032-015-0605-z.

    Article  CAS  PubMed  Google Scholar 

  14. Wilhelmson AS, Porse BT. CCAAT enhancer binding protein alpha (CEBPA) biallelic acute myeloid leukaemia: cooperating lesions, molecular mechanisms and clinical relevance. Br J Haematol. 2020;190:495–507. https://doi.org/10.1111/bjh.16534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tawana K, Wang J, Renneville A, Bodor C, Hills R, Loveday C, Savic A, Van Delft FW, Treleaven J, Georgiades P, et al. Disease evolution and outcomes in familial AML with germline CEBPA mutations. Blood. 2015;126:1214–23. https://doi.org/10.1182/blood-2015-05-647172.

    Article  CAS  PubMed  Google Scholar 

  16. Swerdlow SH. Who classification of tumours of haematopoietic and lymphoid tissues. International Agency for Research on Cancer; 2017.

    Google Scholar 

  17. Ernst MPT, Kavelaars FG, Lowenberg B, Valk PJM, Raaijmakers M. RUNX1 germline variants in RUNX1-mutant AML: how frequent? Blood. 2021;137:1428–31. https://doi.org/10.1182/blood.2020008478.

    Article  CAS  PubMed  Google Scholar 

  18. Mendler JH, Maharry K, Radmacher MD, Mrozek K, Becker H, Metzeler KH, Schwind S, Whitman SP, Khalife J, Kohlschmidt J, et al. RUNX1 mutations are associated with poor outcome in younger and older patients with cytogenetically normal acute myeloid leukemia and with distinct gene and MicroRNA expression signatures. J Clin Oncol. 2012;30:3109–18. https://doi.org/10.1200/JCO.2011.40.6652.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Gaidzik VI, Teleanu V, Papaemmanuil E, Weber D, Paschka P, Hahn J, Wallrabenstein T, Kolbinger B, Kohne CH, Horst HA, et al. RUNX1 mutations in acute myeloid leukemia are associated with distinct clinico-pathologic and genetic features. Leukemia. 2016;30:2160–8. https://doi.org/10.1038/leu.2016.126.

    Article  CAS  PubMed  Google Scholar 

  20. Drazer MW, Kadri S, Sukhanova M, Patil SA, West AH, Feurstein S, Calderon DA, Jones MF, Weipert CM, Daugherty CK, et al. Prognostic tumor sequencing panels frequently identify germ line variants associated with hereditary hematopoietic malignancies. Blood Adv. 2018;2:146–50. https://doi.org/10.1182/bloodadvances.2017013037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. OMIM entry - * 137295 - GATA-binding protein 2; GATA2. (n.d.). Retrieved from https://www.omim.org/entry/137295

  22. Collin M, Dickinson R, Bigley V. Haematopoietic and immune defects associated with GATA2 mutation. Br J Haematol. 2015;169:173–87. https://doi.org/10.1111/bjh.13317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Spinner MA, Sanchez LA, Hsu AP, Shaw PA, Zerbe CS, Calvo KR, Arthur DC, Gu W, Gould CM, Brewer CC, et al. GATA2 deficiency: A protean disorder of hematopoiesis, lymphatics, and immunity. Blood. 2014;123:809–21. https://doi.org/10.1182/blood-2013-07-515528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. •• Sahoo SS, Kozyra EJ, Wlodarski MW. Germline predisposition in myeloid neoplasms: unique genetic and clinical features of GATA2 deficiency and SAMD9/SAMD9L syndromes. Best Pract Res Clin Haematol. 2020;33(3):101197. https://doi.org/10.1016/j.beha.2020.101197. A great summary highlighting the current knowledge regarding the GATA2 and SAMD9/9L syndromes with all the key references and stakeholders.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Asou H, Matsui H, Ozaki Y, Nagamachi A, Nakamura M, Aki D, et al. Identification of a common microdeletion cluster in 7q21.3 subband among patients with myeloid leukemia and myelodysplastic syndrome. Biochem Biophys Res Commun. 2009;383:245–51.

    Article  CAS  PubMed  Google Scholar 

  26. Inaba T, Nagamachi A. Revertant somatic mosaicism as a cause of cancer. Cancer Sci. 2021;112(4):1383–9. https://doi.org/10.1111/cas.14852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Schwartz JR, Ma J, Lamprecht T, et al. The genomic landscape of pediatric myelodysplastic syndromes. Nat Commun. 2017;8:1557. https://doi.org/10.1038/s41467-017-01590-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Narumi S, Amano N, Ishii T, Katsumata N, Muroya K, Adachi M, Toyoshima K, Tanaka Y, Fukuzawa R, Miyako K, et al. SAMD9 mutations cause a novel multisystem disorder, MIRAGE syndrome, and are associated with loss of chromosome 7. Nat Genet. 2016;48:792–7. https://doi.org/10.1038/ng.3569.

    Article  CAS  PubMed  Google Scholar 

  29. •• de Jesus AA, Hou Y, Brooks S, Malle L, Biancotto A, Huang Y, et al. Distinct interferon signatures and cytokine patterns define additional systemic autoinflammatory diseases. J Clin Invest. 2020;130(4):1669–82. A very interesting paper showing the correlation between immune-dysregulatory/autoinflammatory diseases and myeloid predisposition syndromes.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Pastor VB, Sahoo SS, Boklan J, Schwabe GC, Saribeyoglu E, Strahm B, et al. Constitutional SAMD9L mutations cause familial myelodysplastic syndrome and transient monosomy 7. Haematologica. 2018;103:427–37. https://doi.org/10.3324/haematol.2017.180778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Davidsson J, Puschmann A, Tedgard U, Bryder D, Nilsson L, Cammenga J. SAMD9 and SAMD9L in inherited predisposition to ataxia, pancytopenia, and myeloid malignancies. Leukemia. 2018;32:1106–15. https://doi.org/10.1038/s41375-018-0074-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sperling AS, Gibson CJ, Ebert BL. The genetics of myelodysplastic syndrome: from clonal haematopoiesis to secondary leukaemia. Nat Rev Cancer. 2017;17(1):5–19. https://doi.org/10.1038/nrc.2016.112.

    Article  CAS  PubMed  Google Scholar 

  33. Sahoo SS, Pastor VP, Panda PK, Szvetnik EK, Kozyra EJ, Voss R, et al. SAMD9 and SAMD9L germline disorders in patients Enrolled in studies of the European working group of MDS in childhood (EWOG-MDS): prevalence, outcome, phenotype and functional characterisation. Blood. 2018;132(1):613. https://doi.org/10.1182/blood-2018-99-118389.

    Article  Google Scholar 

  34. Chen DH, Below JE, Shimamura A, Keel SB, Matsushita M, Wolff J, et al. Ataxia-pancytopenia syndrome is caused by missense mutations in SAMD9L. Am J Hum Genet. 2016;98:1146–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Thunstrom S, Axelsson M. Leukoencephalopathia, demyelinating peripheral neuropathy and dural ectasia explained by a not formerly described de novo mutation in the SAMD9L gene, ends 27 years of investigations - a case report. BMC Neurol. 2019;19:89.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Tesi B, Davidsson J, Voss M, Rahikkala E, Holmes TD, Chiang SC, et al. Gain-of-function SAMD9L mutations cause a syndrome of cytopenia, immunodeficiency. MDS and neurological symptoms Blood. 2017;129(16):2266–79.

    CAS  PubMed  Google Scholar 

  37. Bluteau O, Sebert M, Leblanc T, Peffault de Latour R, Quentin S, Lainey E, et al. A landscape of germ line mutations in a cohort of inherited bone marrow failure patients. Blood. 2018;131:717–32.

    Article  CAS  PubMed  Google Scholar 

  38. Perisa MP, Rose MJ, Varga E, Kamboj MK, Spencer JD, Bajwa RPS. A novel SAMD9 variant identified in patient with MIRAGE syndrome: further defining syndromic phenotype and review of previous cases. Pediatr Blood Canc. 2019;66:e27726.

    Article  Google Scholar 

  39. Schwartz JR, Wang S, Ma J, Lamprecht T, Walsh M, Song G, et al. Germline SAMD9 mutation in siblings with monosomy 7 and myelodysplastic syndrome. Leukemia. 2017;31:1827–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wong JC, Bryant V, Lamprecht T, Ma J, Walsh M, Schwartz J, et al. Germline SAMD9 and SAMD9L mutations are associated with extensive genetic evolution and diverse hematologic outcomes. JCI Insight 2018:3

  41. Buonocore F, Kuhnen P, Suntharalingham JP, Del Valle I, Digweed M, Stachelscheid H, et al. Somatic mutations and progressive monosomy modify SAMD9- related phenotypes in humans. J Clin Invest. 2017;127(5):1700–13.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Niemeyer CM. Pediatric MDS including refractory cytopenia and juvenile myelomonocytic leukemia. In: th Carreras E, Dufour C, Mohty M, Kroger N, editors. The EBMT handbook: hematopoietic stem cell transplantation and cellular therapies; 2019 557–60. Cham (CH).

  43. Molina JR, Adjei AA. The Ras/Raf/MAPK pathway. J Thorac Oncol. 2006;1(1):7–9 (PMID: 17409820).

    Article  PubMed  Google Scholar 

  44. Drosten M, Dhawahir A, Sum EY, Urosevic J, Lechuga CG, Esteban LM, Castellano E, Guerra C, Santos E, Barbacid M. Genetic analysis of Ras signalling pathways in cell proliferation, migration and survival. EMBO J. 2010;29:1091–104. https://doi.org/10.1038/emboj.2010.7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shapiro P. Ras-MAP kinase signaling pathways and control of cell proliferation: Relevance to cancer therapy. Crit Rev Clin Lab Sci. 2002;39:285–330. https://doi.org/10.1080/10408360290795538.

    Article  CAS  PubMed  Google Scholar 

  46. Strullu M, Caye A, Lachenaud J, Cassinat B, Gazal S, Fenneteau O, Pouvreau N, Pereira S, Baumann C, Contet A, et al. Juvenile myelomonocytic leukaemia and Noonan syndrome. J Med Genet. 2014;51:689–97. https://doi.org/10.1136/jmedgenet-2014-102611.

    Article  CAS  PubMed  Google Scholar 

  47. Perez B, Mechinaud F, Galambrun C, Ben RN, Isidor B, Philip N, Derain-Court J, Cassinat B, Lachenaud J, Kaltenbach S, et al. Germline mutations of the CBL gene define a new genetic syndrome with predisposition to juvenile myelomonocytic leukaemia. J Med Genet. 2010;47:686–91. https://doi.org/10.1136/jmg.2010.076836.

    Article  CAS  PubMed  Google Scholar 

  48. Loh ML, Sakai DS, Flotho C, Kang M, Fliegauf M, Archambeault S, Mullighan CG, Chen L, Bergstraesser E, Bueso-Ramos CE, et al. Mutations in CBL occur frequently in juvenile myelomonocytic leukemia. Blood. 2009;114:1859–63. https://doi.org/10.1182/blood-2009-01-198416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Caye A, Strullu M, Guidez F, Cassinat B, Gazal S, Fenneteau O, Lainey E, Nouri K, Nakhaei-Rad S, Dvorsky R, et al. Juvenile myelomonocytic leukemia displays mutations in components of the RAS pathway and the PRC2 network. Nat Genet. 2015;47:1334–40. https://doi.org/10.1038/ng.3420.

    Article  CAS  PubMed  Google Scholar 

  50. Stieglitz E, Taylor-Weiner AN, Chang TY, Gelston LC, Wang YD, Mazor T, Esquivel E, Yu A, Seepo S, Olsen S, et al. The genomic landscape of juvenile myelomonocytic leukemia. Nat Genet. 2015;47:1326–33. https://doi.org/10.1038/ng.3400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Polprasert C, Schulze I, Sekeres MA, Makishima H, Przychodzen B, Hosono N, Singh J, Padgett RA, Gu X, Phillips JG, et al. Inherited and somatic defects in DDX41 in myeloid neoplasms. Cancer Cell. 2015;27:658–70. https://doi.org/10.1016/j.ccell.2015.03.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sebert M, Passet M, Raimbault A, Rahme R, Raffoux E, Sicre de Fontbrune F, Cerrano M, Quentin S, Vasquez N, Da Costa M, et al. Germline DDX41 mutations define a significant entity within adult MDS/AML patients. Blood. 2019;134:1441–4. https://doi.org/10.1182/blood.2019000909.

    Article  PubMed  Google Scholar 

  53. Cheah JJC, Hahn CN, Hiwase DK, et al. Myeloid neoplasms with germline DDX41 mutation. Int J Hematol. 2017;106:163–74. https://doi.org/10.1007/s12185-017-2260-y.

    Article  CAS  PubMed  Google Scholar 

  54. Lewinsohn M, Brown AL, Weinel LM, Phung C, Rafidi G, Lee MK, Schreiber AW, Feng J, Babic M, Chong CE, et al. Novel germ line DDX41 mutations define families with a lower age of MDS/AML onset and lymphoid malignancies. Blood. 2016;127:1017–23. https://doi.org/10.1182/blood-2015-10-676098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Quesada AE, Routbort MJ, DiNardo CD, Bueso-Ramos CE, Kanagal-Shamanna R, Khoury JD, Thakral B, Zuo Z, Yin CC, Loghavi S, et al. DDX41 mutations in myeloid neoplasms are associated with male gender, TP53 mutations and high-risk disease. Am J Hematol. 2019;94:757–66.

    CAS  PubMed  Google Scholar 

  56. Lindsley RC, Mar BG, Mazzola E, Grauman PV, Shareef S, Allen SL, Pigneux A, Wetzler M, Stuart RK, Erba HP, et al. Acute myeloid leukemia ontogeny is defined by distinct somatic mutations. Blood. 2015;125:1367–76. https://doi.org/10.1182/blood-2014-11-610543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kim H, D’Andrea AD. Regulation of DNA cross-link repair by the Fanconi anemia/BRCA pathway. Genes Dev. 2012;26(13):1393–408. https://doi.org/10.1101/gad.195248.112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lensch MW, Rathbun RK, Olson SB, Jones GR, Bagby GC Jr. Selective pressure as an essential force in molecular evolution of myeloid leukemic clones: a view from the window of Fanconi anemia. Leukemia. 1999;13:1784–9. https://doi.org/10.1038/sj.leu.2401586.

    Article  CAS  PubMed  Google Scholar 

  59. Butturini A, Gale RP, Verlander PC, Adler-Brecher B, Gillio AP, Auerbach AD. Hematologic abnormalities in Fanconi anemia: an International Fanconi Anemia Registry study. Blood. 1994;84:1650–5. https://doi.org/10.1182/blood.V84.5.1650.1650.

    Article  CAS  PubMed  Google Scholar 

  60. Savage SA, Bertuch AA. The genetics and clinical manifestations of telomere biology disorders. Genet Med. 2010;12(12):753–64. https://doi.org/10.1097/GIM.0b013e3181f415b5.

    Article  PubMed  Google Scholar 

  61. Kirschner M, Maurer A, Wlodarski MW, Ventura Ferreira MS, Bouillon AS, Halfmeyer I, Blau W, Kreuter M, Rosewich M, Corbacioglu S, et al. Recurrent somatic mutations are rare in patients with cryptic dyskeratosis congenita. Leukemia. 2018;32:1762–7. https://doi.org/10.1038/s41375-018-0125-x.

    Article  CAS  PubMed  Google Scholar 

  62. Danilova N, Gazda HT. Ribosomopathies: how a common root can cause a tree of pathologies. Dis Model Mech. 2015;8(9):1013–26. https://doi.org/10.1242/dmm.020529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Aspesi A, Monteleone V, Betti M, et al. Lymphoblastoid cell lines from Diamond Blackfan anaemia patients exhibit a full ribosomal stress phenotype that is rescued by gene therapy. Sci Rep. 2017;7:12010. https://doi.org/10.1038/s41598-017-12307-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zebisch A, Lal R, Muller M, Lind K, Kashofer K, Girschikofsky M, Fuchs D, Wolfler A, Geigl JB, Sill H. Acute myeloid leukemia with TP53 germ line mutations. Blood. 2016;128:2270–2. https://doi.org/10.1182/blood-2016-08-732610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. McNerney ME, Godley LA, Le Beau MM. Therapy-related myeloid neoplasms: when genetics and environment collide. Nat Rev Cancer. 2017;17:513–27. https://doi.org/10.1038/nrc.2017.60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Mundschau G, Gurbuxani S, Gamis AS, Greene ME, Arceci RJ, Crispino JD. Mutagenesis of GATA1 is an initiating event in Down syndrome leukemogenesis. Blood. 2003;101:4298–300.

    Article  CAS  PubMed  Google Scholar 

  67. Banno K, Omori S, Hirata K, Nawa N, Nakagawa N, Nishimura K, et al. Systematic cellular disease models reveal synergistic interaction of trisomy 21 and GATA1 mutations in hematopoietic abnormalities. Cell Rep. 2016;15:1228–41.

    Article  CAS  PubMed  Google Scholar 

  68. Lukes J, Danek P, Alejo-Valle O, et al. Chromosome 21 gain is dispensable for transient myeloproliferative disorder driven by a novel GATA1 mutation. Leukemia. 2020;34:2503–8. https://doi.org/10.1038/s41375-020-0769-1.

    Article  PubMed  Google Scholar 

  69. Hollanda LM, Lima CS, Cunha AF, Albuquerque DM, Vassallo J, Ozelo MC, et al. An inherited mutation leading to production of only the short isoform of GATA-1 is associated with impaired erythropoiesis. Nat Genet. 2006;38:807–12.

    Article  CAS  PubMed  Google Scholar 

  70. Gamis AS, Alonzo TA, Gerbing RB, Hilden JM, Sorrell AD, Sharma M, Loew TW, Arceci RJ, Barnard D, Doyle J, Massey G, Perentesis J, Ravindranath Y, Taub J, Smith FO. Natural history of transient myeloproliferative disorder clinically diagnosed in Down syndrome neonates: a report from the Children’s Oncology Group Study A2971. Blood. 2011;118(26):6752–9. https://doi.org/10.1182/blood-2011-04-350017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Crispino JD. GATA1 mutations in Down syndrome: implications for biology and diagnosis of children with transient myeloproliferative disorder and acute megakaryoblastic leukemia. Pediatr Blood Cancer. 2005;44:40–4. https://doi.org/10.1002/pbc.20066.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mira A. Kohorst.

Ethics declarations

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Germline Predisposition to Myeloid Neoplasms

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thompson, C., Ariagno, S. & Kohorst, M.A. Pediatric Germline Predisposition to Myeloid Neoplasms. Curr Hematol Malig Rep 17, 266–274 (2022). https://doi.org/10.1007/s11899-022-00681-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11899-022-00681-5

Keywords

Navigation