Skip to main content
Log in

A Review of Technology-Assisted Interventions for Diabetes Prevention

  • Lifestyle Management to Reduce Diabetes/Cardiovascular Risk (B Conway and H Keenan, Section Editors)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The high prevalence of prediabetes and success of the diabetes prevention program (DPP) has led to increasing efforts to provide readily accessible, cost-effective DPP interventions to the general public. Technology-assisted DPP interventions are of particular interest since they may be easier to widely distribute and sustain as compared to traditional in-person DPP. The purpose of this article is to provide an overview of currently available technology-assisted DPP interventions.

Recent Findings

This review focuses on studies that have examined the use of mobile phone text messaging, smartphone/web-based apps, and telehealth programs to help prevent or delay the onset of incident type 2 diabetes. While there is variability in the results of studies focused on technology-assisted DPP and weight loss interventions, there is evidence to suggest that these programs have been associated with clinically meaningful weight loss and can be cost-effective.

Summary

Patients who are at risk for diabetes can be offered technology-assisted DPP and weight loss interventions to lower their risk of incident diabetes. Further research should determine what specific combination of intervention features would be most successful.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •Of importance

  1. Centers for Disease Control and Prevention. National Diabetes Statistics report: estimates of diabetes and its burden in the United States. Atlanta, GA: US Department of Health and Human Services; 2014.

    Google Scholar 

  2. International Diabetes Federation. IDF diabetes atlas. 6th ed. Brussels: International. Diabetes Federation; 2014. Available at: http://www.idf.og/diabetesatlas

    Google Scholar 

  3. National Diabetes Data Group. Diabetes in America: diabetes data compiled 1984. Bethesda, Md: National Institutes of Health; 1985.

    Google Scholar 

  4. Centers for Disease Control and Prevention. Prediabetes infographic, 2014. Availabe at: http://www.cdc.gov/diabetes/pubs/statsreport14/prediabetes-infographic.pdf.

  5. Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346(6):393–403.

    Article  CAS  PubMed  Google Scholar 

  6. • Long-term effects of lifestyle intervention or metformin on diabetes development and microvascular complications over 15-year follow-up: the Diabetes Prevention Program Outcomes Study. Lancet Diabetes Endocrinol. 2015;3(11):866–75. This study provides the most recent evidence that the traditional DPP can prevent diabetes after 15 years follow-up.

  7. Florez H, Pan Q, Ackermann RT, Marrero DG, Barrett-Connor E, Delahanty L, et al. Impact of lifestyle intervention and metformin on health-related quality of life: the diabetes prevention program randomized trial. J Gen Intern Med. 2012;27(12):1594–601.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Diabetes Prevention Program Research G. The 10-year cost-effectiveness of lifestyle intervention or metformin for diabetes prevention: an intent-to-treat analysis of the DPP/DPPOS. Diabetes Care. 2012;35(4):723–30.

    Article  Google Scholar 

  9. Li G, Zhang P, Wang J, An Y, Gong Q, Gregg EW, et al. Cardiovascular mortality, all-cause mortality, and diabetes incidence after lifestyle intervention for people with impaired glucose tolerance in the Da Qing Diabetes Prevention Study: a 23-year follow-up study. The Lancet Diabetes & Endocrinology. 2014;2(6):474–80.

    Article  Google Scholar 

  10. Pan XR, Li GW, Hu YH, Wang JX, Yang WY, An ZX, et al. Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance. The Da Qing IGT and Diabetes Study. Diabetes Care. 1997;20(4):537–44.

    Article  CAS  PubMed  Google Scholar 

  11. Lindstrom J, Ilanne-Parikka P, Peltonen M, Aunola S, Eriksson JG, Hemio K, et al. Sustained reduction in the incidence of type 2 diabetes by lifestyle intervention: follow-up of the Finnish Diabetes Prevention Study. Lancet. 2006;368(9548):1673–9.

    Article  PubMed  Google Scholar 

  12. Cefalu WT, Buse JB, Tuomilehto J, Fleming GA, Ferrannini E, Gerstein HC, et al. Update and next steps for real-world translation of interventions for type 2 diabetes prevention: reflections from a diabetes care editors’ expert forum. Diabetes Care. 2016;39(7):1186–201.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Pew Research Center. http://www.pewinternet.org/chart/mobile-phone-ownership/

  14. Statista. https://www.statista.com.

  15. Pew Research Center. http://www.pewinternet.org/2012/11/08/mobile-health-2012/.

  16. Quinn CC, Shardell MD, Terrin ML, Barr EA, Ballew SH, Gruber-Baldini AL. Cluster-randomized trial of a mobile phone personalized behavioral intervention for blood glucose control. Diabetes Care. 2011;34(9):1934–42.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hamman RF, Wing RR, Edelstein SL, Lachin JM, Bray GA, Delahanty L, et al. Effect of weight loss with lifestyle intervention on risk of diabetes. Diabetes Care. 2006;29(9):2102–7.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ramachandran A, Snehalatha C, Ram J, Selvam S, Simon M, Nanditha A, et al. Effectiveness of mobile phone messaging in prevention of type 2 diabetes by lifestyle modification in men in India: a prospective, parallel-group, randomised controlled trial. Lancet Diabetes Endocrinol. 2013;1(3):191–8.

    Article  PubMed  Google Scholar 

  19. Fischer HH, Fischer IP, Pereira RI, Furniss AL, Rozwadowski JM, Moore SL, et al. Text message support for weight loss in patients with prediabetes: a randomized clinical trial. Diabetes Care. 2016;39(8):1364–70.

    Article  CAS  PubMed  Google Scholar 

  20. Lin M, Mahmooth Z, Dedhia N, Frutchey R, Mercado CE, Epstein DH, et al. Tailored, interactive text messages for enhancing weight loss among African American adults: the TRIMM randomized controlled trial. Am J Med. 2015;128(8):896–904.

    Article  PubMed  Google Scholar 

  21. Shapiro JR, Koro T, Doran N, Thompson S, Sallis JF, Calfas K, et al. Text4Diet: a randomized controlled study using text messaging for weight loss behaviors. Prev Med. 2012;55(5):412–7.

    Article  PubMed  Google Scholar 

  22. • Block G, Azar KM, Romanelli RJ, Block TJ, Hopkins D, Carpenter HA, et al. Diabetes prevention and weight loss with a fully automated behavioral intervention by email, web, and mobile phone: a randomized controlled trial among persons with prediabetes. J Med Internet Res. 2015;17(10):e240. This articles reviews a fully algorithm-driven behavioral support program to decrease the risk of T2DM.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Fukuoka Y, Gay CL, Joiner KL, Vittinghoff E. A novel diabetes prevention intervention using a mobile app: a randomized controlled trial with overweight adults at risk. Am J Prev Med. 2015;49(2):223–37.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Michaelides A, Raby C, Wood M, Farr K, Toro-Ramos T. Weight loss efficacy of a novel mobile diabetes prevention program delivery platform with human coaching. BMJ Open Diabetes Res Care. 2016;4(1):e000264.

    Article  PubMed  PubMed Central  Google Scholar 

  25. • Sepah SC, Jiang L, Peters AL. Translating the diabetes prevention program into an online social network: validation against CDC standards. Diabetes Educ. 2014;40(4):435–43. This article evaluates an online DPP intervention that utilizes many of the key technological features currently available.

    Article  PubMed  Google Scholar 

  26. Sweet C CV, Gumpina R, Abbott P, Madero E.N., Payne M, Happe L, Matanich R, Renda A, Prewitt T. Outcomes of a digital health program with human coaching for diabetes risk reduction in a medicare population. Journal of Aging and Health. 2017:1–19.

  27. Ahrendt AD, Kattelmann KK, Rector TS, Maddox DA. The effectiveness of telemedicine for weight management in the MOVE! program. The Journal of Rural Health : official journal of the American Rural Health Association and the National Rural Health Care Association. 2014;30(1):113–9.

    Article  Google Scholar 

  28. Azar KM, Aurora M, Wang EJ, Muzaffar A, Pressman A, Palaniappan LP. Virtual small groups for weight management: an innovative delivery mechanism for evidence-based lifestyle interventions among obese men. Translational Behavioral Medicine. 2015;5(1):37–44.

    Article  PubMed  Google Scholar 

  29. Rutledge T, Skoyen JA, Wiese JA, Ober KM, Woods GN. A comparison of MOVE! versus TeleMOVE programs for weight loss in Veterans with obesity. Obesity Research & Clinical Practice. 2017;11(3):344–51.

  30. Vadheim LM, McPherson C, Kassner DR, Vanderwood KK, Hall TO, Butcher MK, et al. Adapted diabetes prevention program lifestyle intervention can be effectively delivered through telehealth. Diabetes Educ. 2010;36(4):651–6.

    Article  PubMed  Google Scholar 

  31. Centers for Disease Control and Prevention. https://nccd.cdc.gov/DDT_DPRP/Registry.aspx?STATE=OTH

  32. Centers for Disease Control and Prevention. https://www.cdc.gov/diabetes/prevention/lifestyle-program/requirements.html.

  33. Sepah SC, Jiang L, Peters AL. Long-term outcomes of a web-based diabetes prevention program: 2-year results of a single-arm longitudinal study. J Med Internet Res. 2015;17(4):e92.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Moin T, Ertl K, Schneider J, Vasti E, Makki F, Richardson C, et al. Women veterans’ experience with a web-based diabetes prevention program: a qualitative study to inform future practice. J Med Internet Res. 2015;17(5):e127.

    Article  PubMed  PubMed Central  Google Scholar 

  35. • Schippers M, Adam PC, Smolenski DJ, Wong HT, de Wit JB. A meta-analysis of overall effects of weight loss interventions delivered via mobile phones and effect size differences according to delivery mode, personal contact, and intervention intensity and duration. Obes Rev. 2017;18(4):450–9. This meta-analysis provides a thorough review of mobile phone weight loss interventions.

    Article  CAS  PubMed  Google Scholar 

  36. Chin SO, Keum C, Woo J, Park J, Choi HJ, Woo JT, et al. Successful weight reduction and maintenance by using a smartphone application in those with overweight and obesity. Sci Rep. 2016;6:34563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wieland LS, Falzon L, Sciamanna CN, Trudeau KJ, Brodney S, Schwartz JE, et al. Interactive computer-based interventions for weight loss or weight maintenance in overweight or obese people. The Cochrane Database of Systematic Reviews 2012(8):CD007675.

  38. Wantland DJ, Portillo CJ, Holzemer WL, Slaughter R, McGhee EM. The effectiveness of web-based vs. non-web-based interventions: a meta-analysis of behavioral change outcomes. J Med Internet Res. 2004;6(4):e40.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Tate DF, Finkelstein EA, Khavjou O, Gustafson A. Cost effectiveness of internet interventions: review and recommendations. Annals of Behavioral Medicine : a publication of the Society of Behavioral Medicine. 2009;38(1):40–5.

    Article  Google Scholar 

  40. Laing BY, Mangione CM, Tseng CH, Leng M, Vaisberg E, Mahida M, et al. Effectiveness of a smartphone application for weight loss compared with usual care in overweight primary care patients: a randomized, controlled trial. Ann Intern Med. 2014;161(10 Suppl):S5–12.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Allen JK, Stephens J, Dennison Himmelfarb CR, Stewart KJ, Hauck S. Randomized controlled pilot study testing use of smartphone technology for obesity treatment. J Obes. 2013;2013:151597.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Shuger SL, Barry VW, Sui X, McClain A, Hand GA, Wilcox S, et al. Electronic feedback in a diet- and physical activity-based lifestyle intervention for weight loss: a randomized controlled trial. Int J Behav Nutr Phys Act. 2011;8:41.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Lee J, Kim J. Development and efficacy testing of a social network-based competitive application for weight loss. Telemed J E Health. 2016;22(5):410–8.

    Article  PubMed  Google Scholar 

  44. Svetkey LP, Batch BC, Lin PH, Intille SS, Corsino L, Tyson CC, et al. Cell phone intervention for you (CITY): a randomized, controlled trial of behavioral weight loss intervention for young adults using mobile technology. Obesity (Silver Spring). 2015;23(11):2133–41.

    Article  Google Scholar 

  45. Patrick K, Norman GJ, Davila EP, Calfas KJ, Raab F, Gottschalk M, et al. Outcomes of a 12-month technology-based intervention to promote weight loss in adolescents at risk for type 2 diabetes. J Diabetes Sci Technol. 2013;7(3):759–70.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Napolitano MA, Hayes S, Bennett GG, Ives AK, Foster GD. Using Facebook and text messaging to deliver a weight loss program to college students. Obesity (Silver Spring). 2013;21(1):25–31.

    Article  Google Scholar 

  47. Smith KJ, Kuo S, Zgibor JC, McTigue KM, Hess R, Bhargava T, et al. Cost effectiveness of an internet-delivered lifestyle intervention in primary care patients with high cardiovascular risk. Prev Med. 2016;87:103–9.

    Article  PubMed  Google Scholar 

  48. Su W, Chen F, Dall TM, Iacobucci W, Perreault L. Return on investment for digital behavioral counseling in patients with prediabetes and cardiovascular disease. Prev Chronic Dis. 2016;13:E13.

    Article  PubMed  PubMed Central  Google Scholar 

  49. McTigue KM, Conroy MB, Hess R, Bryce CL, Fiorillo AB, Fischer GS, et al. Using the internet to translate an evidence-based lifestyle intervention into practice. Telemed J E Health. 2009;15(9):851–8.

    Article  PubMed  Google Scholar 

  50. Braithwaite RS, Meltzer DO, King JT Jr, Leslie D, Roberts MS. What does the value of modern medicine say about the $50,000 per quality-adjusted life-year decision rule? Med Care. 2008;46(4):349–56.

    Article  PubMed  Google Scholar 

  51. Centers for Medicare and Medicaid Services. https://www.cms.gov/Research-Statistics-Data-and-Systems/Research/ActuarialStudies/Downloads/Diabetes-Prevention-Certification-2016-03-14.pdf.

  52. Alva ML, Hoerger TJ, Jeyaraman R, Amico P, Rojas-Smith L. Impact of the YMCA of the USA diabetes prevention program on Medicare spending and utilization. Health Affairs (Project Hope). 2017;36(3):417–24.

    Article  Google Scholar 

  53. Consumer Health Information Corporation. Motivating patients to use smartphone health apps. 2011. Available at: http://www.consumer-health.com/motivating-patients-to-use-smartphone-health-apps/.

  54. Gold BC, Burke S, Pintauro S, Buzzell P, Harvey-Berino J. Weight loss on the web: a pilot study comparing a structured behavioral intervention to a commercial program. Obesity (Silver Spring). 2007;15(1):155–64.

    Article  Google Scholar 

  55. Carter MC, Burley VJ, Cade JE. Weight loss associated with different patterns of self-monitoring using the mobile phone app My Meal Mate. JMIR mHealth and uHealth. 2017;5(2):e8.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Kim JY, Wineinger NE, Taitel M, Radin JM, Akinbosoye O, Jiang J, et al. Self-monitoring utilization patterns among individuals in an incentivized program for healthy behaviors. J Med Internet Res. 2016;18(11):e292.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Khaylis A, Yiaslas T, Bergstrom J, Gore-Felton C. A review of efficacious technology-based weight-loss interventions: five key components. Telemed J E Health. 2010;16(9):931–8.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Semper HM, Povey R, Clark-Carter D. A systematic review of the effectiveness of smartphone applications that encourage dietary self-regulatory strategies for weight loss in overweight and obese adults. Obes Rev. 2016;17(9):895–906.

    Article  CAS  PubMed  Google Scholar 

  59. Coughlin SS, Hardy D, Caplan LS. The need for culturally-tailored smartphone applications for weight control. Journal of the Georgia Public Health Association. 2016;5(3):228–32.

    PubMed  PubMed Central  Google Scholar 

  60. Sullivan DK, Goetz JR, Gibson CA, Mayo MS, Washburn RA, Lee Y, et al. A virtual reality intervention (second life) to improve weight maintenance: rationale and design for an 18-month randomized trial. Contemporary Clinical Trials. 2016;46:77–84.

    Article  CAS  PubMed  Google Scholar 

  61. Azar KM, Lesser LI, Laing BY, Stephens J, Aurora MS, Burke LE, et al. Mobile applications for weight management: theory-based content analysis. Am J Prev Med. 2013;45(5):583–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shira Grock.

Ethics declarations

Conflict of Interest

Shira Grock, Jeong-hee Ku, Julie Kim, and Tannaz Moin declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Lifestyle Management to Reduce Diabetes/Cardiovascular Risk

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grock, S., Ku, Jh., Kim, J. et al. A Review of Technology-Assisted Interventions for Diabetes Prevention. Curr Diab Rep 17, 107 (2017). https://doi.org/10.1007/s11892-017-0948-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-017-0948-2

Keywords

Navigation