Skip to main content
Log in

Genetic and pathogenetic insights into inflammatory bowel disease

  • Published:
Current Gastroenterology Reports Aims and scope Submit manuscript

Abstract

Crohn’s disease (CD) and ulcerative colitis (UC) are chronic inflammatory disorders of the gastrointestinal tract that share clinical and pathologic characteristics. The most credible hypothesis is that CD and UC result from an inappropriate and exaggerated mucosal immune response to normal constituents of the mucosal microflora that is in part genetically determined. However, there is reason to believe that the main pathologic processes in these two diseases are distinct. For example, the CARD15/NOD2 gene has been identified as a susceptibility gene for CD but not for UC. Moreover, the study of patients and mouse models of inflammatory bowel disease has clearly shown that, in CD, the tissue-damaging inflammatory reaction is driven by interleukin-12-activated Th1 cells, whereas a humoral response predominates in UC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bonen DK, Cho JH: The genetics of inflammatory bowel disease. Gastroenterology 2003, 124:521–536.

    Article  PubMed  CAS  Google Scholar 

  2. Asakura H, Tsuchiya M, Aiso S, et al.: Association of the human lymphocyte-DR2 antigen with Japanese ulcerative colitis. Gastroenterology 1982, 82:413–418.

    PubMed  CAS  Google Scholar 

  3. Duerr RH, Neigut DA: Molecularly defined HLA-DR2 alleles in ulcerative colitis and antineutrophil cytoplasmic antibodypositive subgroup. Gastroenterology 1995, 108:423–427.

    Article  PubMed  CAS  Google Scholar 

  4. Satsangi J, Welsh KI, Bunce M, et al.: Contribution of genes of the major histocompatibility complex to susceptibility and disease phenotype in inflammatory bowel disease. Lancet 1996, 347:1212–1217.

    Article  PubMed  CAS  Google Scholar 

  5. Hugot J-P, Laurent-Puig P, Gower-Rousseau C, et al.: Mapping of a suceptibility locus for Crohn’s disease on chromosome 16. Nature 1996, 379:821–823.

    Article  PubMed  CAS  Google Scholar 

  6. Armuzzi A, Ahmad T, Ling KL, et al.: Genotype-phenotype analysis of the Crohn’s disease susceptibility haplotype on chromosome 5q31. Gut 2003, 52:1133–1139. This study shows that the IBD5 risk haplotype is associated with CD but not with UC. Through a genotype-phenotype analysis, the authors also demonstrate that the strongest association is observed in patients with perianal CD.

    Article  PubMed  CAS  Google Scholar 

  7. Hugot JP, Chamaillard M, Zouali H, et al.: Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature 2001, 411:599–603.

    Article  PubMed  CAS  Google Scholar 

  8. Ogura Y, Bonen DK, Inohara N, et al.: A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature 2001, 411:603–606.

    Article  PubMed  CAS  Google Scholar 

  9. Hugot JP, Zouali H, Lesage S: Lessons to be learned from the NOD2 gene in Crohn’s disease. Eur J Gastroenterol Hepatol 2003, 15:593–597.

    Article  PubMed  CAS  Google Scholar 

  10. Vermiere S, Wild G, Kocher K, et al.: CARD15 genetic variation in a Quebec population: prevalence, genotype-phenotype relationship, and haplotype structure. Am J Hum Genet 2002, 71:74–83.

    Article  Google Scholar 

  11. Cuthbert AP, Fisher SA, Mirza MM, et al.: The contribution of NOD2 gene mutations to the risk and site of disease in inflammatory bowel disease. Gastroenterology 2002, 122:867–874.

    Article  PubMed  CAS  Google Scholar 

  12. Lesage S, Zouali H, Cezard JP, et al.: CARD15/NOD2 mutational analysis and genotype-phenotype correlation in 612 patients with inflammatory bowel disease. Am J Hum Genet 2002, 70:845–857.

    Article  PubMed  CAS  Google Scholar 

  13. Ahmad T, Armuzzi A, Bunce M, et al.: The molecular classification of the clinical manifestations of Crohn’s disease. Gastroenterology 2002, 122:854–866.

    Article  PubMed  CAS  Google Scholar 

  14. Hampe J, Grebe J, Nikolaus S, et al.: Association of NOD2 (CAFD15) genotype with clinical course of Crohn’s disease: a cohort study. Lancet 2002, 359:1661–1665.

    Article  PubMed  CAS  Google Scholar 

  15. Murillo L, Crusisus JB, van Bodengraven AA, et al.: CARD15 gene and the classification of Crohn’s disease. Immunogenetics 2002, 54:59–61.

    Article  PubMed  CAS  Google Scholar 

  16. Helio T, Halme L, Lappalainen M, et al.: CARD15/NOD2 gene variants are associated with familially occurring and complicated forms of Crohn’s disease. Gut 2003, 52:558–562.

    Article  PubMed  CAS  Google Scholar 

  17. Vavassori P, Borgiani P, Biancone L, et al.: CARD15 mutation analysis in an Italian population: Leu1007fsinsC but neither Arg702Trp nor Gly0008Arg mutations are associated with Crohn’s disease. Inflamm Bowel Dis, in press.

  18. Inoue N, Tamura K, Kinouchi Y, et al.: Lack of common NOD2 variants in Japanese patients with Crohn’s disease. Gastroenterology 2002, 123:86–91. The first study showing a lack of association between CD and CARD15/NOD2 mutations. This observation was based on analysis of patients living in Japan.

    Article  PubMed  CAS  Google Scholar 

  19. Croucher PJ, Mascheretti S, Hampe J, et al.: Haplotype structure and association to Crohn’ s disease of CARD15 mutations in two ethnically divergent populations. Eur J Hum Genet 2003, 11:6–16.

    Article  PubMed  CAS  Google Scholar 

  20. Hampe J, Cuthbert A, Croucher PJP, et al.: Association between insertion mutation in NOD2 gene and Crohn’s disease in German and British populations. Lancet 2001, 157:1925–1928.

    Article  Google Scholar 

  21. Radlmayr M, Torok HP, Martin K, et al.: The c-insertion mutation of the NOD2 gene is associated with fistulizing and fibrostenotic phenotypes in Crohn’s disease. Gastroenterology 2002, 122:2091–2092.

    Article  PubMed  CAS  Google Scholar 

  22. Louis E, Michel V, Hugot JP, et al.: Early development of stricturing or penetrating pattern in Crohn’s disease is influenced by disease location, number of flares, and smoking but not by NOD2/CARD15 genotype. Gut 2003, 52:552–557.

    Article  PubMed  CAS  Google Scholar 

  23. Abreu MT, Taylor KD, Lin YC, et al.: Mutations in NOD2 are associated with fibrostenosing disease in patients with Crohn’s disease. Gastroenterology 2002, 123:679–688. This paper documents a strong association between CARD15/NOD2 variants and fibrostenosing phenotype in CD in Jewish and non-Jewish patients.

    Article  PubMed  CAS  Google Scholar 

  24. Ogura Y, Inohara N, Benito A, et al.: Nod2, a Nod1/Apaf-1 family member that is restricted to monocytes and activates NFkappaB. J Biol Chem 2001, 276:4812–4818.

    Article  PubMed  CAS  Google Scholar 

  25. Berrebi D, Maudinas R, Hugot JP, et al.: Card15 gene overexpression in mononuclear and epithelial cells of the inflamed Crohn’s disease colon. Gut 2003, 52:840–846.

    Article  PubMed  CAS  Google Scholar 

  26. Bertin J, Nir WJ, Fischer CM, et al.: Human CARD4 protein is a novel CED-4/Apaf-1 cell death family member that activates NF-kB. J Biol Chem 1999, 274:12955–12958.

    Article  PubMed  CAS  Google Scholar 

  27. Inohara N, Koseki T, del Peso L, et al.: Nod1, an Apaf-1-like activator of caspase-9 and nuclear factor-B. J Biol Chem 1999, 274:14560–14567.

    Article  PubMed  CAS  Google Scholar 

  28. Lala S, Ogura Y, Osborne C, et al.: Crohn’s disease and the NOD2 gene: a role for Paneth cells. Gastroenterology 2003, 125:47–57.

    Article  PubMed  CAS  Google Scholar 

  29. Takeda K, Clausen BE, Kaisho T, et al.: Enhanced Th1 activity and development of chronic enterocolitis in mice devoid of Stat3 in macrophages and neutrophils. Immunity 1999, 10:39–49.

    Article  PubMed  CAS  Google Scholar 

  30. Monteleone I, Vavassori P, Biancone L, et al.: Immunoregulation in the gut: success and failures in human disease. Gut 2002, 50(Suppl 3):60–64.

    Google Scholar 

  31. Fuss IJ, Neurath M, Boirivant M, et al.: Disparate CD4+ lamina propria (LP) lymphokine secretion profiles in inflammatory bowel disease. Crohn’s disease LP cells manifest increased secretion of IFN-gamma, whereas ulcerative colitis LP cells manifest increased secretion of IL-5. J Immunol 1996, 157:1261–1270.

    PubMed  CAS  Google Scholar 

  32. Monteleone G, Biancone L, Marasco R, et al.: Interleukin 12 is expressed and actively released by Crohn’s disease intestinal lamina propria mononuclear cells. Gastroenterology 1997, 112:1169–1178.

    Article  PubMed  CAS  Google Scholar 

  33. Parrello T, Monteleone G, Cucchiara S, et al.: Up-regulation of the IL-12 receptor beta 2 chain in Crohn’s disease. J Immunol 2000, 165: 7234–7239.

    PubMed  CAS  Google Scholar 

  34. Monteleone G, Trapasso F, Parrello T, et al.: Bioactive IL-18 expression is up-regulated in Crohn’s disease. J Immunol 1999, 163:143–147.

    PubMed  CAS  Google Scholar 

  35. Szabo SJ, Kim ST, Costa GL, et al.: A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 2000, 100:655–669.

    Article  PubMed  CAS  Google Scholar 

  36. Neurath MF, Weigmann B, Finotto S, et al.: The transcription factor T-bet regulates mucosal T cell activation in experimental colitis and Crohn’s disease. J Exp Med 2002, 195:1129–1143. The authors analyze the role of the transcription factor T-bet in controlling the mucosal cytokine balance and outcome of various experimental models of IBD. They elegantly show that T-bet is essential in the pathogenesis of Th1-cell-mediated colitis.

    Article  PubMed  CAS  Google Scholar 

  37. Boirivant M, Fuss IJ, Chu A, Strober W: Oxazolone colitis: a murine model of T helper cell type 2 colitis treatable with antibodies to interleukin 4. J Exp Med 1998, 188:1929–1939.

    Article  PubMed  CAS  Google Scholar 

  38. Heller F, Fuss IJ, Nieuwenhuis EE, et al.: Oxazolone colitis, a Th2 colitis model resembling ulcerative colitis, is mediated by IL-13-producing NK-T cells. Immunity 2002, 17:629–638. The authors provide a convincing demonstration of the role of IL-13 in oxazolone-induced colitis, an experimental colitis that has a histologic resemblance to human UC. They show that neutralization of IL-13 prevents colitis and provide evidence that IL-13 is produced by NKT cells and that colitis cannot be induced in mice depleted of NKT cells, mice that cannot present antigen to NKT cells, and mice lacking an NKT-cell-associated TCR.

    Article  PubMed  CAS  Google Scholar 

  39. Fiocchi C: Inflammatory bowel disease: etiology and pathogenesis. Gastroenterology 1998, 115:182–205.

    Article  PubMed  CAS  Google Scholar 

  40. MacDonald TT, Monteleone G, Pender SL: Recent developments in the immunology of inflammatory bowel disease. Scand J Immunol 2000, 51:2–9.

    Article  PubMed  CAS  Google Scholar 

  41. MacDonald TT, Bajaj-Elliott M, Pender SL: T cells orchestrate intestinal mucosal shape and integrity. Immunol Today 1999, 20:505–510.

    Article  PubMed  CAS  Google Scholar 

  42. Pender SL, Fell JM, Chamow SM, et al.: A p55 TNF receptor immunoadhesin prevents T cell-mediated intestinal injury by inhibiting matrix metalloproteinase production. J Immunol 1998, 160:4098–4103.

    PubMed  CAS  Google Scholar 

  43. Monteleone G, MacDonald TT, Wathen NC, et al.: Enhancing Lamina propria Th1 cell responses with interleukin 12 produces severe tissue injury. Gastroenterology 1999, 117:1069–1077.

    Article  PubMed  CAS  Google Scholar 

  44. Letterio JJ, Roberts AB: Regulation of immune responses by TGF-beta. Annu Rev Immunol 1998, 16:137–161.

    Article  PubMed  CAS  Google Scholar 

  45. Babyatsky MW, Rossiter G, Podolsky DK: Expression of transforming growth factors alpha and beta in colonic mucosa in inflammatory bowel disease. Gastroenterology 1996, 110:975–984.

    Article  PubMed  CAS  Google Scholar 

  46. Shi Y, Massague J: Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 2003, 113:685–700.

    Article  PubMed  CAS  Google Scholar 

  47. Yang X, Letterio JJ, Lechleider RJ, et al.: Targeted disruption of SMAD3 results in impaired mucosal immunity and diminished T cell responsiveness to TGF-beta. EMBO J 1999, 18:1280–1291.

    Article  PubMed  CAS  Google Scholar 

  48. Monteleone G, Kumberova A, Croft NM, et al.: Blocking Smad7 restores TGF-beta1 signaling in chronic inflammatory bowel disease. J Clin Invest 2001, 108:601–609.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pallone, F., Blanco, G.D.V., Vavassori, P. et al. Genetic and pathogenetic insights into inflammatory bowel disease. Curr Gastroenterol Rep 5, 487–492 (2003). https://doi.org/10.1007/s11894-003-0038-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11894-003-0038-2

Keywords

Navigation