Skip to main content

Advertisement

Log in

Mesenchymal Stromal Cells to Halt the Progression of Type 1 Diabetes?

  • Immunology and Transplantation (A Pileggi, Section Editor)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

No treatment to halt the progressive loss of insulin-producing beta-cells in type 1 diabetes mellitus has yet been clinically introduced. Strategies tested have at best only transiently preserved beta-cell function and in many cases with obvious side effects of drugs used. Several studies have suggested that mesenchymal stromal cells exert strong immunomodulatory properties with the capability to prevent or halt diabetes development in animal models of type 1 diabetes. A multitude of mechanisms has been forwarded to exert this effect. Recently, we translated this strategy into a first clinical phase I/IIa trial and observed no side effects, and preserved or even increased C-peptide responses to a mixed meal tolerance test during the first year after treatment. Future blinded, larger studies, with extended follow-up, are clearly of interest to investigate this treatment concept.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Voltarelli JC, Couri CE, Stracieri AB, et al. Autologous nonmyeloablative hematopoietic stem cell transplantation in newly diagnosed type 1 diabetes mellitus. JAMA. 2007;297:1568–76.

    Article  CAS  PubMed  Google Scholar 

  2. Sherry N, Hagopian W, Ludvigsson J, et al. Teplizumab for treatment of type 1 diabetes (Protege study): 1-year results from a randomised, placebo-controlled trial. Lancet. 2011;378:487–97.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Ludvigsson J, Krisky D, Casas R, et al. GAD65 antigen therapy in recently diagnosed type 1 diabetes mellitus. N Engl J Med. 2012;366:433–42.

    Article  CAS  PubMed  Google Scholar 

  4. Gale EA, Bingley PJ, Emmett CL, et al. European Nicotinamide Diabetes Intervention Trial (ENDIT): a randomised controlled trial of intervention before the onset of type 1 diabetes. Lancet. 2004;363:925–31.

    Article  CAS  PubMed  Google Scholar 

  5. Shah SC, Malone JI, Simpson NE. A randomized trial of intensive insulin therapy in newly diagnosed insulin-dependent diabetes mellitus. N Engl J Med. 1989;320:550–4.

    Article  CAS  PubMed  Google Scholar 

  6. Ortqvist E, Bjork E, Wallensteen M, et al. Temporary preservation of beta-cell function by diazoxide treatment in childhood type 1 diabetes. Diabetes Care. 2004;27:2191–7.

    Article  CAS  PubMed  Google Scholar 

  7. Feutren G, Papoz L, Assan R, et al. Cyclosporin increases the rate and length of remissions in insulin-dependent diabetes of recent onset. Results of a multicentre double-blind trial. Lancet. 1986;2:119–24.

    Article  CAS  PubMed  Google Scholar 

  8. Bonfanti R, Bazzigaluppi E, Calori G, et al. Parameters associated with residual insulin secretion during the first year of disease in children and adolescents with type 1 diabetes mellitus. Diabet Med. 1998;15:844–50.

    Article  CAS  PubMed  Google Scholar 

  9. Madsbad S, Alberti KG, Binder C, et al. Role of residual insulin secretion in protecting against ketoacidosis in insulin-dependent diabetes. Br Med J. 1979;2:1257–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Steffes MW, Sibley S, Jackson M, et al. Beta-cell function and the development of diabetes-related complications in the diabetes control and complications trial. Diabetes Care. 2003;26:832–6.

    Article  PubMed  Google Scholar 

  11. Shapiro AM, Ricordi C, Hering BJ, et al. International trial of the Edmonton protocol for islet transplantation. N Engl J Med. 2006;355:1318–30.

    Article  CAS  PubMed  Google Scholar 

  12. Atkinson MA, Eisenbarth GS, Michels AW. Type 1 diabetes. Lancet. 2014;383:69–82.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Ziegler AG, Nepom GT. Prediction and pathogenesis in type 1 diabetes. Immunity. 2010;32:468–78.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Richardson SJ, Willcox A, Bone AJ, et al. Immunopathology of the human pancreas in type-I diabetes. Semin Immunopathol. 2011;33:9–21.

    Article  CAS  PubMed  Google Scholar 

  15. Rodriguez-Calvo T, Ekwall O, Amirian N, et al. Increased immune cell infiltration of the exocrine pancreas: a possible contribution to the pathogenesis of type 1 diabetes. Diabetes. 2014;63:3880–90.

    Article  CAS  PubMed  Google Scholar 

  16. Skog O, Korsgren S, Melhus A, et al. Revisiting the notion of type 1 diabetes being a T cell-mediated autoimmune disease. Curr Opin Endocrinol Diabetes Obes. 2013;20:118–23.

    Article  CAS  PubMed  Google Scholar 

  17. Roep BO, Solvason N, Gottlieb PA, et al. Plasmid-encoded proinsulin preserves C-peptide while specifically reducing proinsulin-specific CD8(+) T cells in type 1 diabetes. Sci Transl Med. 2013;5:191ra182.

    Article  Google Scholar 

  18. Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315–7.

    Article  CAS  PubMed  Google Scholar 

  19. Friedenstein AJ, Petrakova KV, Kurolesova AI, et al. Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation. 1968;6:230–47.

    Article  CAS  PubMed  Google Scholar 

  20. Portmann-Lanz CB, Schoeberlein A, Huber A, et al. Placental mesenchymal stem cells as potential autologous graft for pre- and perinatal neuroregeneration. Am J Obstet Gynecol. 2006;194:664–73.

    Article  CAS  PubMed  Google Scholar 

  21. Musina RA, Belyavski AV, Tarusova OV, et al. Endometrial mesenchymal stem cells isolated from the menstrual blood. Bull Exp Biol Med. 2008;145:539–43.

    Article  CAS  PubMed  Google Scholar 

  22. Zannettino AC, Paton S, Arthur A, et al. Multipotential human adipose-derived stromal stem cells exhibit a perivascular phenotype in vitro and in vivo. J Cell Physiol. 2008;214:413–21.

    Article  CAS  PubMed  Google Scholar 

  23. Hoogduijn MJ, Crop MJ, Peeters AM, et al. Human heart, spleen, and perirenal fat-derived mesenchymal stem cells have immunomodulatory capacities. Stem Cells Dev. 2007;16:597–604.

    Article  CAS  PubMed  Google Scholar 

  24. Chao KC, Chao KF, Fu YS, et al. Islet-like clusters derived from mesenchymal stem cells in Wharton’s Jelly of the human umbilical cord for transplantation to control type 1 diabetes. PLoS One. 2008;3:e1451.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Jo YY, Lee HJ, Kook SY, et al. Isolation and characterization of postnatal stem cells from human dental tissues. Tissue Eng. 2007;13:767–73.

    Article  CAS  PubMed  Google Scholar 

  26. Pittenger MF, Martin BJ. Mesenchymal stem cells and their potential as cardiac therapeutics. Circ Res. 2004;95:9–20.

    Article  CAS  PubMed  Google Scholar 

  27. Qian H, Le Blanc K, Sigvardsson M. Primary mesenchymal stem cells from bone marrow lack expression of CD44. J Biol Chem. 2012;287:25795–807.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Crisostomo PR, Wang M, Herring CM, et al. Sex dimorphisms in activated mesenchymal stem cell function. Shock. 2006;26:571–4.

    Article  CAS  PubMed  Google Scholar 

  29. von Bahr L, Sundberg B, Lonnies L, et al. Long-term complications, immunologic effects, and role of passage for outcome in mesenchymal stromal cell therapy. Biol Blood Marrow Transplant. 2012;18:557–64.

    Article  Google Scholar 

  30. Prockop D, Brenner M, Fibbe W, et al. While extensive passaging of murine cells increases the risk of transformation, this risk appears extremely low in human cells. Cytotherapy. 2010;12:576–8.

    Article  PubMed  Google Scholar 

  31. Yang M, Li Q, Sheng L, et al. Bone marrow-derived mesenchymal stem cells transplantation accelerates tissue expansion by promoting skin regeneration during expansion. Ann Surg. 2011;253:202–9.

    Article  PubMed  Google Scholar 

  32. Kim SW, Zhang HZ, Guo L, et al. Amniotic mesenchymal stem cells enhance wound healing in diabetic NOD/SCID mice through high angiogenic and engraftment capabilities. PLoS One. 2012;7:e41105.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Khalili S, Liu Y, Kornete M, et al. Mesenchymal stromal cells improve salivary function and reduce lymphocytic infiltrates in mice with Sjogren-like disease. PLoS One. 2012;7:e38615.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Chung R, Foster BK, Zannettino AC, et al. Potential roles of growth factor PDGF-BB in the bony repair of injured growth plate. Bone. 2009;44:878–85.

    Article  CAS  PubMed  Google Scholar 

  35. Houchen CW, George RJ, Sturmoski MA, et al. FGF-2 enhances intestinal stem cell survival and its expression is induced after radiation injury. Am J Physiol. 1999;276:G249–58.

    CAS  PubMed  Google Scholar 

  36. Yoon BS, Moon JH, Jun EK, et al. Secretory profiles and wound healing effects of human amniotic fluid-derived mesenchymal stem cells. Stem Cells Dev. 2010;19:887–902.

    Article  CAS  PubMed  Google Scholar 

  37. Beckermann BM, Kallifatidis G, Groth A, et al. VEGF expression by mesenchymal stem cells contributes to angiogenesis in pancreatic carcinoma. Br J Cancer. 2008;99:622–31.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Ito T, Itakura S, Todorov I, et al. Mesenchymal stem cell and islet co-transplantation promotes graft revascularization and function. Transplantation. 2010;89:1438–45.

    Article  PubMed  Google Scholar 

  39. Bai L, Lennon DP, Caplan AI, et al. Hepatocyte growth factor mediates mesenchymal stem cell-induced recovery in multiple sclerosis models. Nat Neurosci. 2012;15:862–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Wu Y, Chen L, Scott PG, et al. Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis. Stem Cells. 2007;25:2648–59.

    Article  CAS  PubMed  Google Scholar 

  41. Hou X, Wu X, Ma J, et al. Erythropoietin augments the efficacy of therapeutic angiogenesis induced by allogenic bone marrow stromal cells in a rat model of limb ischemia. Mol Biol Rep. 2010;37:1467–75.

    Article  CAS  PubMed  Google Scholar 

  42. Whone AL, Kemp K, Sun M, et al. Human bone marrow mesenchymal stem cells protect catecholaminergic and serotonergic neuronal perikarya and transporter function from oxidative stress by the secretion of glial-derived neurotrophic factor. Brain Res. 2012;1431:86–96.

    Article  CAS  PubMed  Google Scholar 

  43. Li N, Lu X, Zhao X, et al. Endothelial nitric oxide synthase promotes bone marrow stromal cell migration to the ischemic myocardium via upregulation of stromal cell-derived factor-1alpha. Stem Cells. 2009;27:961–70.

    Article  CAS  PubMed  Google Scholar 

  44. Gnecchi M, He H, Liang OD, et al. Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nat Med. 2005;11:367–8.

    Article  CAS  PubMed  Google Scholar 

  45. Timmers L, Lim SK, Hoefer IE, et al. Human mesenchymal stem cell-conditioned medium improves cardiac function following myocardial infarction. Stem Cell Res. 2011;6:206–14.

    Article  PubMed  Google Scholar 

  46. Rackham CL, Chagastelles PC, Nardi NB, et al. Co-transplantation of mesenchymal stem cells maintains islet organisation and morphology in mice. Diabetologia. 2011;54:1127–35.

    Article  CAS  PubMed  Google Scholar 

  47. Kerby A, Jones ES, Jones PM, et al. Co-transplantation of islets with mesenchymal stem cells in microcapsules demonstrates graft outcome can be improved in an isolated-graft model of islet transplantation in mice. Cytotherapy. 2013;15:192–200.

    Article  CAS  PubMed  Google Scholar 

  48. Berman DM, Willman MA, Han D, et al. Mesenchymal stem cells enhance allogeneic islet engraftment in nonhuman primates. Diabetes. 2010;59:2558–68.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Jiang XX, Zhang Y, Liu B, et al. Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood. 2005;105:4120–6.

    Article  CAS  PubMed  Google Scholar 

  50. Nemeth K, Leelahavanichkul A, Yuen PS, et al. Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med. 2009;15:42–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Sotiropoulou PA, Perez SA, Gritzapis AD, et al. Interactions between human mesenchymal stem cells and natural killer cells. Stem Cells. 2006;24:74–85.

    Article  PubMed  Google Scholar 

  52. Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood. 2005;105:1815–22.

    Article  CAS  PubMed  Google Scholar 

  53. Snijdewint FG, Kalinski P, Wierenga EA, et al. Prostaglandin E2 differentially modulates cytokine secretion profiles of human T helper lymphocytes. J Immunol. 1993;150:5321–9.

    CAS  PubMed  Google Scholar 

  54. Baratelli F, Lin Y, Zhu L, et al. Prostaglandin E2 induces FOXP3 gene expression and T regulatory cell function in human CD4+ T cells. J Immunol. 2005;175:1483–90.

    Article  CAS  PubMed  Google Scholar 

  55. Gieseke F, Bohringer J, Bussolari R, et al. Human multipotent mesenchymal stromal cells use galectin-1 to inhibit immune effector cells. Blood. 2010;116:3770–9.

    Article  CAS  PubMed  Google Scholar 

  56. Gieseke F, Kruchen A, Tzaribachev N, et al. Proinflammatory stimuli induce galectin-9 in human mesenchymal stromal cells to suppress T-cell proliferation. Eur J Immunol. 2013;43:2741–9.

    Article  CAS  PubMed  Google Scholar 

  57. Corcione A, Benvenuto F, Ferretti E, et al. Human mesenchymal stem cells modulate B-cell functions. Blood. 2006;107:367–72.

    Article  CAS  PubMed  Google Scholar 

  58. Bruno S, Grange C, Deregibus MC, et al. Mesenchymal stem cell-derived microvesicles protect against acute tubular injury. J Am Soc Nephrol. 2009;20:1053–67.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Gatti S, Bruno S, Deregibus MC, et al. Microvesicles derived from human adult mesenchymal stem cells protect against ischaemia-reperfusion-induced acute and chronic kidney injury. Nephrol Dial Transplant. 2011;26:1474–83.

    Article  CAS  PubMed  Google Scholar 

  60. Zhang HC, Liu XB, Huang S, et al. Microvesicles derived from human umbilical cord mesenchymal stem cells stimulated by hypoxia promote angiogenesis both in vitro and in vivo. Stem Cells Dev. 2012;21:3289–97.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Favaro E, Carpanetto A, Lamorte S, et al. Human mesenchymal stem cell-derived microvesicles modulate T cell response to islet antigen glutamic acid decarboxylase in patients with type 1 diabetes. Diabetologia. 2014;57:1664–73. This study provides mechanistic insights on how MSCs can change the immune attack in type 1 diabetes mellitus.

    Article  CAS  PubMed  Google Scholar 

  62. Arslan F, Lai RC, Smeets MB, et al. Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury. Stem Cell Res. 2013;10:301–12.

    Article  CAS  PubMed  Google Scholar 

  63. Li T, Yan Y, Wang B, et al. Exosomes derived from human umbilical cord mesenchymal stem cells alleviate liver fibrosis. Stem Cells Dev. 2013;22:845–54.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Lee RH, Seo MJ, Reger RL, et al. Multipotent stromal cells from human marrow home to and promote repair of pancreatic islets and renal glomeruli in diabetic NOD/Scid mice. Proc Natl Acad Sci U S A. 2006;103:17438–43.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Karp JM, Leng Teo GS. Mesenchymal stem cell homing: the devil is in the details. Cell Stem Cell. 2009;4:206–16.

    Article  CAS  PubMed  Google Scholar 

  66. Rombouts WJ, Ploemacher RE. Primary murine MSC show highly efficient homing to the bone marrow but lose homing ability following culture. Leukemia. 2003;17:160–70.

    Article  CAS  PubMed  Google Scholar 

  67. Hung SC, Pochampally RR, Hsu SC, et al. Short-term exposure of multipotent stromal cells to low oxygen increases their expression of CX3CR1 and CXCR4 and their engraftment in vivo. PLoS One. 2007;2:e416.

    Article  PubMed Central  PubMed  Google Scholar 

  68. Shi M, Li J, Liao L, et al. Regulation of CXCR4 expression in human mesenchymal stem cells by cytokine treatment: role in homing efficiency in NOD/SCID mice. Haematologica. 2007;92:897–904.

    Article  PubMed  Google Scholar 

  69. Chen J, Li Y, Wang L, et al. Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke. 2001;32:1005–11.

    Article  CAS  PubMed  Google Scholar 

  70. Rafei M, Campeau PM, Aguilar-Mahecha A, et al. Mesenchymal stromal cells ameliorate experimental autoimmune encephalomyelitis by inhibiting CD4 Th17 T cells in a CC chemokine ligand 2-dependent manner. J Immunol. 2009;182:5994–6002.

    Article  CAS  PubMed  Google Scholar 

  71. Lee RH, Pulin AA, Seo MJ, et al. Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell. 2009;5:54–63.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Kota DJ, Wiggins LL, Yoon N, et al. TSG-6 produced by hMSCs delays the onset of autoimmune diabetes by suppressing Th1 development and enhancing tolerogenicity. Diabetes. 2013;62:2048–58. This paper shows that MSCs lodged in lungs may exert systemic immunomodulatory effects through TSG-6 in a model of autoimmune diabetes.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Wu J, Sun Z, Sun HS, et al. Intravenously administered bone marrow cells migrate to damaged brain tissue and improve neural function in ischemic rats. Cell Transplant. 2008;16:993–1005.

    Article  PubMed  Google Scholar 

  74. Lazarus HM, Haynesworth SE, Gerson SL, et al. Ex vivo expansion and subsequent infusion of human bone marrow-derived stromal progenitor cells (mesenchymal progenitor cells): implications for therapeutic use. Bone Marrow Transplant. 1995;16:557–64.

    CAS  PubMed  Google Scholar 

  75. Le Blanc K, Rasmusson I, Sundberg B, et al. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet. 2004;363:1439–41.

    Article  PubMed  Google Scholar 

  76. Le Blanc K, Frassoni F, Ball L, et al. Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet. 2008;371:1579–86.

    Article  PubMed  Google Scholar 

  77. Kebriaei P, Isola L, Bahceci E, et al. Adult human mesenchymal stem cells added to corticosteroid therapy for the treatment of acute graft-versus-host disease. Biol Blood Marrow Transplant. 2009;15:804–11.

    Article  CAS  PubMed  Google Scholar 

  78. Lucchini G, Introna M, Dander E, et al. Platelet-lysate-expanded mesenchymal stromal cells as a salvage therapy for severe resistant graft-versus-host disease in a pediatric population. Biol Blood Marrow Transplant. 2010;16:1293–301.

    Article  PubMed  Google Scholar 

  79. Prasad VK, Lucas KG, Kleiner GI, et al. Efficacy and safety of ex vivo cultured adult human mesenchymal stem cells (prochymal) in pediatric patients with severe refractory acute graft-versus-host disease in a compassionate use study. Biol Blood Marrow Transplant. 2011;17:534–41.

    Article  CAS  PubMed  Google Scholar 

  80. Dignan FL, Amrolia P, Clark A, et al. Diagnosis and management of chronic graft-versus-host disease. Br J Haematol. 2012;158:46–61.

    Article  CAS  PubMed  Google Scholar 

  81. Chen SL, Fang WW, Ye F, et al. Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. Am J Cardiol. 2004;94:92–5.

    Article  PubMed  Google Scholar 

  82. Kharaziha P, Hellstrom PM, Noorinayer B, et al. Improvement of liver function in liver cirrhosis patients after autologous mesenchymal stem cell injection: a phase I-II clinical trial. Eur J Gastroenterol Hepatol. 2009;21:1199–205.

    Article  CAS  PubMed  Google Scholar 

  83. Gotherstrom C, Westgren M, Shaw SW, et al. Pre- and postnatal transplantation of fetal mesenchymal stem cells in osteogenesis imperfecta: a two-center experience. Stem Cells Transl Med. 2014;3:255–64.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Otsuru S, Gordon PL, Shimono K, et al. Transplanted bone marrow mononuclear cells and MSCs impart clinical benefit to children with osteogenesis imperfecta through different mechanisms. Blood. 2012;120:1933–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Orozco L, Munar A, Soler R, et al. Treatment of knee osteoarthritis with autologous mesenchymal stem cells: a pilot study. Transplantation. 2013;95:1535–41.

    Article  CAS  PubMed  Google Scholar 

  86. Tan J, Wu W, Xu X, et al. Induction therapy with autologous mesenchymal stem cells in living-related kidney transplants: a randomized controlled trial. JAMA. 2012;307:1169–77.

    Article  CAS  PubMed  Google Scholar 

  87. von Bahr L, Batsis I, Moll G, et al. Analysis of tissues following mesenchymal stromal cell therapy in humans indicates limited long-term engraftment and no ectopic tissue formation. Stem Cells. 2012;30:1575–8.

    Article  Google Scholar 

  88. Moll G, Rasmusson-Duprez I, von Bahr L, et al. Are therapeutic human mesenchymal stromal cells compatible with human blood? Stem Cells. 2012;30:1565–74.

    Article  CAS  PubMed  Google Scholar 

  89. Ezquer FE, Ezquer ME, Parrau DB, et al. Systemic administration of multipotent mesenchymal stromal cells reverts hyperglycemia and prevents nephropathy in type 1 diabetic mice. Biol Blood Marrow Transplant. 2008;14:631–40.

    Article  CAS  PubMed  Google Scholar 

  90. Ezquer F, Ezquer M, Contador D, et al. The antidiabetic effect of mesenchymal stem cells is unrelated to their transdifferentiation potential but to their capability to restore Th1/Th2 balance and to modify the pancreatic microenvironment. Stem Cells. 2012;30:1664–74.

    Article  CAS  PubMed  Google Scholar 

  91. Boumaza I, Srinivasan S, Witt WT, et al. Autologous bone marrow-derived rat mesenchymal stem cells promote PDX-1 and insulin expression in the islets, alter T cell cytokine pattern and preserve regulatory T cells in the periphery and induce sustained normoglycemia. J Autoimmun. 2009;32:33–42.

    Article  CAS  PubMed  Google Scholar 

  92. Fiorina P, Jurewicz M, Augello A, et al. Immunomodulatory function of bone marrow-derived mesenchymal stem cells in experimental autoimmune type 1 diabetes. J Immunol. 2009;183:993–1004.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  93. Jurewicz M, Yang S, Augello A, et al. Congenic mesenchymal stem cell therapy reverses hyperglycemia in experimental type 1 diabetes. Diabetes. 2010;59:3139–47.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  94. Bassi EJ, Moraes-Vieira PM, Moreira-Sa CS, et al. Immune regulatory properties of allogeneic adipose-derived mesenchymal stem cells in the treatment of experimental autoimmune diabetes. Diabetes. 2012;61:2534–45.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  95. Madec AM, Mallone R, Afonso G, et al. Mesenchymal stem cells protect NOD mice from diabetes by inducing regulatory T cells. Diabetologia. 2009;52:1391–9.

    Article  CAS  PubMed  Google Scholar 

  96. Zanone MM, Favaro E, Miceli I, et al. Human mesenchymal stem cells modulate cellular immune response to islet antigen glutamic acid decarboxylase in type 1 diabetes. J Clin Endocrinol Metab. 2010;95:3788–97.

    Article  CAS  PubMed  Google Scholar 

  97. Yeung TY, Seeberger KL, Kin T, et al. Human mesenchymal stem cells protect human islets from pro-inflammatory cytokines. PLoS One. 2012;7:e38189.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  98. Carlsson PO, Schwarcz E, Korsgren O, et al. Preserved beta-cell function in type 1 diabetes by mesenchymal stromal cells. Diabetes. 2015;64:587–92. This paper reports on the first intervention in type 1 diabetes by MSCs.

    Article  CAS  PubMed  Google Scholar 

  99. Stolzing A, Sellers D, Llewelyn O, et al. Diabetes induced changes in rat mesenchymal stem cells. Cells Tissues Organs. 2010;191:453–65.

    Article  CAS  PubMed  Google Scholar 

  100. Cramer C, Freisinger E, Jones RK, et al. Persistent high glucose concentrations alter the regenerative potential of mesenchymal stem cells. Stem Cells Dev. 2010;19:1875–84.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Swedish Research Council, VINNOVA, AFA Insurance, EXODIAB, the Swedish Diabetes Association, the Swedish Juvenile Diabetes Foundation, the Novo Nordisk Foundation, The Torsten Söderberg Foundation, and Diabetes Wellness Network Sverige for academic grants to support own work.

Compliance with Ethics Guidelines

Conflict of Interest

Per-Ola Carlsson and Katarina Le Blanc declare that they have no conflict of interest.

Olle Korsgren reports that he owns stocks in a Swedish SME aiming to develop MSC as a future treatment for patients undergoing solid organ transplantation.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Per-Ola Carlsson.

Additional information

This article is part of the Topical Collection on Immunology and Transplantation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carlsson, PO., Korsgren, O. & Le Blanc, K. Mesenchymal Stromal Cells to Halt the Progression of Type 1 Diabetes?. Curr Diab Rep 15, 46 (2015). https://doi.org/10.1007/s11892-015-0616-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-015-0616-3

Keywords

Navigation