Skip to main content
Log in

The Surgeon’s Role in Cardiogenic Shock

  • Cardiogenic Shock: Progress in Mechanical Circulatory Support (J.E. Rame, Section Editor)
  • Published:
Current Heart Failure Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Cardiogenic shock represents a very challenging patient population due to the undifferentiated pathologies presenting as cardiogenic shock, difficult decision-making, prognostication, and ever-expanding support options. The role of cardiac surgeons on this team is evolving.

Recent Findings

The implementation of a shock team is associated with improved outcomes in patients with cardiogenic shock. Early deployment of mechanical circulatory support devices may allow an opportunity to rescue these patients.

Summary

Cardiothoracic surgeons are a critical component of the shock team who can deploy timely mechanical support and surgical intervention in selected patients for optimal outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Reynolds HR, Hochman JS. Cardiogenic shock: current concepts and improving outcomes. Circulation. 2008;117(5):686–97.

    Article  PubMed  Google Scholar 

  2. Hochman JS, Sleeper LA, Webb JG, Sanborn TA, White HD, Talley JD, et al. Early revascularization in acute myocardial infarction complicated by cardiogenic shock. SHOCK Investigators. Should we emergently revascularize occluded coronaries for cardiogenic shock. N Engl J Med. 1999;341(9):625–34.

    Article  CAS  PubMed  Google Scholar 

  3. Thiele H, Zeymer U, Neumann F-J, Ferenc M, Olbrich H-G, Hausleiter J, et al. Intraaortic balloon support for myocardial infarction with cardiogenic shock. N Engl J Med. 2012;367(14):1287–96.

    Article  CAS  PubMed  Google Scholar 

  4. Baran DA, Long A, Jentzer JC. The stages of CS: clinical and translational update. Curr Heart Fail Rep. 2020;17(6):333–40.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Tehrani BN, Truesdell AG, Psotka MA, Rosner C, Singh R, Sinha SS, et al. A standardized and comprehensive approach to the management of cardiogenic shock. JACC Heart Fail. 2020;8(11):879–91.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Baran DA, Grines CL, Bailey S, Burkhoff D, Hall SA, Henry TD, et al. SCAI clinical expert consensus statement on the classification of cardiogenic shock: this document was endorsed by the American College of Cardiology (ACC), the American Heart Association (AHA), the Society of Critical Care Medicine (SCCM), and the Society of Thoracic Surgeons (STS) in April 2019. Catheter Cardiovasc Interv. 2019;94(1):29–37.

    PubMed  Google Scholar 

  7. Gongora E, Orozco E, Hoopes C. Temporary circulatory support with ventricular assist devices: update on surgical and percutaneous strategies. Curr Heart Fail Rep. 2020;17(6):350–6.

    Article  PubMed  Google Scholar 

  8. Seliem A, Hall SA. The new era of cardiogenic shock: progress in mechanical circulatory support. Curr Heart Fail Rep. 2020;17(6):325–32.

    Article  PubMed  Google Scholar 

  9. Barthel P, Mller A, Ulm K, Schmidt G, Klinik M. Incidence and prognosis of patients with cardiogenic shock in acute myocardial infarction. J Am Coll Cardiol. 2014;63(12):A164.

    Article  Google Scholar 

  10. Schrage B, Ibrahim K, Loehn T, Werner N, Sinning J-M, Pappalardo F, et al. Impella support for acute myocardial infarction complicated by cardiogenic shock. Circulation. 2019;139(10):1249–58.

    Article  PubMed  Google Scholar 

  11. Vallabhajosyula S, O’Horo JC, Antharam P, Ananthaneni S, Vallabhajosyula S, Stulak JM, et al. Concomitant intra-aortic balloon pump use in cardiogenic shock requiring veno-arterial extracorporeal membrane oxygenation. Circ Cardiovasc Interv. 2018;11(9):e006930.

    Article  PubMed  Google Scholar 

  12. Kowalewski M, Malvindi PG, Zieli??ski K, Martucci G, S??omka A, Suwalski P, et al. Left Ventricle Unloading with Veno-Arterial Extracorporeal Membrane Oxygenation for Cardiogenic Shock. Systematic Review and Meta-Analysis. J Clin Med. 2020;9(4):1039.

  13. Vahdatpour C, Collins D, Goldberg S. Cardiogenic shock. J Am Heart Assoc. 2019;8(8):e011991.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Basir MB, Kapur NK, Patel K, Salam MA, Schreiber T, Kaki A, et al. Improved Outcomes Associated with the use of Shock Protocols: Updates from the National Cardiogenic Shock Initiative. Catheter Cardiovasc Interv. 2019;93(7):1173–83.

    PubMed  Google Scholar 

  15. •• Tehrani BN, Truesdell AG, Sherwood MW, Desai S, Tran HA, Epps KC, et al. Standardized team-based care for cardiogenic shock. J Am Coll Cardiol. 2019;73(13):1659–69 In this study, prospective activation of ashock teamto evaluate and manage patients in suspected cardiogenic shock was associated with improved survival. These results provide quantitative evidence to support a standardized, team-based approach to patients in cardiogenic shock.

    Article  PubMed  Google Scholar 

  16. Kim DH. Mechanical circulatory support in cardiogenic shock: shock team or bust? Can J Cardiol. 2020;36(2):197–204.

    Article  PubMed  Google Scholar 

  17. Basir MB, Schreiber TL, Grines CL, Dixon SR, Moses JW, Maini BS, et al. Effect of early initiation of mechanical circulatory support on survival in cardiogenic shock. Am J Cardiol. 2017;119(6):845–51.

    Article  PubMed  Google Scholar 

  18. Basir MB, Schreiber T, Dixon S, Alaswad K, Patel K, Almany S, et al. Feasibility of early mechanical circulatory support in acute myocardial infarction complicated by cardiogenic shock: the Detroit cardiogenic shock initiative. Catheter Cardiovasc Interv. 2018;91(3):454–61.

    Article  PubMed  Google Scholar 

  19. Taleb I, Koliopoulou AG, Tandar A, McKellar SH, Tonna JE, Nativi-Nicolau J, et al. Shock team approach in refractory cardiogenic shock requiring short-term mechanical circulatory support: a proof of concept. Circulation. 2019;140(1):98–100.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Guglin M, Zucker MJ, Bazan VM, Bozkurt B, El Banayosy A, Estep JD, et al. Venoarterial ECMO for adults: JACC scientific expert panel. J Am Coll Cardiol. 2019;73(6):698–716.

    Article  PubMed  Google Scholar 

  21. van Diepen S, Katz JN, Albert NM, Henry TD, Jacobs AK, Kapur NK, et al. Contemporary management of cardiogenic shock: a scientific statement from the American Heart Association. Circulation. 2017;136(16):e232–68.

    PubMed  Google Scholar 

  22. Hajjar LA, Teboul J-L. Mechanical circulatory support devices for cardiogenic shock: state of the art. Crit Care. 2019;23(1):76.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Esposito M, Bader Y, Pedicini R, Breton C, Mullin A, Kapur NK. The role of acute circulatory support in ST-segment elevation myocardial infarction complicated by cardiogenic shock. Indian Heart J. 2017;69(5):668–74.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Roffi M, Patrono C, Collet J-P, Mueller C, Valgimigli M, Andreotti F, et al. 2015 ESC guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: task force for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J. 2016;37(3):267–315.

    Article  CAS  PubMed  Google Scholar 

  25. Thiele H, Zeymer U, Thelemann N, Neumann F-J, Hausleiter J, Abdel-Wahab M, et al. Intraaortic Balloon Pump in Cardiogenic Shock Complicating Acute Myocardial Infarction: Long-Term 6-Year Outcome of the Randomized IABP-SHOCK II Trial. Circulation. 2019;139(3):395–403.

  26. Shah AH, Puri R, Kalra A. Management of cardiogenic shock complicating acute myocardial infarction: a review. Clin Cardiol. 2019;42(4):484–93.

    Article  PubMed  PubMed Central  Google Scholar 

  27. • O’Neill WW, Grines C, Schreiber T, Moses J, Maini B, Dixon SR, et al. Analysis of outcomes for 15,259 US patients with acute myocardial infarction cardiogenic shock (AMICS) supported with the Impella device. Am Heart J. 2018;202:33–8 Outcomes of patients receiving the Impella pVAD for AMICS vary widely across treatment centers. However, modifiable treatment patterns associated with improved survival include early implementation of the device and invasive hemodynamic monitoring.

    Article  PubMed  Google Scholar 

  28. O’Neill WW, Schreiber T, Wohns DHW, Rihal C, Naidu SS, Civitello AB, et al. The current use of Impella 2.5 in acute myocardial infarction complicated by cardiogenic shock: results from the USpella Registry. J Interv Cardiol. 2014;27(1):1–11.

    Article  PubMed  Google Scholar 

  29. Batsides G, Massaro J, Cheung A, Soltesz E, Ramzy D, Anderson MB. Outcomes of Impella 5.0 in cardiogenic shock: a systematic review and meta-analysis. Innovations (Phila). 2018;13(4):254–60.

    Article  Google Scholar 

  30. Gaudard P, Mourad M, Eliet J, Zeroual N, Culas G, Rouvière P, et al. Management and outcome of patients supported with Impella 5.0 for refractory cardiogenic shock. Crit Care. 2015;19:363.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Amin AP, Spertus JA, Curtis JP, Desai N, Masoudi FA, Bach RG, et al. The evolving landscape of Impella use in the United States among patients undergoing percutaneous coronary intervention with mechanical circulatory support. Circulation. 2020;141(4):273–84.

    Article  PubMed  Google Scholar 

  32. • Dhruva SS, Ross JS, Mortazavi BJ, Hurley NC, Krumholz HM, Curtis JP, et al. Association of use of an intravascular microaxial left ventricular assist device vs intra-aortic balloon pump with in-hospital mortality and major bleeding among patients with acute myocardial infarction complicated by cardiogenic shock. JAMA. 2020;323(8):734–45 In patients undergoing PCI for acute MI complicated by cardiogenic shock who were stabilized with a temporary mechanical circulatory support device, intravascular microaxial LVAD devices were associated with a higher risk of in-hospital death and major bleeding complications that intra-aortic balloon pump.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Udesen NJ, Møller JE, Lindholm MG, Eiskjær H, Schäfer A, Werner N, et al. Rationale and design of DanGer shock: Danish-German cardiogenic shock trial. Am Heart J. 2019;214:60–8.

    Article  PubMed  Google Scholar 

  34. Thiele H, Lauer B, Hambrecht R, Boudriot E, Cohen HA, Schuler G. Reversal of cardiogenic shock by percutaneous left atrial-to-femoral arterial bypass assistance. Circulation. 2001;104(24):2917–22.

    Article  CAS  PubMed  Google Scholar 

  35. Bruckner BA, Jacob LP, Gregoric ID, Loyalka P, Kar B, Cohn WE, et al. Clinical experience with the TandemHeart percutaneous ventricular assist device as a bridge to cardiac transplantation. Tex Heart Inst J. 2008;35(4):447–50.

    PubMed  PubMed Central  Google Scholar 

  36. Kar B, Gregoric ID, Basra SS, Idelchik GM, Loyalka P. The percutaneous ventricular assist device in severe refractory cardiogenic shock. J Am Coll Cardiol. 2011;57(6):688–96.

    Article  PubMed  Google Scholar 

  37. Burkhoff D, Cohen H, Brunckhorst C, O’Neill WW, TandemHeart Investigators Group. A randomized multicenter clinical study to evaluate the safety and efficacy of the TandemHeart percutaneous ventricular assist device versus conventional therapy with intraaortic balloon pumping for treatment of cardiogenic shock. Am Heart J. 2006;152(3):469.e1–8.

    Article  Google Scholar 

  38. Thiele H, Jobs A, Ouweneel DM, Henriques JPS, Seyfarth M, Desch S, et al. Percutaneous short-term active mechanical support devices in cardiogenic shock: a systematic review and collaborative meta-analysis of randomized trials. Eur Heart J. 2017;38(47):3523–31.

    Article  PubMed  Google Scholar 

  39. Saffarzadeh A, Bonde P. Options for temporary mechanical circulatory support. J Thorac Dis. 2015;7(12):2102–11.

    PubMed  PubMed Central  Google Scholar 

  40. Takayama H, Soni L, Kalesan B, Truby LK, Ota T, Cedola S, et al. Bridge-to-decision therapy with a continuous-flow external ventricular assist device in refractory cardiogenic shock of various causes. Circ Heart Fail. 2014;7(5):799–806.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Borisenko O, Wylie G, Payne J, Bjessmo S, Smith J, Yonan N, et al. Thoratec CentriMag for temporary treatment of refractory cardiogenic shock or severe cardiopulmonary insufficiency: a systematic literature review and meta-analysis of observational studies. ASAIO J. 2014;60(5):487–97.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Rao P, Khalpey Z, Smith R, Burkhoff D, Kociol RD. Venoarterial extracorporeal membrane oxygenation for cardiogenic shock and cardiac arrest. Circ Heart Fail. 2018;11(9):e004905.

    Article  PubMed  Google Scholar 

  43. Sertic F, Bermudez C, Rame JE. Venoarterial extracorporeal membrane oxygenation as a bridge to recovery or bridge to heart replacement therapy in refractory cardiogenic shock. Curr Heart Fail Rep. 2020;17(6):341–9.

    Article  CAS  PubMed  Google Scholar 

  44. Combes A, Leprince P, Luyt C-E, Bonnet N, Trouillet J-L, Léger P, et al. Outcomes and long-term quality-of-life of patients supported by extracorporeal membrane oxygenation for refractory cardiogenic shock. Crit Care Med. 2008;36(5):1404–11.

    Article  PubMed  Google Scholar 

  45. Schmidt M, Burrell A, Roberts L, Bailey M, Sheldrake J, Rycus PT, et al. Predicting survival after ECMO for refractory cardiogenic shock: the survival after veno-arterial-ECMO (SAVE)-score. Eur Heart J. 2015;36(33):2246–56.

    Article  CAS  PubMed  Google Scholar 

  46. Mirabel M, Luyt C-E, Leprince P, Trouillet J-L, Léger P, Pavie A, et al. Outcomes, long-term quality of life, and psychologic assessment of fulminant myocarditis patients rescued by mechanical circulatory support. Crit Care Med. 2011;39(5):1029–35.

    Article  PubMed  Google Scholar 

  47. Lorusso R, Centofanti P, Gelsomino S, Barili F, Di Mauro M, Orlando P, et al. Venoarterial extracorporeal membrane oxygenation for acute fulminant myocarditis in adult patients: a 5-year multi-institutional experience. Ann Thorac Surg. 2016;101(3):919–26.

    Article  PubMed  Google Scholar 

  48. Marasco SF, Vale M, Pellegrino V, Preovolos A, Leet A, Kras A, et al. Extracorporeal membrane oxygenation in primary graft failure after heart transplantation. Ann Thorac Surg. 2010;90(5):1541–6.

    Article  PubMed  Google Scholar 

  49. Takeda K, Li B, Garan AR, Topkara VK, Han J, Colombo PC, et al. Improved outcomes from extracorporeal membrane oxygenation versus ventricular assist device temporary support of primary graft dysfunction in heart transplant. J Heart Lung Transplant. 2017;36(6):650–6.

    Article  PubMed  Google Scholar 

  50. Pasrija C, Kronfli A, George P, Raithel M, Boulos F, Herr DL, et al. Utilization of veno-arterial extracorporeal membrane oxygenation for massive pulmonary embolism. Ann Thorac Surg. 2018;105(2):498–504.

    Article  PubMed  Google Scholar 

  51. Ghoreishi M, DiChiacchio L, Pasrija C, Ghazi A, Deatrick KB, Jeudy J, et al. Predictors of recovery in patients supported with venoarterial extracorporeal membrane oxygenation for acute massive pulmonary embolism. Ann Thorac Surg. 2020;110(1):70–5.

    Article  PubMed  Google Scholar 

  52. Weiner L, Mazzeffi MA, Hines EQ, Gordon D, Herr DL, Kim HK. Clinical utility of venoarterial-extracorporeal membrane oxygenation (VA-ECMO) in patients with drug-induced cardiogenic shock: a retrospective study of the Extracorporeal Life Support Organizations’ ECMO case registry. Clin Toxicol (Phila). 2020;58(7):705–10.

    Article  CAS  Google Scholar 

  53. Farag J, Summerhayes R, Shen R, Bailey M, Williams-Spence J, Reid CM, et al. Post cardiotomy extra corporeal membrane oxygenation: Australian cohort review. Heart Lung Circ. 2020;29(12):1865–72.

    Article  PubMed  Google Scholar 

  54. Riebandt J, Haberl T, Wiedemann D, Moayedifar R, Schloeglhofer T, Mahr S, et al. Extracorporeal membrane oxygenation support for right ventricular failure after left ventricular assist device implantation. Eur J Cardiothorac Surg. 2018;53(3):590–5.

    Article  PubMed  Google Scholar 

  55. Pozzi M, Banfi C, Grinberg D, Koffel C, Bendjelid K, Robin J, et al. Veno-arterial extracorporeal membrane oxygenation for cardiogenic shock due to myocarditis in adult patients. J Thorac Dis. 2016;8(7):E495–502.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Lim HS. The effect of Impella CP on cardiopulmonary physiology during venoarterial extracorporeal membrane oxygenation support. Artif Organs. 2017;41(12):1109–12.

    Article  CAS  PubMed  Google Scholar 

  57. Ibrahim M. A prospective randomised trial of early LV venting using Impella CP for recovery in patients with cardiogenic shock managed with VA ECMO. clinicaltrials.gov; 2020 [cited 2020 Dec 30]. Report No.: NCT03431467. Available from: https://clinicaltrials.gov/ct2/show/NCT03431467. Accessed 1 Nov 2020.

  58. Russo JJ, Aleksova N, Pitcher I, Couture E, Parlow S, Faraz M, et al. Left ventricular unloading during extracorporeal membrane oxygenation in patients with cardiogenic shock. J Am Coll Cardiol. 2019;73(6):654–62.

    Article  PubMed  Google Scholar 

  59. Hillis LD, Smith PK, Anderson JL, Bittl JA, Bridges CR, Byrne JG, et al. 2011 ACCF/AHA guideline for coronary artery bypass graft surgery: a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines. Circulation. 2011;124(23):e652–735.

    PubMed  Google Scholar 

  60. Neumann F-J, Sousa-Uva M, Ahlsson A, Alfonso F, Banning AP, Benedetto U, et al. 2018 ESC/EACTS guidelines on myocardial revascularization. Eur Heart J. 2019;40(2):87–165.

    Article  PubMed  Google Scholar 

  61. Mehta RH, Lopes RD, Ballotta A, Frigiola A, Sketch MH, Bossone E, et al. Percutaneous coronary intervention or coronary artery bypass surgery for cardiogenic shock and multivessel coronary artery disease? Am Heart J. 2010;159(1):141–7.

    Article  PubMed  Google Scholar 

  62. •• Thiele H, Akin I, Sandri M, Fuernau G, de Waha S, Meyer-Saraei R, et al. PCI strategies in patients with acute myocardial infarction and cardiogenic shock. N Engl J Med. 2017;377(25):2419–32 This multicenter randomized controlled trial demonstrated superior outcomes after PCI in patients with acute MI and cardiogenic shock with multivessel coronary disease when the revascularization strategy targeted the culprit vessel only, and not diseased non-culprit arteries.

    Article  PubMed  Google Scholar 

  63. Elbadawi A, Elgendy IY, Mahmoud K, Barakat AF, Mentias A, Mohamed AH, et al. Temporal trends and outcomes of mechanical complications in patients with acute myocardial infarction. JACC Cardiovasc Interv. 2019;12(18):1825–36.

    Article  PubMed  Google Scholar 

  64. Tepe NA, Edmunds LH. Operation for acute postinfarction mitral insufficiency and cardiogenic shock. J Thorac Cardiovasc Surg. 1985;89(4):525–30.

    Article  CAS  PubMed  Google Scholar 

  65. Nishimura RA, Schaff HV, Gersh BJ, Holmes DR, Tajik AJ. Early repair of mechanical complications after acute myocardial infarction. JAMA. 1986;256(1):47–50.

    Article  CAS  PubMed  Google Scholar 

  66. Thompson CR, Buller CE, Sleeper LA, Antonelli TA, Webb JG, Jaber WA, et al. Cardiogenic shock due to acute severe mitral regurgitation complicating acute myocardial infarction: a report from the SHOCK Trial Registry. SHould we use emergently revascularize Occluded Coronaries in cardiogenic shocK? J Am Coll Cardiol. 2000;36(3 Suppl A):1104–9.

    Article  CAS  PubMed  Google Scholar 

  67. Coskun KO, Coskun ST, Popov AF, Hinz J, Schmitto JD, Bockhorst K, et al. Experiences with surgical treatment of ventricle septal defect as a post infarction complication. J Cardiothorac Surg. 2009;4:3.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Akodad M, Schurtz G, Adda J, Leclercq F, Roubille F. Management of valvulopathies with acute severe heart failure and cardiogenic shock. Arch Cardiovasc Dis. 2019;112(12):773–80.

    Article  PubMed  Google Scholar 

  69. Frerker C, Schewel J, Schlüter M, Schewel D, Ramadan H, Schmidt T, et al. Emergency transcatheter aortic valve replacement in patients with cardiogenic shock due to acutely decompensated aortic stenosis. EuroIntervention. 2016;11(13):1530–6.

    Article  PubMed  Google Scholar 

  70. Peura JL, Colvin-Adams M, Francis GS, Grady KL, Hoffman TM, Jessup M, et al. Recommendations for the use of mechanical circulatory support: device strategies and patient selection: a scientific statement from the American Heart Association. Circulation. 2012;126(22):2648–67.

    Article  PubMed  Google Scholar 

  71. Rose EA, Gelijns AC, Moskowitz AJ, Heitjan DF, Stevenson LW, Dembitsky W, et al. Long-Term Use of a Left Ventricular Assist Device for End-Stage Heart Failure. New England Journal of Medicine. 2001;345(20):1435–43.

  72. Rogers JG, Butler J, Lansman SL, Gass A, Portner PM, Pasque MK, et al. Chronic mechanical circulatory support for inotrope-dependent heart failure patients who are not transplant candidates: results of the INTrEPID Trial. J Am Coll Cardiol. 2007;50(8):741–7.

    Article  PubMed  Google Scholar 

  73. Slaughter MS, Rogers JG, Milano CA, Russell SD, Conte JV, Feldman D, et al. Advanced heart failure treated with continuous-flow left ventricular assist device. N Engl J Med. 2009;361(23):2241–51.

    Article  CAS  PubMed  Google Scholar 

  74. Mehra MR, Uriel N, Naka Y, Cleveland JC, Yuzefpolskaya M, Salerno CT, et al. A fully magnetically levitated left ventricular assist device — final report. N Engl J Med. 2019;380(17):1618–27.

    Article  PubMed  Google Scholar 

  75. Yasbanoo M, Fan Chun Po S, Cherikh Wida S, Stehlik J, Teuteberg Jeffrey J, Ross Heather J, et al. Survival outcomes after heart transplantation. Circ Heart Fail. 2019;12(10):e006218.

    Article  Google Scholar 

  76. Khush KK, Cherikh WS, Chambers DC, Goldfarb S, Hayes D, Kucheryavaya AY, et al. The International Thoracic Organ Transplant Registry of the International Society for Heart and Lung Transplantation: thirty-fifth adult heart transplantation report-2018; focus theme: multiorgan transplantation. J Heart Lung Transplant. 2018;37(10):1155–68.

    Article  PubMed  Google Scholar 

  77. Acharya D, Loyaga-Rendon RY, Pamboukian SV, Tallaj JA, Holman WL, Cantor RS, et al. Ventricular assist device in acute myocardial infarction. J Am Coll Cardiol. 2016;67(16):1871–80.

    Article  PubMed  Google Scholar 

  78. den Uil CA, Akin S, Jewbali LS, Dos Reis MD, Brugts JJ, Constantinescu AA, et al. Short-term mechanical circulatory support as a bridge to durable left ventricular assist device implantation in refractory cardiogenic shock: a systematic review and meta-analysis. Eur J Cardiothorac Surg. 2017;52(1):14–25.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Ibrahim.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Cardiogenic Shock: Progress in Mechanical Circulatory Support

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sperry, A.E., Williams, M., Atluri, P. et al. The Surgeon’s Role in Cardiogenic Shock. Curr Heart Fail Rep 18, 240–251 (2021). https://doi.org/10.1007/s11897-021-00514-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11897-021-00514-1

Keywords

Navigation