Skip to main content

Advertisement

Log in

The Use of Integrated Molecular Testing in the Assessment and Management of Pancreatic Cysts

  • Published:
Current Gastroenterology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

As abdominal imaging becomes more sensitive and regularly used, pancreatic cystic lesions (PCLs) are being diagnosed more frequently. A small but clinically significant minority of these lesions have a predisposition to either harbor malignancy or undergo malignant transformation. This review highlights the current state and performance of cystic fluid biomarkers and how they may be incorporated into management.

Recent Findings

Among the major domains of molecular testing for PCLs, DNA based analyses have demonstrated the highest accuracy in identifying cyst type and have the most data to support their clinical use. However, epigenetic and protein biomarker based molecular assessments have emerged with the potential to complement DNA based approaches. In addition, recent studies have increasingly demonstrated the value associated with combinations of mutations and other biomarkers in identifying higher grade mucinous cystic lesions.

Summary

We present the performance of individual biomarkers in cyst fluid analysis with an emphasis on an algorithmic approach to improve the accurate identification of both cyst type and risk of malignant transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Lee HJ, Kim MJ, Choi JY, Hong HS, Kim KA. Relative accuracy of CT and MRI in the differentiation of benign from malignant pancreatic cystic lesions. Clin Radiol. 2011;66(4):315–21.

    Article  PubMed  Google Scholar 

  2. Stark A, Donahue TR, Reber HA, Joe HO. Pancreatic cyst disease a review. JAMA - J Am Med Assoc. 2016;315(17):1882–93.

    Article  CAS  Google Scholar 

  3. Schweber AB, Agarunov E, Brooks C, Hur C, Gonda TA. Prevalence, incidence, and risk of progression of asymptomatic pancreatic cysts in large sample real-world data. Pancreas. 2021;50(9):1287–92.

    Article  CAS  PubMed  Google Scholar 

  4. Zhang XM, Mitchell DG, Dohke M, Holland GA, Parker L. Pancreatic cysts: Depiction on single-shot fast spin-echo MR images. Radiology. 2002;223(2):547–53.

    Article  PubMed  Google Scholar 

  5. Lee KS, Sekhar A, Rofsky NM, Pedrosa I. Prevalence of incidental pancreatic cysts in the adult population on MR imaging. Am J Gastroenterol. 2010;105(9):2079–84.

    Article  PubMed  Google Scholar 

  6. de Jong K, Nio CY, Hermans JJ, Dijkgraaf MG, Gouma DJ, van Eijck CHJ, et al. High prevalence of pancreatic cysts detected by screening magnetic resonance imaging examinations. Clin Gastroenterol Hepatol. 2010;8(9):806–11.

    Article  PubMed  Google Scholar 

  7. Laffan TA, Horton KM, Klein AP, Berlanstein B, Siegelman SS, Kawamoto S, et al. Prevalence of unsuspected pancreatic cysts on MDCT Thomas. Am J Roentgenol. 2008;191(3):802–7.

    Article  Google Scholar 

  8. Falqueto A, Pelandré GL, da Costa MZG, Nacif MS, Marchiori E. Prevalence of pancreatic cystic neoplasms on imaging exams: Association with signs of malignancy risk. Radiol Bras. 2018;51(4):218–24.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Gill A, Klimstra D, Lam A, Washington M, eds. Tumours of the pancreas. In: WHO classification of tumours: digestive system tumours. 5th ed. Lyon: World Health Organization; 2019. p. 295–376.

  10. Del Chiaro M, Besselink MG, Scholten L, Bruno MJ, Cahen DL, Gress TM, et al. European evidence-based guidelines on pancreatic cystic neoplasms. Gut. 2018;67(5):789–804.

    Article  Google Scholar 

  11. Banks PA, Bollen TL, Dervenis C, Gooszen HG, Johnson CD, Sarr MG, et al. Classification of acute pancreatitis - 2012: Revision of the Atlanta classification and definitions by international consensus. Gut. 2013;62(1):102–11.

    Article  PubMed  Google Scholar 

  12. Kim YS, Cho JH. Rare nonneoplastic cysts of pancreas. Clin Endosc. 2015;48(1):31–8.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Assifi MM, Nguyen PD, Agrawal N, Dedania N, Kennedy EP, Sauter PK, et al. Non-neoplastic epithelial cysts of the pancreas: a rare, benign entity. J Gastrointest Surg. 2014;18(3):523–31.

    Article  PubMed  Google Scholar 

  14. Pyke CM, Van Heerden JA, Colby TV, Sarr MG, Weaver AL. The spectrum of serous cystadenoma of the pancreas clinical, pathologic, and surgical aspects. Ann Surg. 1992;215(2):132–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Compagno J, Oertel JE. Microcystic adenomas of the pancreas (Glycogen-rich Cystadenomas): a clinicopathologic study of 34 cases. Am J Clin Pathol. 1978;69(3):289–98.

    Article  CAS  PubMed  Google Scholar 

  16. Din NU, Zubair M, Abdul-Ghafar J, Ahmad Z. Pancreatic mucinous cystic neoplasms: a clinicopathological study of 11 cases and detailed review of literature. Surg Exp Pathol. 2020;3(1):1–7.

    Article  Google Scholar 

  17. Grützmann R, Post S, Saeger HD, Niedergethmann M. Intraductal Papillary Mucinous Neoplasia (IPMN) of the pancreas. Dtsch Arztebl Int. 2011;108(46):788–95.

    PubMed  PubMed Central  Google Scholar 

  18. Vassos N, Agaimy A, Klein P, Hohenberger W, Croner RS. Solid-pseudopapillary neoplasm (SPN) of the pancreas: case series and literature review on an enigmatic entity. Intl J Clin Exp Pathol. 2013;6(6):1051–959.

    Google Scholar 

  19. Tanaka M, Fernández-del Castillo C, Kamisawa T, Jang JY, Levy P, Ohtsuka T, et al. Revisions of international consensus Fukuoka guidelines for the management of IPMN of the pancreas. Pancreatology. 2017;17(5):738–53.

    Article  PubMed  Google Scholar 

  20. Elta GH, Enestvedt BK, Sauer BG, Lennon AM. ACG clinical guideline: diagnosis and management of pancreatic cysts. Am J Gastroenterol. 2018;113(4):464–79.

    Article  PubMed  Google Scholar 

  21. Vege SS, Ziring B, Jain R, Moayyedi P. American gastroenterological association institute guideline on the diagnosis and management of asymptomatic neoplastic pancreatic cysts. Gastroenterology. 2015;148(4):819–22.

    Article  PubMed  Google Scholar 

  22. Muthusamy VR, Chandrasekhara V, Acosta RD, Bruining DH, Chathadi KV, Eloubeidi MA, et al. The role of endoscopy in the diagnosis and treatment of cystic pancreatic neoplasms. Gastrointest Endosc. 2016;84(1):1–9.

    Article  PubMed  Google Scholar 

  23. Khalid A, Brugge W. ACG practice guidelines for the diagnosis and management of neoplastic pancreatic cysts. Am J Gastroenterol. 2007;102(10):2339–49.

    Article  PubMed  Google Scholar 

  24. Smith ZL, Satyavada S, Simons-Linares R, Mok SRS, Martinez Moreno B, Aparicio JR, et al. Intracystic glucose and carcinoembryonic antigen in differentiating histologically confirmed pancreatic mucinous neoplastic cysts. Am J Gastroenterol. 2022;117(3):478–85.

    Article  CAS  PubMed  Google Scholar 

  25. Rockacy M, Khalid A. Update on pancreatic cyst fluid analysis. Ann Gastroenterol. 2013;26(2):122–7.

    PubMed  PubMed Central  Google Scholar 

  26. Pitman MB, Genevay M, Yaeger K, Chebib I, Turner BG, Mino-Kenudson M, et al. High-grade atypical epithelial cells in pancreatic mucinous cysts are a more accurate predictor of malignancy than “positive” cytology. Cancer Cytopathol. 2010;118(6):434–40.

    Article  PubMed  Google Scholar 

  27. Cho CS, Russ AJ, Loeffler AG, Rettammel RJ, Oudheusden G, Winslow ER, et al. Preoperative classification of pancreatic cystic neoplasms: The clinical significance of diagnostic inaccuracy. Ann Surg Oncol. 2013;20(9):3112–9.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Correa-Gallego C, Ferrone CR, Thayer SP, Wargo JA, Warshaw AL, Fernández-Del CC. Incidental pancreatic cysts: Do we really know what we are watching? Pancreatology. 2010;10(2–3):144–50.

    Article  PubMed  PubMed Central  Google Scholar 

  29. National Institute of Cancer: Dictionary of Cancer Terms [Internet]. [cited 2023 Mar 1]. Available from: https://www.cancer.gov/publications/dictionaries/cancer-terms/def/molecular-testing. Accessed 3 Jan 2023.

  30. Theisen BK, Wald AI, Singhi AD. Molecular Diagnostics in the Evaluation of Pancreatic Cysts. Surg Pathol Clin. 2016;9(3):441–56.

    Article  PubMed  Google Scholar 

  31. Peters NV, Kunstman JW. Clinical implications of the molecular characterization of intraductal papillary mucinous neoplasms of the pancreas. J Cancer Metastasis Treat. 2021;7(32).

  32. Thein KZ, Biter AB, Hong DS. Therapeutics targeting mutant KRAS. Annu Rev Med. 2021;72:349–64.

    Article  CAS  PubMed  Google Scholar 

  33. Luo J. KRAS mutation in pancreatic cancer. Semin Oncol. 2021;48(1):10–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Reck M, Carbone DP, Garassino M, Barlesi F. Targeting KRAS in non-small-cell lung cancer: recent progress and new approaches. Ann Oncol. 2021;32(9):1101–10.

    Article  CAS  PubMed  Google Scholar 

  35. Rosenbaum MW, Jones M, Dudley JC, Le LP, Iafrate AJ, Pitman MB. Next-generation sequencing adds value to the preoperative diagnosis of pancreatic cysts. Cancer Cytopathol. 2017;125(1):41–7.

    Article  CAS  PubMed  Google Scholar 

  36. Nikiforova MN, Khalid A, Fasanella KE, McGrath KM, Brand RE, Chennat JS, et al. Integration of KRAS testing in the diagnosis of pancreatic cystic lesions: A clinical experience of 618 pancreatic cysts. Mod Pathol. 2013;26(11):1478–87.

    Article  CAS  PubMed  Google Scholar 

  37. Guo X, Zhan X, Li Z. Molecular analyses of aspirated cystic fluid for the differential diagnosis of cystic lesions of the pancreas: a systematic review and meta-analysis. Gastroenterol Res Pract. 2016;2016.

  38. Turan S, Bastepe M. The GNAS complex locus and human diseases associated with loss-of-function mutations or epimutations within this imprinted gene. Horm Res Paediatr. 2013;80(4):229–41.

    Article  CAS  PubMed  Google Scholar 

  39. Lee JH, Kim Y, Choi JW, Kim YS. KRAS, GNAS, and RNF43 mutations in intraductal papillary mucinous neoplasm of the pancreas: a meta-analysis. Springerplus. 2016;5(1):1172–84.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Wu J, Matthaei H, Maitra A, et al. Recurrent GNAS mutations define an unexpected pathway for pancreatic cyst development. Sci Transl Med. 2011;3(92).

  41. Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 2003;3(10):721–32.

    Article  CAS  PubMed  Google Scholar 

  42. Neumann HPH, Dinkel E, Brambs H, Wimmer B, Friedburg H, Volk B, et al. Pancreatic lesions in the von Hippel-Lindau syndrome. Gastroenterology. 1991;101(2):465–71.

    Article  CAS  PubMed  Google Scholar 

  43. Singhi AD, McGrath K, Brand RE, Khalid A, Zeh HJ, Chennat JS, et al. Preoperative next-generation sequencing of pancreatic cyst fluid is highly accurate in cyst classification and detection of advanced neoplasia. Gut. 2018;67(12):2131–41.

    Article  CAS  PubMed  Google Scholar 

  44. Springer S, Wang Y, Dal Molin M, Masica DL, Jiao Y, Kinde I, et al. A Combination of molecular markers and clinical features improve the classification of pancreatic cysts. Gastroenterology. 2015;149(6):1501–10.

    Article  CAS  PubMed  Google Scholar 

  45. Katoh M, Katoh M. Molecular genetics and targeted therapy of WNT-related human diseases (Review). Int J Mol Med. 2017;40(3):587–606.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Rodriguez-Matta E, Hemmerich A, Starr J, Mody K, Severson EA, Colon-Otero G. Molecular genetic changes in solid pseudopapillary neoplasms (SPN) of the pancreas. Acta Oncol (Madr). 2020;59(9):1024–7.

    Article  CAS  Google Scholar 

  47. Wu J, Jiao Y, Dal Molin M, Maitra A, De Wilde RF, Wood LD, et al. Whole-exome sequencing of neoplastic cysts of the pancreas reveals recurrent mutations in components of ubiquitin-dependent pathways. Proc Natl Acad Sci U S A. 2011;108(52):21188–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Choueiri TK, Fay AP, Gagnon R, Lin Y, Bahamon B, Brown V, et al. The role of aberrant VHL/HIF pathway elements in predicting clinical outcome to pazopanib therapy in patients with metastatic clear-cell renal cell carcinoma Toni. Clin Cancer Res. 2013;19(18):5218–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yip-Schneider MT, Wu H, Dumas RP, Hancock BA. Vascular endothelial growth factor, a novel and highly accurate pancreatic fluid biomarker for serous pancreatic cysts. J Am Coll Surg. 2014;218(4):608–17.

    Article  PubMed  Google Scholar 

  50. Nassour I, Choti MA. Types of pancreatic cysts. JAMA. 2016;316(11):1226.

    Article  PubMed  Google Scholar 

  51. Fonseca AL, Kirkwood K, Kim MP, Maitra A, Koay EJ. Intraductal papillary mucinous neoplasms of the pancreas: current understanding and future directions for stratification of malignancy risk. Pancreas. 2018;47(3):272–9.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Khalid A, Zahid M, Finkelstein SD, LeBlanc JK, Kaushik N, Ahmad N, et al. Pancreatic cyst fluid DNA analysis in evaluating pancreatic cysts: a report of the PANDA study. Gastrointest Endosc. 2009;69(6):1095–102.

    Article  PubMed  Google Scholar 

  53. Winner M, Sethi A, Poneros JM, Stavropoulos SN, Francisco P, Lightdale CJ, et al. The role of molecular analysis in the diagnosis and surveillance of pancreatic cystic neoplasms. J Pancreas. 2015;16(2):143–9.

    Google Scholar 

  54. Sawhney MS, Devarajan S, O’Farrel P, Cury MS, Kundu R, Vollmer CM, et al. Comparison of carcinoembryonic antigen and molecular analysis in pancreatic cyst fluid. Gastrointest Endosc. 2009;69(6):1106–10.

    Article  PubMed  Google Scholar 

  55. Loren D, Kowalski T, Siddiqui A, et al. Influence of integrated molecular pathology test results on real-world management decisions for patients with pancreatic cysts: analysis of data from a national registry cohort. Diagn Pathol. 2016;11(5).

  56. Nieto J, Jackson S, Toney N, Lankarani A. Integrated molecular pathology analysis of pancreatic cystic lesions changes EUS gastroenterologist management. Am J Gastroenterol. 2016;111:S151–2.

  57. Farrell JJ, Al-Haddad MA, Jackson SA, Gonda TA. Incremental value of DNA analysis in pancreatic cysts stratified by clinical risk factors. Gastrointest Endosc. 2019;89(4):832–41.

    Article  PubMed  Google Scholar 

  58. Paniccia A, Polanco PM, Boone BA, Wald I, Mcgrath K, Brand RE, et al. Prospective, multi-institutional, real-time next-generation sequencing of pancreatic cyst fluid reveals diverse genomic alterations that improve the clinical management of pancreatic cysts. Gastroenterology. 2023;164(1):117–33. One of the only prospective, multi-institutional studies that employs NGS to evaluate the clinical utility of a variety of composite DNA-based biomarkers.

    Article  CAS  PubMed  Google Scholar 

  59. Faias S, Duarte M, Albuquerque C, da Silva JP, Fonseca R, Roque R, et al. Clinical impact of KRAS and GNAS analysis added to CEA and cytology in pancreatic cystic fluid obtained by EUS-FNA. Dig Dis Sci. 2018;63(9):2351–61.

    Article  CAS  PubMed  Google Scholar 

  60. Hata T, Dal Molin M, Hong SM, Tamura K, Suenaga M, Yu J, et al. Predicting the grade of dysplasia of pancreatic cystic neoplasms using cyst fluid DNA methylation markers. Clin Cancer Res. 2017;23(14):3935–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Das KK, Xiao H, Geng X, Fernandez-del-Castillo C, Morales-Oyarvide V, Daglilar E, et al. mAb Das-1 is specific for high-risk and malignant intraductal papillary mucinous neoplasm (IPMN) Koushik. Gut. 2014;63(10):1626–34.

    Article  CAS  PubMed  Google Scholar 

  62. Moore LD, Le T, Fan G. DNA methylation and its basic function. Neuropsychopharmacol Rev. 2013;38(1):23–38.

    Article  CAS  Google Scholar 

  63. Anastasiadi D, Esteve-Codina A, Piferrer F. Consistent inverse correlation between DNAmethylation of the first intron and gene expression across tissues and species. Epigenetics Chromatin. 2018;11(1).

  64. Hong S-M, Omura N, Vincent A, Li A, Knight S, Yu J, et al. Genome-wide CpG Island profiling of intraductal papillary mucinous neoplasms of the pancreas. Clin Cancer Res. 2012;18(3):700–12.

    Article  CAS  PubMed  Google Scholar 

  65. Sato N, Ueki T, Fukushima N, Iacobuzio-Donahue CA, Yeo CJ, Cameron JL, et al. Aberrant methylation of CpG Islands in intraductal papillary mucinous neoplasms of the pancreas. Gastroenterology. 2002;123(1):365–72.

    Article  CAS  PubMed  Google Scholar 

  66. Das K, Sakamaki S, Vecchi M, Diamond B. The production and characterization of monoclonal antibodies to a human colonic antigen associated with ulcerative colitis: cellular localization of the antigen by using the monoclonal antibody. J Immunol. 1987;139(1):77–84.

    Article  CAS  PubMed  Google Scholar 

  67. Das KM, Prasad I, Garla S, Amenta PS. Detection of a shared colon epithelial epitope on Barrett epithelium by a novel monoclonal antibody. Ann Intern Med. 1994;120(9):753–6.

    Article  CAS  PubMed  Google Scholar 

  68. Fabian MR, Sonenberg N. The mechanics of miRNA-mediated gene silencing: a look under the hood of miRISC. Nat Struct Mol Biol. 2012;19(6):586–93.

    Article  CAS  PubMed  Google Scholar 

  69. Smolarz B, Durczyński A, Romanowicz H, Hogendorf P. The role of microrna in pancreatic cancer. Biomedicines. 2021;9(10):1322–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Farrell JJ, Toste P, Wu N, Li L, Wong J, Malkhassian D, et al. Endoscopically acquired pancreatic cyst fluid MicroRNA 21 and 221 are associated with invasive cancer. Am J Gastroenterol. 2013;108(8):1352–9.

    Article  CAS  PubMed  Google Scholar 

  71. Utomo WK, Looijenga LH, Bruno MJ, Hansen BE, Gillis AJM, Biermann K, et al. A MicroRNA panel in pancreatic cyst fluid for the risk stratification of pancreatic cysts in a prospective cohort. Mol Ther - Nucleic Acids. 2016;5(June):e350–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Springer S, Masica DL, Molin MD, et al. A multimodality test to guide the management of patients with a pancreatic cyst. Sci Transl Med. 2019;11(501). Retrospective study that evaluates the ability of a multivariate organization of combinatorial alterations machine learning algorithm to stratify patients with cysts into no surveillance, surveillance, and surgical groups. Highlights how present/future technological advances in may continue to ease the integration of molecular testing into clinical practice.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua D. Kirschenbaum.

Ethics declarations

Conflicts of Interests/Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirschenbaum, J.D., Gonda, T.A. The Use of Integrated Molecular Testing in the Assessment and Management of Pancreatic Cysts. Curr Gastroenterol Rep 25, 182–190 (2023). https://doi.org/10.1007/s11894-023-00877-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11894-023-00877-6

Keywords

Navigation