Skip to main content

Advertisement

Log in

T-Cell Receptor-Engineered Cells for the Treatment of Hematologic Malignancies

  • CART and Immunotherapy (M Ruella, Section Editor)
  • Published:
Current Hematologic Malignancy Reports Aims and scope Submit manuscript

Abstract

Recent attention in adoptive immunotherapy for hematologic malignancies has focused on lymphocytes expressing chimeric antigen receptors. An alternative technique to redirect the immune system toward cancer cells involves the use of T-cells carrying an engineered tumor-recognizing T-cell receptor (TCR). This approach allows targeting of surface or intracellular/nuclear proteins as long as they are processed and presented on the cell surface by human leukocyte antigen molecules. Several trials in advanced solid tumors, particularly melanoma and synovial sarcoma, support the validity of this strategy, although tumor responses have often been short-lived. Emerging data from patients with multiple myeloma and myeloid neoplasms suggest that the benefit of TCR-modified cells may extend to blood cancers. Methodological refinements may be necessary to increase the in vivo persistence and functionality of these cells. Particularly with affinity-enhanced TCRs, however, more effective therapies may increase the potential for serious toxicity due to the unexpected on- or off-target reactivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Restifo NP, Dudley ME, Rosenberg SA. Adoptive immunotherapy for cancer: harnessing the T cell response. Nat Rev Immunol. 2012;12(4):269–81. Excellent review article on adoptive immunotherapy.

    Article  CAS  PubMed  Google Scholar 

  2. Rosenberg SA, Restifo NP. Adoptive cell transfer as personalized immunotherapy for human cancer. Science. 2015;348(6230):62–8. Excellent review article on adoptive immunotherapy.

    Article  CAS  PubMed  Google Scholar 

  3. June CH, Riddell SR, Schumacher TN. Adoptive cellular therapy: a race to the finish line. Sci Transl Med. 2015;7(280):280ps7. Excellent review article on adoptive immunotherapy.

    Article  PubMed  Google Scholar 

  4. Stauss HJ, Morris EC, Abken H. Cancer gene therapy with T cell receptors and chimeric antigen receptors. Curr Opin Pharmacol. 2015;24:113–8. Excellent review article on adoptive immunotherapy.

    Article  CAS  PubMed  Google Scholar 

  5. Harris DT, Kranz DM. Adoptive T cell therapies: a comparison of T cell receptors and chimeric antigen receptors. Trends Pharmacol Sci. 2016;37(3):220–30. Excellent review article on the differences between CAR- and TCR-based adoptive immunotherapy.

    Article  CAS  PubMed  Google Scholar 

  6. Gill S, Maus MV, Porter DL. Chimeric antigen receptor T cell therapy: 25 years in the making. Blood Rev. 2016. doi:10.1016/j.blre.2015.10.003.

  7. Maude SL, Teachey DT, Porter DL, Grupp SA. CD19-targeted chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Blood. 2015;125(26):4017–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dai H, Wang Y, Lu X, Han W. Chimeric antigen receptors modified T-cells for cancer therapy. J Natl Cancer Inst. 2016;108(7):djv439.

    PubMed  PubMed Central  Google Scholar 

  9. Maude S, Barrett DM. Current status of chimeric antigen receptor therapy for haematological malignancies. Br J Haematol. 2016;172(1):11–22.

    Article  CAS  PubMed  Google Scholar 

  10. Linnemann C, Schumacher TN, Bendle GM. T-cell receptor gene therapy: critical parameters for clinical success. J Invest Dermatol. 2011;131(9):1806–16.

    Article  CAS  PubMed  Google Scholar 

  11. Clay TM, Custer MC, Sachs J, Hwu P, Rosenberg SA, Nishimura MI. Efficient transfer of a tumor antigen-reactive TCR to human peripheral blood lymphocytes confers anti-tumor reactivity. J Immunol. 1999;163(1):507–13.

    CAS  PubMed  Google Scholar 

  12. Stanislawski T, Voss RH, Lotz C, Sadovnikova E, Willemsen RA, Kuball J, et al. Circumventing tolerance to a human MDM2-derived tumor antigen by TCR gene transfer. Nat Immunol. 2001;2(10):962–70.

    Article  CAS  PubMed  Google Scholar 

  13. de Witte MA, Coccoris M, Wolkers MC, van den Boom MD, Mesman EM, Song JY, et al. Targeting self-antigens through allogeneic TCR gene transfer. Blood. 2006;108(3):870–7.

    Article  PubMed  Google Scholar 

  14. Morris EC, Tsallios A, Bendle GM, Xue SA, Stauss HJ. A critical role of T cell antigen receptor-transduced MHC class I-restricted helper T cells in tumor protection. Proc Natl Acad Sci U S A. 2005;102(22):7934–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Morgan RA, Dudley ME, Wunderlich JR, Hughes MS, Yang JC, Sherry RM, et al. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science. 2006;314(5796):126–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Stromnes IM, Schmitt TM, Chapuis AG, Hingorani SR, Greenberg PD. Re-adapting T cells for cancer therapy: from mouse models to clinical trials. Immunol Rev. 2014;257(1):145–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schmitt TM, Stromnes IM, Chapuis AG, Greenberg PD. New strategies in engineering T-cell receptor gene-modified T cells to more effectively target malignancies. Clin Cancer Res. 2015;21(23):5191–7.

    Article  CAS  PubMed  Google Scholar 

  18. Theobald M, Biggs J, Dittmer D, Levine AJ, Sherman LA. Targeting p53 as a general tumor antigen. Proc Natl Acad Sci U S A. 1995;92(26):11993–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sadovnikova E, Jopling LA, Soo KS, Stauss HJ. Generation of human tumor-reactive cytotoxic T cells against peptides presented by non-self HLA class I molecules. Eur J Immunol. 1998;28(1):193–200.

    Article  CAS  PubMed  Google Scholar 

  20. Hackett PB, Largaespada DA, Switzer KC, Cooper LJ. Evaluating risks of insertional mutagenesis by DNA transposons in gene therapy. Transl Res. 2013;161(4):265–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Williams DA, Thrasher AJ. Concise review: lessons learned from clinical trials of gene therapy in monogenic immunodeficiency diseases. Stem Cells Transl Med. 2014;3(5):636–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wucherpfennig KW, Gagnon E, Call MJ, Huseby ES, Call ME. Structural biology of the T-cell receptor: insights into receptor assembly, ligand recognition, and initiation of signaling. Cold Spring Harb Perspect Biol. 2010;2(4):a005140.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Govers C, Sebestyén Z, Coccoris M, Willemsen RA, Debets R. T cell receptor gene therapy: strategies for optimizing transgenic TCR pairing. Trends Mol Med. 2010;16(2):77–87.

    Article  CAS  PubMed  Google Scholar 

  24. Ahmadi M, King JW, Xue SA, Voisine C, Holler A, Wright GP, et al. CD3 limits the efficacy of TCR gene therapy in vivo. Blood. 2011;118(13):3528–37.

    Article  CAS  PubMed  Google Scholar 

  25. Johnson LA, Morgan RA, Dudley ME, Cassard L, Yang JC, Hughes MS, et al. Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen. Blood. 2009;114(3):535–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Johnson LA, Heemskerk B, Powell Jr DJ, Cohen CJ, Morgan RA, Dudley ME, et al. Gene transfer of tumor-reactive TCR confers both high avidity and tumor reactivity to nonreactive peripheral blood mononuclear cells and tumor-infiltrating lymphocytes. J Immunol. 2006;177(9):6548–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chodon T, Comin-Anduix B, Chmielowski B, Koya RC, Wu Z, Auerbach M, et al. Adoptive transfer of MART-1 T-cell receptor transgenic lymphocytes and dendritic cell vaccination in patients with metastatic melanoma. Clin Cancer Res. 2014;20(9):2457–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sang M, Lian Y, Zhou X, Shan B. MAGE-A family: attractive targets for cancer immunotherapy. Vaccine. 2011;29(47):8496–500.

    Article  CAS  PubMed  Google Scholar 

  29. Meek DW, Marcar L. MAGE-A antigens as targets in tumour therapy. Cancer Lett. 2012;324(2):126–32.

    Article  CAS  PubMed  Google Scholar 

  30. Morgan RA, Chinnasamy N, Abate-Daga D, Gros A, Robbins PF, Zheng Z, et al. Cancer regression and neurological toxicity following anti-MAGE-A3 TCR gene therapy. J Immunother. 2013;36(2):133–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kageyama S, Ikeda H, Miyahara Y, Imai N, Ishihara M, Saito K, et al. Adoptive transfer of MAGE-A4 T-cell receptor gene-transduced lymphocytes in patients with recurrent esophageal cancer. Clin Cancer Res. 2015;21(10):2268–77.

    Article  CAS  PubMed  Google Scholar 

  32. Gnjatic S, Nishikawa H, Jungbluth AA, Gure AO, Ritter G, Jager E, et al. NY-ESO-1: review of an immunogenic tumor antigen. Adv Cancer Res. 2006;95:1–30.

    Article  CAS  PubMed  Google Scholar 

  33. Nicholaou T, Ebert L, Davis ID, Robson N, Klein O, Maraskovsky E, et al. Directions in the immune targeting of cancer: lessons learned from the cancer-testis Ag NY-ESO-1. Immunol Cell Biol. 2006;84(3):303–17.

    Article  CAS  PubMed  Google Scholar 

  34. Robbins PF, Morgan RA, Feldman SA, Yang JC, Sherry RM, Dudley ME, et al. Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J Clin Oncol. 2011;29(7):917–24.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Robbins PF, Kassim SH, Tran TL, Crystal JS, Morgan RA, Feldman SA, et al. A pilot trial using lymphocytes genetically engineered with an NY-ESO-1-reactive T-cell receptor: long-term follow-up and correlates with response. Clin Cancer Res. 2015;21(5):1019–27.

    Article  CAS  PubMed  Google Scholar 

  36. Parkhurst MR, Yang JC, Langan RC, Dudley ME, Nathan DA, Feldman SA, et al. T cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis. Mol Ther. 2011;19(3):620–6.

    Article  CAS  PubMed  Google Scholar 

  37. Szmania S, Tricot G, van Rhee F. NY-ESO-1 immunotherapy for multiple myeloma. Leuk Lymphoma. 2006;47(10):2037–48.

    Article  CAS  PubMed  Google Scholar 

  38. Rapoport AP, Stadtmauer EA, Binder-Scholl GK, Goloubeva O, Vogl DT, Lacey SF, et al. NY-ESO-1-specific TCR-engineered T cells mediate sustained antigen-specific antitumor effects in myeloma. Nat Med. 2015;21(8):914–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bar M, Chapuis AG, Schmitt TM, Nguyen H, Duerkopp NA, Tom MF, et al. Transferred donor-derived virus specific CD8+ T cells that have been transduced to express a WT1-specific T cell receptor can persist and provide anti-leukemic activity in AML patients post-transplant [abstract]. Blood. 2014;124(21):3939.

    Google Scholar 

  40. Greiner J, Bullinger L, Guinn BA, Döhner H, Schmitt M. Leukemia-associated antigens are critical for the proliferation of acute myeloid leukemia cells. Clin Cancer Res. 2008;14(22):7161–6.

    Article  CAS  PubMed  Google Scholar 

  41. Linette GP, Stadtmauer EA, Maus MV, Rapoport AP, Levine BL, Emery L, et al. Cardiovascular toxicity and titin cross-reactivity of affinity-enhanced T cells in myeloma and melanoma. Blood. 2013;122(6):863–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cameron BJ, Gerry AB, Dukes J, Harper JV, Kannan V, Bianchi FC, et al. Identification of a Titin-derived HLA-A1-presented peptide as a cross-reactive target for engineered MAGE A3-directed T cells. Sci Transl Med. 2013;5(197):197ra03.

    Article  Google Scholar 

  43. Bendle GM, Linnemann C, Hooijkaas AI, Bies L, de Witte MA, Jorritsma A, et al. Lethal graft-versus-host disease in mouse models of T cell receptor gene therapy. Nat Med. 2010;16(5):565–70.

    Article  CAS  PubMed  Google Scholar 

  44. van Loenen MM, de Boer R, Amir AL, Hagedoorn RS, Volbeda GL, Willemze R, et al. Mixed T cell receptor dimers harbor potentially harmful neoreactivity. Proc Natl Acad Sci U S A. 2010;107(24):10972–7.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Rosenberg SA. Of mice, not men: no evidence for graft-versus-host disease in humans receiving T-cell receptor-transduced autologous T cells. Mol Ther. 2010;18(10):1744–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Abate-Daga D, Speiser DE, Chinnasamy N, Zheng Z, Xu H, Feldman SA, et al. Development of a T cell receptor targeting an HLA-A*0201 restricted epitope from the cancer-testis antigen SSX2 for adoptive immunotherapy of cancer. PLoS One. 2014;9(3):e93321.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Miyazaki Y, Fujiwara H, Asai H, Ochi F, Ochi T, Azuma T, et al. Development of a novel redirected T-cell-based adoptive immunotherapy targeting human telomerase reverse transcriptase for adult T-cell leukemia. Blood. 2013;121(24):4894–901.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Roland B. Walter is a Leukemia & Lymphoma Society Scholar in Clinical Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland B. Walter.

Ethics declarations

Conflict of Interest

Nasheed M. Hossain and Aude G. Chapuis declare no potential conflicts of interest.

Roland B. Walter has received research funding from Amgen, Inc., Amphivena Therapeutics, Inc., Covagen AG, and Seattle Genetics, Inc., and is a consultant for Amphivena Therapeutics, Inc., Covagen AG, Emergent Biosolutions, Inc., Janssen Pharmaceuticals, Inc., and Pfizer, Inc.

Human and Animal Rights and Informed Consent

This article does not contain any otherwise unpublished studies with human subjects or animals that were performed by the authors.

Additional information

This article is part of the Topical Collection on CART and Immunotherapy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hossain, N.M., Chapuis, A.G. & Walter, R.B. T-Cell Receptor-Engineered Cells for the Treatment of Hematologic Malignancies. Curr Hematol Malig Rep 11, 311–317 (2016). https://doi.org/10.1007/s11899-016-0327-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11899-016-0327-0

Keywords

Navigation