Skip to main content

Advertisement

Log in

The Contribution of Kidney Disease to Cognitive Impairment in Patients with Type 2 Diabetes

  • Microvascular Complications—Nephropathy (B Roshanravan, Section Editor)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review focuses on the relationships between diabetes, cognitive impairment, and the contribution of kidney disease.

Recent Findings

We review the independent contributions of parameters of kidney disease, including albuminuria, glomerular filtration, bone/mineral metabolism, and vitamin D synthesis, on cognitive performance in patients with diabetes. Potential pathophysiologic mechanisms underlying these associations are discussed highlighting gaps in existing knowledge. Finally, effects of the dialysis procedure on the brain and cognitive performance are considered. Emphasis is placed on novel non-invasive screening tools with the potential to preserve cerebral perfusion during hemodialysis and limit cognitive decline in patients with diabetic ESKD.

Summary

Patients with type 2 diabetes and advanced chronic kidney disease suffer a higher prevalence of cognitive impairment. This is particularly true in patients with diabetes and end-stage kidney disease (ESKD).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Bailey RA, Wang Y, Zhu V, Rupnow MF. Chronic kidney disease in US adults with type 2 diabetes: an updated national estimate of prevalence based on kidney disease: improving global outcomes (KDIGO) staging. BMC Res Notes. 2014;2(7):415.

    Google Scholar 

  2. Afkarian M, Sachs MC, Kestenbaum B, Hirsch IB, Tuttle KR, Himmelfarb J, et al. Kidney disease and increased mortality risk in type 2 diabetes. J Am Soc Nephrol. 2013;24(2):302–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Hailpern SM, Melamed ML, Cohen HW, Hostetter TH. Moderate chronic kidney disease and cognitive function in adults 20 to 59 years of age: third National Health and nutrition examination survey (NHANES III). J Am Soc Nephrol. 2007;18(7):2205–13.

    PubMed  Google Scholar 

  4. Farran CJ, Paun O, Cothran F, Etkin CD, Rajan KB, Eisenstein A, et al. Impact on an individual physical activity intervention on improving mental health outcomes in family caregivers of persons with dementia: a randomized controlled trial. AIMS Med Sci. 2016;3(1):15–31.

    PubMed  Google Scholar 

  5. Mayeda ER, Haan MN, Neuhaus J, Yaffe K, Knopman DS, Sharrett AR, et al. Type 2 diabetes and cognitive decline over 14 years in middle-aged African Americans and whites: the ARIC brain MRI study. Neuroepidemiology. 2014;43(3–4):220–7.

    PubMed  Google Scholar 

  6. Rawlings AM, Sharrett AR, Schneider AL, Coresh J, Albert M, Couper D, et al. Diabetes in midlife and cognitive change over 20 years: a cohort study. Ann Intern Med. 2014;161(11):785–93.

    PubMed  PubMed Central  Google Scholar 

  7. Dore GA, Waldstein SR, Evans MK, Zonderman AB. Associations between diabetes and cognitive function in socioeconomically diverse African American and white men and women. Psychosom Med. 2015;77(6):643–52.

    PubMed  PubMed Central  Google Scholar 

  8. Arvanitakis Z, Bennett DA, Wilson RS, Barnes LL. Diabetes and cognitive systems in older black and white persons. Alzheimer Dis Assoc Disord. 2010;24(1):37–42.

    PubMed  PubMed Central  Google Scholar 

  9. Hsu FC, Sink KM, Hugenschmidt CE, Williamson JD, Hughes TM, Palmer ND, et al. Cerebral structure and cognitive performance in African Americans and European Americans with type 2 diabetes. J Gerontol A Biol Sci Med Sci. 2018;73(3):407–14.

    PubMed  PubMed Central  Google Scholar 

  10. Parsa A, Kao WH, Xie D, Astor BC, Li M, Hsu CY, et al. APOL1 risk variants, race, and progression of chronic kidney disease. N Engl J Med. 2013;369(23):2183–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Gerber C, Cai X, Lee J, Craven T, Scialla J, Souma N, et al. Incidence and progression of chronic kidney disease in black and white individuals with type 2 diabetes. Clin J Am Soc Nephrol. 2018;13(6):884–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Weiner DE, Bartolomei K, Scott T, Price LL, Griffith JL, Rosenberg I, et al. Albuminuria, cognitive functioning, and white matter hyperintensities in homebound elders. Am J Kidney Dis. 2009;53(3):438–47.

    PubMed  Google Scholar 

  13. Barzilay JI, Fitzpatrick AL, Luchsinger J, Yasar C, Bernick C, Jenny NS, et al. Albuminuria and dementia in the elderly: a community study. Am J Kidney Dis. 2008;52(2):216–26.

    PubMed  PubMed Central  Google Scholar 

  14. Barzilay JI, Gao P, O’Donnell M, Mann JF, Anderson C, Fagard R, et al. Albuminuria and decline in cognitive function: the ONTARGET/TRANSCEND studies. Arch Intern Med. 2011;171(2):142–50.

    PubMed  Google Scholar 

  15. Murray AM, Barzilay JI, Lovato JF, Williamson JD, Miller ME, Marcovina S, et al. Biomarkers of renal function and cognitive impairment in patients with diabetes. Diabetes Care. 2011;34(8):1827–32.

    PubMed  PubMed Central  Google Scholar 

  16. Barzilay JI, Lovato JF, Murray AM, Williamson J, Ismail-Beigi F, Karl D, et al. Albuminuria and cognitive decline in people with diabetes and normal renal function. Clinc J Am Soc Nephrol. 2013;8(11):1907–14.

    Google Scholar 

  17. •• Kurella Tamura M, Tam K, Vittinghoff E, Raj D, Sozio SM, Rosas SE, et al. Inflammatory markers and risk for cognitive decline in chronic kidney disease: the CRIC Study. Kidney Int Rep. 2017;2(2):192–200 Higher levels of serum inflammatory markers (high-sensitivity C-reactive protein, fibrinogen, and interleukin 1β) are associated with increased risk of impaired executive function in patients with diabetes and kidney disease.

    PubMed  Google Scholar 

  18. Kurella Tamura M, Vittinghoff E, Yang J, Go AS, Seliger SL, Kusek JW, et al. Anemia and risk for cognitive decline in chronic kidney disease. BMC Nephrol. 2016;17:13.

    PubMed  PubMed Central  Google Scholar 

  19. Sonoda M, Shoji T, Kuwamura Y, Okute Y, Naganuma T, Shima H, et al. Plasma homocysteine and cerebral small vessel disease as possible mediators between kidney and cognitive functions in patients with diabetes mellitus. Sci Rep. 2017;7(1):4382.

    PubMed  PubMed Central  Google Scholar 

  20. Bostom AG, Carpenter MA, Kusek JW, Levey AS, Hunsicker L, Pfeffer MA, et al. Homosysteine-lowering and cardiovascular disease outcomes in kidney transplant recipients. Circulation. 2011;123:1763–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Rapp SR, Luchsinger JA, Baker LD, Blackburn GL, Hazuda HP, Demos-McDermott KE, et al. Effect of a long-term intensive lifestyle intervention on cognitive function: action for health in diabetes study. J Am Geriatr Soc. 2017;65(5):966–72.

    PubMed  PubMed Central  Google Scholar 

  22. Sink KM, Divers J, Whitlow CT, Palmer ND, Smith SC, Xu J, et al. Cerebral structural changes in diabetic kidney disease: African American-diabetes heart study MIND. Diabetes Care. 2015;38(2):206–12.

    CAS  PubMed  Google Scholar 

  23. Freedman BI, Divers J, Whitlow CT, Bowden DW, Palmer ND, Smith SC, et al. Subclinical atherosclerosis is inversely associated with gray matter volume in African Americans with type 2 diabetes. Diabetes Care. 2015;38(11):2158–65.

    PubMed  PubMed Central  Google Scholar 

  24. • Freedman BI, Gadegbeku CA, Bryan RN, Palmer ND, Hicks PJ, Ma L, et al. APOL1 renal-risk variants associate with reduced cerebral white matter lesion volume and increased gray matter volume. Kidney Int. 2016;90(2):440–9 Differential susceptibility to diabetic kidney disease could impact the effects of type 2 diabetes on the brain. Apolipoprotein L1 gene (APOL1) kidney risk variants were associated with reduced cerebral WML volume and increased GM volume.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Murea M, Hsu FC, Cox AJ, Hugenschmidt CE, Xu J, Adams JN, et al. Structural and functional assessment of the brain in European Americans with mild-to-moderate kidney disease: diabetes heart study – MIND. Nephrol Dial Transplant. 2015;30(8):1322–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. •• Hughes TM, Sink KM, Williamson JD, Hugenschmidt CE, Wagner BC, Whitlow CT, et al. Relationships between cerebral structure and cognitive function in African Americans with type 2 diabetes. J Diabetes Complications. 2018;32(10):916–21 In African-Americans with type 2 diabetes, albuminuria and eGFR were significantly associated with cognitive performance even in patients with relatively preserved kidney function.

    PubMed  PubMed Central  Google Scholar 

  27. Huffman KM, Shah SH, Stevens RD, Bain JR, Muehlbauer M, Slentz CA, et al. Relationships between circulating metabolic intermediates and insulin action in overweight to obese, inactive men and women. Diabetes Care. 2009;32(9):1678–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Tai ES, Tan ML, Stevens RD, Low YL, Muehlbauer MJ, Goh DL, et al. Insulin resistance is associated with a metabolic profile of altered protein metabolism in Chinese and Asian-Indian men. Diabetologia. 2010;53(4):757–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Newgard CB, An J, Bain JR, Muehlbauer MJ, Stevens RD, Lien LF, et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 2009;9(4):311–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang TJ, Larson MG, Vasan RS, Cheng S, Rhee EP, McCabe E, et al. Metabolite profiles and the risk of developing diabetes. Nat Med. 2011;17(4):448–53.

    PubMed  PubMed Central  Google Scholar 

  31. Hernandez-Alvarez MI, Diaz-Ramos A, Berdasco M, Cobb J, Planet E, Cooper D, et al. Early-onset and classical forms of type 2 diabetes show impaired expression of genes involved in muscle branched-chain amino acids metabolism. Sci Rep. 2017;7(1):13850.

    PubMed  PubMed Central  Google Scholar 

  32. Chen DQ, Cao G, Chen H, Argyopoulos CP, Yu H, Su W, et al. Identification of serum metabolites associating with chronic kidney disease progression and anti-fibrotic effect of 5-methoxytryptophan. Nat Commun. 2019;10(1):1476.

    PubMed  PubMed Central  Google Scholar 

  33. Sharma K, Karl B, Mathew AV, Gangoiti JA, Wassel CL, Saito R, et al. Metabolomics reveals signature of mitochondrial dysfunction in diabetic kidney disease. J Am Soc Nephrol. 2013;24(11):1901–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Mapstone M, Cheema AK, Fiandaca MS, Zhong X, Mhyre TR, MacArthur LH, et al. Plasma phospholipids identify antecedent memory impairment in older adults. Nat Med. 2014;20(4):415–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Yu B, Zheng Y, Alexander D, Morrison AC, Coresh J, Boerwinkle E. Genetic determinants influencing human serum metabolome among African Americans. PLoS Genet. 2014;10(3):e1004212.

    PubMed  PubMed Central  Google Scholar 

  36. Bressler J, Yu B, Mosley TH, Knopman DS, Gottesman RF, Alonso A, et al. Metabolomics and cognition in African American adults in midlife: the atherosclerosis risk in communities study. Transl Psychiatry. 2017;7(7):e1173.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Miskulin DC, Meyer KB, Athienites NV, Martin AA, Terrin N, Marsh JV, et al. Comorbidity and other factors associated with modality selection in incident dialysis patients: the CHOICE study. Choices for healthy outcomes in caring for end-stage renal disease. Am J Kidney Dis. 2002;39(2):324–36.

    PubMed  Google Scholar 

  38. Chen G, Cai L, Chen B, Liang J, Lin F, Li L, et al. Serum level of endogenous secretory receptor for advanced glycation end products and other factors in type 2 diabetic patients with mild cognitive impairment. Diabetes Care. 2011;34(12):2586–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Jassal SV, Chiu E, Li M. Geriatric hemodialysis rehabilitation care. Adv Chronic Kidney Dis. 2008;15(2):115–22.

    PubMed  Google Scholar 

  40. Pereira AA, Weiner DE, Scott T, Sarnak MJ. Cognitive function in dialysis patients. Am J Kidney Dis. 2005;45(3):448–62.

    PubMed  Google Scholar 

  41. O’Lone E, Connors M, Masson P, Wu S, Kelly PJ, Gillespie D, et al. Cognition in people with end-stage kidney disease treated with hemodialysis: a systematic review and meta-analysis. Am J Kidney Dis. 2016;67(6):925–35.

    PubMed  Google Scholar 

  42. Kalirao P, Pederson S, Foley RN, Kolste A, Tupper D, Zaun D, et al. Cognitive impairment in peritoneal dialysis patients. Am J Kidney Dis. 57(4):612–20.

  43. Seliger SL, Weiner DE. Cognitive impairment in dialysis patients: focus on the blood vessels? Am J Kidney Dis. 2013;61(2):187–90.

    PubMed  PubMed Central  Google Scholar 

  44. • Kurella M, Mapes DL, Port FK, Chertow GM. Correlates and outcomes of dementia among dialysis patients: the Dialysis Outcomes and Practice Patterns Study. Nephrol Dial Transplant. 2006;21(9):2543–8 Diabetes was independently associated with diagnosed dementia among patients with end-stage kidney disease. Diagnosed dementia was in turn associated with increased risk of death.

    PubMed  Google Scholar 

  45. Liao JL, Xiong ZY, Yang ZK, Hao L, Liu GL, Ren YP, et al. An association of cognitive impairment with diabetes and retinopathy in end stage renal disease patients under peritoneal dialysis. PLoS One. 2017;12(8):e0183965.

    PubMed  PubMed Central  Google Scholar 

  46. Kurella Tamura M, Wadley V, Yaffe K, McClure LA, Howard G, Go R, et al. Kidney function and cognitive impairment in US adults: the reasons for geographic and racial differences in stroke (REGARDS) study. Am J Kidney Dis. 2008;52(2):227–34.

    PubMed  PubMed Central  Google Scholar 

  47. Salameh TS, Shah GN, Price TO, Hayden MR, Banks WA. Blood-brain barrier disruption and neurovascular unit dysfunction in diabetic mice: protection with the mitochondrial carbonic anhydrase inhibitor topiramate. J Pharmacol Exp Ther. 2016;359(3):452–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Mogi M, Horiuchi M. Neurovascular coupling in cognitive impairment associated with diabetes mellitus. Circ J. 2011;75(5):1042–8.

    CAS  PubMed  Google Scholar 

  49. Bogush M, Heldt NA, Persidsky Y. Blood brain barrier injury in diabetes: unrecognized effects on brain and cognition. J NeuroImmune Pharmacol. 2017;12(4):593–601.

    PubMed  PubMed Central  Google Scholar 

  50. McIntyre CW, Goldsmith DJ. Ischemic brain injury in hemodialysis patients: which is more dangerous, hypertension or intradialytic hypotension? Kidney Int. 2015;87(6):1109–15.

    PubMed  Google Scholar 

  51. Davenport A. What are the causes of the ill effects of chronic hemodialysis? Balancing risks: blood pressure targets, intradialytic hypotension, and ischemic brain injury. Semin Dial. 2014;27(1):13–5.

    PubMed  Google Scholar 

  52. McIntyre CW. Recurrent circulatory stress: the dark side of dialysis. Semin Dial. 2010;23(5):449–51.

    PubMed  Google Scholar 

  53. Eldehni MT, McIntyre CW. Are there neurological consequences of recurrent intradialytic hypotension? Semin Dial. 2012;25(3):253–6.

    PubMed  Google Scholar 

  54. Kurella Tamura M, Vittinghoff E, Hsu CY, Tam K, Seliger SL, Sozio S, et al. Loss of executive function after dialysis initiation in adults with chronic kidney disease. Kidney Int. 2017;91(4):948–53.

    PubMed  PubMed Central  Google Scholar 

  55. Murray AM, Bell EJ, Tupper DE, Davey CS, Pederson SL, Amiot EM, et al. The brain in kidney disease (BRINK) cohort study: design and baseline cognitive function. Am J Kidney Dis. 2016;67(4):593–600.

    PubMed  Google Scholar 

  56. • Findlay MD, Dawson J, Dickie DA, Forbes KP, McGlynn D, Quinn T, et al. Investigating the relationship between cerebral blood flow and cognitive function in hemodialysis patients. J Am Soc Nephrol. 2019;30(1):147–58 Declines in cerebral blood flow during dialysis are significantly associated with reduced global and executive function, as well as progression of the burden of cerebral white matter disease.

    PubMed  Google Scholar 

  57. Pirkle JL, Comeau ME, Langefeld CD, Russell GB, Balderston SS, Freedman BI, et al. Effects of weight-based ultrafiltration rate limits on intradialytic hypotension in hemodialysis. Hemodial Int. 2018;22(2):270–8.

    PubMed  Google Scholar 

  58. Batra J, Buttar RS, Kaur P, Kreimerman J, Melamed ML. FGF-23 and cardiovascular disease: review of literature. Curr Opin Endocrinol Diabetes Obes. 2016;23(6):423–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Drew DA, Tighiouart H, Scott TM, Lou KV, Fan L, Shaffi K, et al. FGF-23 and cognitive performance in hemodialysis patients. Hemodial Int. 2014;18(1):78–86.

    PubMed  Google Scholar 

  60. Shaffi K, Tighiouart H, Scott T, Lou K, Drew D, Weiner D, et al. Low 25-hydroxyvitamin D levels and cognitive impairment in hemodialysis patients. Clin J Am Soc Nephrol. 2013;8(6):979–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Murray AM, Seliger S, Lakshminarayan K, Herzog CA, Solid CA. Incidence of stroke before and after dialysis initiation in older patients. J Am Soc Nephrol. 2013;24(7):1166–73.

    PubMed  PubMed Central  Google Scholar 

  62. Toyoda K, Fujii K, Fujimi S, Kumai Y, Tsuchimochi H, Ibayashi S, et al. Stroke in patients on maintenance hemodialysis: a 22-year single-center study. Am J Kidney Dis. 2005;45(6):1058–66.

    PubMed  Google Scholar 

  63. Lee M, Saver JL, Chang KH, Liao HW, Chang SC, Ovbiagele B. Low glomerular filtration rate and risk of stroke: meta-analysis. BMJ. 2010;341:c4249.

    PubMed  PubMed Central  Google Scholar 

  64. Soliman EZ, Prineas RJ, Go AS, Xie D, Lash JP, Rahman M, et al. Chronic kidney disease and prevalent atrial fibrillation: the chronic renal insufficiency cohort (CRIC). Am Heart J. 2010;159(6):1102–7.

    PubMed  PubMed Central  Google Scholar 

  65. Seliger SL, Gillen DL, Tirschwell D, Wasse H, Kestenbaum BR, Stehman-Breen CO. Risk factors for incident stroke among patients with end-stage renal disease. J Am Soc Nephrol. 2003;14(10):2623–31.

    PubMed  Google Scholar 

  66. Wang HH, Hung SY, Sung JM, Hung KY, Wang JD. Risk of stroke in long-term dialysis patients compared with the general population. Am J Kidney Dis. 2014;63(4):604–11.

    PubMed  Google Scholar 

  67. Sanchez-Perales C, Vazquez E, Garcia-Cortes MJ, Borrego J, Polaina M, Gutierrez CP, et al. Ischaemic stroke in incident dialysis patients. Nephrol Dial Transplant. 2010;25(10):3343–8.

    CAS  PubMed  Google Scholar 

  68. Ghaderian SB, Hayati F, Shayanpour S, Beladi Mousavi SS. Diabetes and end-stage renal disease: a review article on new concepts. J Renal Inj Preven. 2015;4(2):28–33.

    CAS  Google Scholar 

  69. Shoji T, Tsubakihara Y, Fujii M, Imai E. Hemodialysis-associated hypotension as an independent risk factor for two-year mortality in hemodialysis patients. Kidney Int. 2004;66(3):1212–20.

    PubMed  Google Scholar 

  70. Ma S, Wang J, Wang Y, Dai X, Xu F, Gao X, et al. Diabetes mellitus impairs white matter repair and long-term functional deficits after cerebral ischemia. Stroke. 2018;49(10):2453–63.

    PubMed  Google Scholar 

  71. Shindo A, Liang AC, Maki T, Miyamoto N, Tomimoto H, Lo EH. Subcortical ischemic vascular disease: roles of oligodendrocyte function in experimental models of subcortical white-matter injury. J Cereb Blood Flow Metab. 2016;36(1):187–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. El Husseini N, Fonarow GC, Smith EE, Ju C, Sheng S, Schwamm LH, et al. Association of kidney function with 30-day and 1-year post-stroke mortality and hospital readmission. Stroke. 2018;49(12):2896–903.

    PubMed  PubMed Central  Google Scholar 

  73. Auriel E, Kliper E, Shenhar-Tsarfaty S, Molad J, Berliner S, Shapira I, et al. Impaired renal function is associated with brain atrophy and post-stroke cognitive decline. Neurology. 2016;86(21):1996–2005.

    CAS  PubMed  Google Scholar 

  74. •• Ben Assayag E, Eldor R, Korczyn AD, Kliper E, Shenhar-Tsarfaty S, Tene O, et al. Type 2 diabetes mellitus and impaired renal function are associated with brain alterations and post-stroke cognitive decline. Stroke. 2017;48(9):2368–74 Patients with type 2 diabetes and reduced kidney function have twice the risk for post-stroke cognitive decline compared with patients who have only diabetes or reduced kidney function. They also have nearly four times the risk of cognitive decline compared with patients who lack both conditions.

    PubMed  Google Scholar 

  75. Perez-Saez MJ, Pascual J. Kidney transplantation in the diabetic patient. J Clin Med. 2015;4(6):1269–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Saran R, Li Y, Robinson B, Ayanian J, Balkrishnan R, Bragg-Gresham J, et al. US Renal Data System 2014 annual data report: epidemiology of kidney disease in the United States. Am J Kidney Dis. 2015;55(1 Suppl 1):Svii S1–305.

    Google Scholar 

  77. Sharma A, Yabes J, Al Mawed S, Wu C, Stilley C, Unruh M, et al. Impact of cognitive function change on mortality in renal transplant and end-stage renal disease patients. Am J Nephrol. 2016;44(6):462–72.

    PubMed  Google Scholar 

  78. Gupta A, Mahnken JD, Johnson DK, Thomas TS, Subramaniam D, Polshak T, et al. Prevalence and correlates of cognitive impairment in kidney transplant recipients. BMC Nephrol. 2017;18(1):158.

    PubMed  PubMed Central  Google Scholar 

  79. McAdams-DeMarco MA, Bae S, Chu N, Gross AL, Brown CH, Oh E, et al. Dementia and Alzheimer’s disease among older kidney transplant recipients. J Am Soc Nephrol. 2017;28(5):1575–83.

    CAS  PubMed  Google Scholar 

  80. Wolfgram DF. Intradialytic cerebral hypoperfusion as mechanism for cognitive impairment in patients on hemodialysis. J Am Soc Nephrol. 2019;30(11):2052–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Ghoshal S, Freedman BI. Mechanisms of stroke in patients with chronic kidney disease. Am J Nephrol. 2019;50(4):229–39.

    PubMed  Google Scholar 

Download references

Funding

This paper was supported by the National Institutes of Health Grants R01 NS075107 (BIF) and R01 AG058921 (NDA).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shivani Ghoshal or Barry I. Freedman.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Microvascular Complications—Nephropathy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghoshal, S., Allred, N.D. & Freedman, B.I. The Contribution of Kidney Disease to Cognitive Impairment in Patients with Type 2 Diabetes. Curr Diab Rep 20, 49 (2020). https://doi.org/10.1007/s11892-020-01333-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-020-01333-9

Keywords

Navigation