Skip to main content

Advertisement

Log in

Diabetes and Kidney Transplantation: Past, Present, and Future

  • Transplantation (A Pileggi, Section Editor)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Diabetes mellitus is the most common etiology for end stage renal disease (ESRD) worldwide and in the United States. The incidence of morbidity and mortality is higher in diabetic patients with ESRD due to increased cardiovascular events. Patients with type 2 diabetes who receive a renal allograft have a higher survival rate compared with patients who are maintained on chronic hemodialysis therapy, but there is scarcity of data on long-term graft outcomes. Most recently the development of new onset diabetes after transplantation (NODAT) poses a serious threat to patient and allograft survival. Pre-emptive transplantation and the use of living donors have improved overall survival. In addition, critical management of glucose, blood pressure, and cholesterol are some of the factors that can help minimize adverse outcomes in both patients with pre-existing diabetes and patients who develop NODAT. Future clinical trials are warranted to improve therapeutic medical management of these patients thus influencing graft attrition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. National Institute of Health (NIH), (NIDDK): 2010 Annual Data Report: Atlas of end stage renal disease in the United States. In, National Institute of Health (NIH), National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK). 2010.

  2. Coressh J, Selvin E, Stevens LA, et al. Prevalence of chronic kidney disease. JAMA. 2007;298:2038–47.

    Article  Google Scholar 

  3. Hsu CY, Iribarren C, McCulloch CE, et al. Risk factors for end stage renal disease: 25 year follow-up. Arch Intern Med. 2009;169:342.

    Article  PubMed  Google Scholar 

  4. Bash LD, Astor BC, Coresh J. Risk of incident ESRD: a comprehensive look at cardiovascular risk factors and 17 years of follow-up in the Atherosclerosis Risk in Communities (ARIC) Study. Am J Kidney Dis. 2010;55:31–41.

    Article  PubMed  Google Scholar 

  5. Welsh RC, Cockfield SM, Campbell P, et al. Cardiovascular assessment of diabetic end stage renal disease patients before renal transplantation. Transplantation. 2011;9:213–8.

    Article  Google Scholar 

  6. Wolfe RA, Ashby VB, Milford EL, Ojo AO, et al. Comparison of mortality in all patients on dialysis, patients on dialysis awaiting transplantation, and recipients of a first cadaveric transplant. NEJM. 1999;341:1725–30.

    Article  PubMed  CAS  Google Scholar 

  7. Meier-Kriesche HU, Ojo AO, Port FK, et al. Survival improvement among patients with end stage renal disease: trends over time for transplant recipients and wait-listed patients. J Am Soc Nephrol. 2001;12:1293–6.

    PubMed  CAS  Google Scholar 

  8. United Network for Organ Sharing. 2012 wait-list for kidney transplantation from organ procurement and transplantation network (OPTN) data, May, 2012.

  9. Meier-Kriesche HU, Kaplan B. Waiting time on dialysis as the strongest modifiable risk factor for renal transplant outcomes: a paired donor kidney analysis. Transplantation. 2002;74:1377–81.

    Article  PubMed  Google Scholar 

  10. Son YK, Oh JS, Kim SM, et al. Clinical outcome of preemptive kidney transplantation in patients with diabetes mellitus. Transplant Proc. 2010;42:3497–502.

    Article  PubMed  CAS  Google Scholar 

  11. Kasiske BL, Snyder JJ, Gilbertson D, et al. Diabetes mellitus after kidney transplantation in the United States. Am J Transplant. 2003;3:178–85.

    Article  PubMed  Google Scholar 

  12. Ballard DJ, Humphrey LL, Melton III LJ, et al. Epidemiology of persistent proteinuria in type II diabetes mellitus. Population based in Rochester, Minnesota. Diabetes. 1988;37:405–12.

    Article  PubMed  CAS  Google Scholar 

  13. Poulsen PL, Hansen KW, Mogensen CE. Ambulatory blood pressure in the transition from normo to microalbuminuria. A longitudinal study in IDDM patients. Diabetes. 1994;43:1248–53.

    Article  PubMed  CAS  Google Scholar 

  14. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The Diabetes Control and Complications Trial Research Group. N Engl J Med. 1993;329:977–86.

  15. Lewis EJ, Hunsicker LG, Bain RP, et al. The effect of angiotensin converting enzyme inhibition on diabetic nephropathy. The Collaborative Study Group. N Engl J Med. 1993;329:1456–62.

    Article  PubMed  CAS  Google Scholar 

  16. Brenner BM, Cooper ME, de Zeeuw D, et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Eng J Med. 2001;345:861–9.

    Article  CAS  Google Scholar 

  17. Wheeler DC, Steiger J. Evolution and etiology of cardiovascular diseases in renal transplant recipients. Transplantation. 2000;70:SS41.

    PubMed  CAS  Google Scholar 

  18. Foley RN, Murray AM, Li S, Herzog CA, et al. Chronic kidney disease and the risk for cardiovascular disease, renal replacement, and death in the United States Medicare population, 1998 to 1999. J Am Soc Nephrol. 2005;16:489–95.

    Article  PubMed  Google Scholar 

  19. Balasubramaniam K, Viswanathan G, Marshall S, et al. Increased atherotherombotic burden in patients with diabetes mellitus and acute coronary syndrome: a review of antiplatelet therapy. Cardiol Res Pract. 2012;2012:1–18.

    Article  Google Scholar 

  20. Libby O, Ridker M, Maseri A. Inflammation and atherosclerosis. Circulation. 2002;105:1135–43.

    Article  PubMed  CAS  Google Scholar 

  21. Beckman JA, Creager MA, Libby P. Diabetes and atherosclerosis epidemiology, pathophysiology, and management. JAMA. 2002;287:2570–81.

    Article  PubMed  CAS  Google Scholar 

  22. Stegenga ME, van der Crabben SN, Dessing MD, et al. Effect of acute hyperglycaemia and/or hyperinsulinaemia on proinflammatory gene expression, cytokine production, and neutrophil function in humans. Diabetic Med. 2008;25:157–64.

    Article  PubMed  CAS  Google Scholar 

  23. Alessi MC, Juhan-Vague I. Metabolic syndrome, haemostatsis, and thrombosis. Thromb Haemaost. 2008;99:995–1000.

    CAS  Google Scholar 

  24. Mutner P, He J, Hamm L, et al. Renal insufficiency and subsequent death resulting from cardiovascular disease in the United States. J Am Soc Nephrol. 2002;13:745–53.

    Google Scholar 

  25. Kasiske BL, Maclean JR, Snyder JJ. Acute myocardial infarction and kidney transplantation. J Am Soc Nephrol. 2006;17:900–7.

    Article  PubMed  Google Scholar 

  26. Schnuell P, Lorenze D, Trede M, et al. Impact of renal cadaveric transplantation on survival in end-stage renal failure: evidence for reduced mortality risk compared with hemodialysis during long-term follow-up. J Am Soc Nephrol. 1998;9:2135–41.

    Google Scholar 

  27. McDonald SP, Russ GR. Survival of recipients of cadaveric kidney transplants compared with those receiving dialysis treatment in Australia and New Zealand, 1991–2001. Nephrol Dial Transplant. 2002;17:2212–9.

    Article  PubMed  Google Scholar 

  28. Hirschl M. Renal transplantation in patients with type 2 diabetes mellitus. Nephrol Dial Transplant. 1995;10 Suppl 7:58–60.

    PubMed  Google Scholar 

  29. • Weisbauer F, Heinze G, Regele H, et al. Glucose control is associated with patient survival in diabetic patients after renal transplantation. Transplantation. 2010;89:612–9. This paper described the effect of the best treatment strategy to improve outcome for diabetic transplant patients.

    Article  Google Scholar 

  30. Cosio FG, Hisckson LJ, Griffin MD, et al. Patient survival and cardiovascular risk after kidney transplantation: the challenge of diabetes. Am J Transplant. 2008;8:593–9.

    Article  PubMed  CAS  Google Scholar 

  31. Aalten J, Hoogeveen EK, Roodnat JI, et al. Associations between pre-kidney transplant risk factors and posttransplant cardiovascular events and death. Transpl Int. 2008;21:985–91.

    Article  PubMed  Google Scholar 

  32. Kiverd B, Panek R. Cardiovascular outcomes in the outpatient kidney transplant clinic: the Framingham risk score revisited. Clin J Am Soc Nephrol. 2008;3:822–8.

    Article  Google Scholar 

  33. Shaffer D, Simpson MA, Madras PN, et al. Kidney transplantation in diabetic patients using cyclosporine. Five-year follow-up. Arch Surg. 1995;130:28–287.

    Article  Google Scholar 

  34. Meier-Kriesche HU, Schold JD, Srinivas TR, et al. Kidney transplantation halts cardiovascular disease progression in patients with end stage renal disease. Am J Transplant. 2004;4:1662–8.

    Article  PubMed  Google Scholar 

  35. Meier-Kriesche HU, Baliga R, Kaplan B. Decreased renal function is a strong risk factor for cardiovascular death after renal transplantation. Transplantation. 2003;75:1291–5.

    Article  PubMed  Google Scholar 

  36. Miller LW. Cardiovascular toxicities of immunosuppressive agents. Am J Transplant. 2002;2:807–18.

    Article  PubMed  CAS  Google Scholar 

  37. Chueh SC, Kahan BD. Dyslipidemia in renal transplant recipients treated with a sirolimus and cyclosporine-based immunosuppressive regime: incidence, risk factors, progression, and prognosis. Transplantation. 2003;76:375–82.

    Article  PubMed  CAS  Google Scholar 

  38. Fl L, Samaniego M. Transplantation in diabetic kidney failure patients: modalities, outcomes, and clinical management. Semin Dial. 2010;23:198–205.

    Article  Google Scholar 

  39. Barbosa J, Steffers MW, Sutherland DE, et al. Effect of glycemic control on early diabetic renal lesions. A 5-year randomized controlled clinical trial of insulin-dependent diabetic kidney transplant recipients. JAMA. 1994;272:600.

    Article  PubMed  CAS  Google Scholar 

  40. Hjelmesaeth J, Hartmann A, Kofstad J, et al. Glucose intolerance after renal transplantation depends upon prednisolone dose and recipient age. Transplantation. 1997;64:979–83.

    Article  PubMed  CAS  Google Scholar 

  41. Duijnhoven EM, Boots JM, Christiaans MH, et al. Influence of tacrolimus on glucose metabolism before and after renal transplantation: a prospective study. J Am Soc Nephrol. 2001;12:583–8.

    PubMed  CAS  Google Scholar 

  42. Dumler F, Kilates C. Metabolic and nutritional complications of renal transplantation. J Ren Nutr. 2007;17:97–102.

    Article  PubMed  Google Scholar 

  43. •• Lamming DW, Ye L, Katajisto P, et al. Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity. Science. 2012;335:1638–43. This paper illustrates how mTORC2 disruption could be relevant for the pathogenesis of type II diabetes and metabolic syndrome.

    Article  PubMed  CAS  Google Scholar 

  44. Hughes K, Kennedy B. Rapamycin paradox resolved. Cell Biol. 2012;335:1578–9.

    CAS  Google Scholar 

  45. Kuo HT, Sampaio MS, Vincent F, et al. Associations of pretransplant diabetes mellitus, new-onset diabetes after transplant, and acute rejection with transplant outcomes: an analysis of the Organ Procurement and Transplant Network/United Network for Organ Sharing (OTN/UNOS) Database. Am J Kidney Dis. 2010;56:1127–39.

    Article  PubMed  Google Scholar 

  46. Parekh J, Bostrom A, Feng S. Diabetes mellitus: a risk factor for delayed graft function after deceased donor kidney transplantation. Am J Transpl. 2010;10:298–303.

    Article  CAS  Google Scholar 

  47. Thomas MC, Mathew TH, Russ GR, et al. Early perioperative glycaemic control and allograft rejection in patients with diabetes mellitus: a pilot study. Transplantation. 2001;72:1321–4.

    Article  PubMed  CAS  Google Scholar 

  48. Troppman C, Gillingham KJ, Benedetti E, et al. Delayed graft function, acute rejection, and outcome after cadaver renal transplantation. The multivariate analysis. Transplantation. 1995;59:962.

    Article  Google Scholar 

  49. Kyriakides G, Simmons R, Najarian J. Wound infections in renal transplant wounds: pathogenetic and prognostic factors. Ann Surg. 1975;182:770–5.

    Article  PubMed  CAS  Google Scholar 

  50. Roine E, Bjork IT, Oyen O. Targeting risk factors for impaired wound healing and wound complications after kidney transplantation. Transplant Proc. 2010;42:2542–6.

    Article  PubMed  CAS  Google Scholar 

  51. Lansang C, Ma L, Schold J, et al. The relationship between diabetes and infectious hospitalizations in renal transplant recipients. Diabetes Care. 2006;29:1659–60.

    Article  PubMed  Google Scholar 

  52. Abbot KC, Hypolite I, Tveit DJ, et al. Hospitalizations for fungal infections after initiation of chronic dialysis in the United States. Nephron. 2001;89:426–32.

    Article  Google Scholar 

  53. Ersoy A, Ersoy C, Tekce H, et al. Diabetic ketoacidosis following development of de novo diabetes in renal transplant recipient associated with tacrolimus. Transplant Proc. 2004;36:1407–10.

    Article  PubMed  CAS  Google Scholar 

  54. Mazali FC, Lalli CA, Alves-Filho G, et al. Posttransplant diabetes mellitus: incidence and risk factors. Transplant Proc. 2008;40:764–6.

    Article  PubMed  Google Scholar 

  55. Ciancio G, Burke GW, Suzart K, Roth D, Kupin W, Rosen A, et al. Daclizumab induction, tacrolimus, mycophenolate mofetil, and steroids as an immunosuppression regimen for primary kidney transplant recipients. Transplantation. 2002;73:1100–6.

    Article  PubMed  CAS  Google Scholar 

  56. Ciancio G, Burke GW, Gaynor JJ, Mattiazzi A, Roth D, Kupin W, et al. A randomized long-term trial of tacrolimus/sirolimus vs tacrolimus/mycophenolate mofetil vs cyclosporine (NEORAL)/sirolimus in renal transplantation. II. Survival, function, and protocol compliance at 1 year. Transplantation. 2004;77:252–8.

    Article  PubMed  CAS  Google Scholar 

  57. Ciancio G, Burke GW, Gaynor JJ, Carreno MR, Cirocco RE, Mathew JM, et al. A randomized trial of 3 renal transplant induction antibodies: early comparison of tacrolimus, mycophenolate mofetil, and steroid dosing, and newer immune-monitoring. Transplantation. 2005;80:457–65.

    Article  PubMed  CAS  Google Scholar 

  58. Ciancio G, Burke GW, Gaynor JJ, Roth D, Sageshima J, Kupin W, et al. Randomized trial of mycophenolate mofetil vs enteric-coated mycophenolate sodium in primary renal transplant recipients given tacrolimus and daclizumab/thymoglobulin: 1 year follow-up. Transplantation. 2008;86:67–74.

    Article  PubMed  CAS  Google Scholar 

  59. • Ciancio G, Gaynor JJ, Sageshima J, Guerra G, Zarak A, Roth D, et al. Randomized trial of dual antibody induction therapy with steroid avoidance in renal transplantation. Transplantation. 2011;92:1348–57. This study assessed the degree of NODAT incidence after early steroid withdrawal using double induction.

    Article  PubMed  CAS  Google Scholar 

  60. Woodward RS, Schnitzler MA, Baty J, et al. Incidence and cost of new onset diabetes mellitus among US wait-listed and transplant renal allograft recipients. Am J Transplant. 2003;3:590–8.

    Article  PubMed  Google Scholar 

  61. Luan FL, Zhang H, Schaubel DE, et al. Comparative risk of impaired glucose metabolism associated with cyclosporine vs tacrolimus in the late posttransplant period. Am J Transplant. 2008;8:1871–7.

    Article  PubMed  CAS  Google Scholar 

  62. Montori VM, Basu A, Erwin PJ, et al. Posttransplantation diabetes: a systemic review of the literature. Diabetes Care. 2002;25:583–92.

    Article  PubMed  Google Scholar 

  63. Vincenti F, Friman S, Scheuermann E, et al. Results of an international, randomized trial comparing glucose metabolism disorders and outcome with cyclosporine vs tacrolimus. Am J Transplant. 2007;7:1506–14.

    Article  PubMed  CAS  Google Scholar 

  64. Perez-Flores I, Sanchez Fructuoso A, Calvo EF, et al. Incidence and risk factors for the metabolic syndrome and posttransplant diabetes in renal transplant recipients taking tacrolimus. Transplant Proc. 2010;42:2902–4.

    Article  PubMed  CAS  Google Scholar 

  65. Hur KY, Kim MS, Kim YS, et al. Risk factors associated with the onset and progression of posttranplant diabetes in renal allograft recipients. Diabetes Care. 2007;30:609.

    Article  PubMed  Google Scholar 

  66. Shah T, Kasravi A, Huang E, et al. Risk factors development of new onset diabetes mellitus after kidney transplantation. Transplantation. 2006;82:1673.

    Article  PubMed  Google Scholar 

  67. Joss N, Staatz CE, Thomson AH, et al. Predictors of new onset diabetes after renal transplantation. Clin Transplant. 2007;21:136.

    Article  PubMed  Google Scholar 

  68. Hjelmesaeth J, Harmann A, Kofstad J, et al. Glucose intolerance after renal transplantation depends upon prednisolone dose and recipient age. Transplantation. 1997;64:979–83.

    Article  PubMed  CAS  Google Scholar 

  69. Duijnhoven EM, Boots JM, Christiaans MH, et al. Influence of tacrolimus on glucose metabolism before and after renal transplantation: a prospective study. J Am Soc Nephrol. 2001;12:583–8.

    PubMed  CAS  Google Scholar 

  70. Menegazzo LA, Ursich MJ, Fukui RT, et al. Mechanism of the diabetogenic action of cyclosporine A. Horm Metab Res. 1998;30:663–7.

    Article  PubMed  CAS  Google Scholar 

  71. Teutonico A, Schena FP, Paraskevas S, et al. Glucose metabolism in renal transplant recipients: effect of calcineurin inhibitor withdrawal and conversion to sirolimus. J Am Soc Nephrol. 2005;16:3128–35.

    Article  PubMed  CAS  Google Scholar 

  72. Van Duijnhoven EM, Christiaans MHL, Boots JMM, et al. Glucose metabolism in the first 3 years after renal transplantation in patients receiving tacrolimus vs cyclosporine based immunosuppression. J Am Soc Nephrol. 2002;13:213–20.

    PubMed  Google Scholar 

  73. Gelens M, Christiaans MHL, van Hooff, et al. Does switching the primary immunosupressant from tacrolimus to cyclosporine in renal recipients who develop PTDM confer any therapeutic advantage? 6th International Conference on New Trends in Immunosuppression. Austria: Salzburg; 2004. Book of Abstracts, p59.

  74. Pirsch JD, Miller J, Deieerhoi MH, et al. A comparison of tacrolimus (FK506) and cyclosporine for immunosuppression after cadaveric renal transplantation. Transplantation. 1997;63:977–83.

    Article  PubMed  CAS  Google Scholar 

  75. Johnson C, Ahsan N, Gonwa T, et al. Randomized trial of tacrolimus (Prograf) in combination with azathioprine or mycophenolate mofetil vs cyclosporine (Neoral) with mycophenolate mofetil after cadaveric kidney transplantation. Transplantation. 2000;69:834–41.

    Article  PubMed  CAS  Google Scholar 

  76. Gonwa T, Mendez R, Yang HC, et al. Randomized trial of tacrolimus in combination with sirolimus or mycophenolate mofetil in kidney transplantation: results at 6 months. Transplantation. 2003;75:1213–20.

    Article  PubMed  CAS  Google Scholar 

  77. Miller J, Mendez R, Pirsch JD, et al. Safety and efficacy of tacrolimus in combination with mycophenolate mofetil (MMF) in cadaveric renal transplant recipients. Transplantation. 2000;69:875–80.

    Article  PubMed  CAS  Google Scholar 

  78. Rostaing L, Cantarovich D, Mourad G, et al. Steroid free immunosuppression with a combination of daclizumab, tacrolimus, and MMF is efficacious and safe: results of a large multicenter trial in renal transplantation. Am J Transplant. 2003;3 Suppl 5:312.

    Google Scholar 

  79. Chang RW, Snowden S, Palmer A, et al. European randomized trial of dual vs triple tacrolimus based regimens for control of acute rejection in renal allograft recipients. Transpl Int. 2001;14:384–90.

    Article  PubMed  CAS  Google Scholar 

  80. Wlodarczyk Z, Walaszewski J, Perner F, et al. Freedom from rejection and stable kidney function are excellent criteria for steroid withdrawal in tacrolimus treated kidney transplant recipients. Ann Transplant. 2002;7:28–31.

    PubMed  CAS  Google Scholar 

  81. Klinger M, Vitko S, Salmela K, et al. Large prospective study evaluating steroid-free immunosuppression with tacrolimus/basiliximab and tacrolimus/MMF compared with tacrolimus/MMF/steroids in renal transplantation. Nephrol Dial Transplant. 2003;18 Suppl 4:788.

    Google Scholar 

  82. Backman L. Post-transplant diabetes mellitus: the last 10 years with tacrolimus. Nephrol Dial Transplant. 2004;19:vi13–6.

    Article  PubMed  Google Scholar 

  83. Van Hoof JP, Christiaans MH, van Duijnhoven EM. Evaluating mechanisms posttransplant diabetes mellitus. Neprhol Dial Transplant. 2004;19 Suppl 6:vi8–vi12.

    Article  Google Scholar 

  84. Araki M, Slechner S, Ismail H, et al. Posttransplant diabetes mellitus in kidney transplant recipients receiving calcineurin or mTOR inhibitor drugs. Transplantation. 2005;81:335–41.

    Article  Google Scholar 

  85. Tsao JP, Lian JD, Wu SW, et al. Long-term impact of pretransplant and posttransplant diabetes mellitus on kidney transplant outcomes. World J Surg. 2011;35:2818–25.

    Article  Google Scholar 

  86. Davidson J, Wilkinson A, Dantal J, et al. New onset diabetes after transplantation: 2003 International consensus guidelines. Proceedings of an international expert panel meeting. Barcelona, Spain. 19 February 2003. Transplantation. 2003;75:SS3–24.

    Google Scholar 

  87. Becker BN, Rush SH, Dykstra DM, et al. Preemptive transplantation for patients with diabetes-related kidney disease. Arch Intern Med. 2006;166:44–8.

    Article  PubMed  Google Scholar 

  88. Wiseman AC, Gralla J. Simultaneous pancreas kidney transplant vs other kidney transplant options in patients with type 2 diabetes. CJASN. 2012;7:656–64.

    PubMed  Google Scholar 

  89. Wissing KM, Abramowicz D, Broeders N, et al. Hypercholesterolemia is associated with increased kidney graft loss caused by chronic rejection in male patients with previous acute rejection. Transplantation. 2000;70:464–72.

    Article  PubMed  CAS  Google Scholar 

  90. Opelz G, Wujciak T, Ritz E. Association of chronic kidney graft failure with recipient blood pressure. Collaborative Transplant Study. Kidney Int. 1998;53:217–22.

    Article  PubMed  CAS  Google Scholar 

  91. Kasiske B, Cosio FG, Beto J, et al. Clinical practice guidelines for managing dyslipidemias in kidney transplant patients: report from the managing dyslipidemias in chronic kidney disease work group of the National Kidney Foundation Kidney Disease Outcomes Quality Initiative. Am J Transplant. 2004;4 Suppl 7:13–53.

    Article  PubMed  Google Scholar 

  92. K/DOQI clinical practice guidelines on hypertension and antihypertensive agents in chronic kidney disease. Am J Kidney Dis. 2004;43:S1–290.

    Google Scholar 

  93. Kasiske BL, Anjum S, Shah R, et al. Hypertension after kidney transplantation. Am J Kidney Dis. 2004;43:1071–81.

    Article  PubMed  Google Scholar 

  94. Rao PS, Schaubel DE, Jia X, et al. Survival on dialysis post-kidney transplant failure: results from the Scientific Registry of Transplant Recipients. Am J Kidney Dis. 2007;49:294–300.

    Article  PubMed  Google Scholar 

  95. Ojo AO, Wolfe RA, Agodoa LY, et al. Prognosis after primary renal transplant failure and the beneficial effects of repeat transplantation: multivariate analyses from the Unite States Renal Data System. Transplantation. 1998;66:1651–9.

    Article  PubMed  CAS  Google Scholar 

  96. Su VCH, Harrison J, Rogers C, et al. Belatacept: a new biologic and its role in kidney transplantation. Ann Pharmacother. 2012;46:57–67.

    Article  PubMed  CAS  Google Scholar 

Download references

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giselle Guerra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guerra, G., Ilahe, A. & Ciancio, G. Diabetes and Kidney Transplantation: Past, Present, and Future. Curr Diab Rep 12, 597–603 (2012). https://doi.org/10.1007/s11892-012-0306-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11892-012-0306-3

Keywords

Navigation