Skip to main content

Advertisement

Log in

Theories concerning the pathogenesis of the acute Charcot foot suggest future therapy

  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

The acute Charcot foot is characterized by bone fracture and dislocation, and is a rare complication of distal symmetrical neuropathy in diabetes. The cause is unknown, but it cannot be attributed solely to loss of protective sensation. However, recent advances in understanding the mechanisms of osteoclast activation have suggested that the key abnormality may lie in an enhanced inflammatory response to injury, which is itself linked to increased bone lysis. The recognition that the acute Charcot foot is essentially an inflammatory arthropathy suggests new options for the management of this potentially devastating condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References and Recommended Reading

  1. Jeffcoate W, Lima J, Nobrega L: The Charcot foot. Diabet Med 2000, 17:253–258.

    Article  PubMed  CAS  Google Scholar 

  2. Rajbhandari SM, Jenkins RC, Davies C, Tesfaye S: Charcot neuroarthropathy in diabetes mellitus. Diabetologia 2002, 45:1085–1096.

    Article  PubMed  CAS  Google Scholar 

  3. Nabarro JD: Diabetes in the United Kingdom: a personal series. Diabet Med 1991, 8:59–68.

    PubMed  CAS  Google Scholar 

  4. Fabrin J, Larsen K, Holstein PE: Long-term follow-up in diabetic Charcot feet with spontaneous onset. Diabetes Care 2000, 23:796–800.

    Article  PubMed  CAS  Google Scholar 

  5. Saltzman CL, Hagy ML, Zimmerman B, et al.: How effective is intensive nonoperative initial treatment of patients with diabetes and Charcot arthropathy of the feet? Clin Orthop Relat Res 2005, 435:185–190.

    Article  PubMed  Google Scholar 

  6. Sinacore DR, Withrington NC: Recognition and management of acute neuropathic (Charcot) arthropathies of the foot and ankle. J Orthop Sports Phys Ther 1999, 29:736–746.

    PubMed  CAS  Google Scholar 

  7. Gazis A, Pound N, Macfarlane R, et al.: Mortality in patients with diabetic neuropathic osteoarthropathy (Charcot foot). Diabet Med 2004, 21:1243–1246.

    Article  PubMed  CAS  Google Scholar 

  8. Mitchell JK: On a new practice in acute and chronic rheumatism. Am J Med Sci 1831, 8:55–64.

    Google Scholar 

  9. Charcot JM: Sur quelques arthropathies qui paraissent dépendre d’une lésion cerveau ou de la mouelle épinière. Arch Physiol Norm Pathol 1868, 1:161–178.

    Google Scholar 

  10. Charcot JM, Féré C: Affections osseuses et articulaires du pied chez les tabétiques (pied tabétique). Arch Neurol 1883, 6:305–309.

    Google Scholar 

  11. Transaction of the International Medical Congress [no authors listed]. 1881, 8:128–129.

  12. Jordan WR: Neuritic manifestations in diabetes mellitus. Arch Intern Med 1936, 57:307–366.

    Google Scholar 

  13. Berliner medicinische Gesellschaft [no authors listed]. Sitzung vom 17 November. Berliner Klinische Wonchenschr 1886.

  14. Stevens MJ, Edmonds ME, Foster AV, Watkins PJ: Selective neuropathy and preserved vascular responses in the diabetic Charcot foot. Diabetologia 1992, 35:148–154.

    Article  PubMed  CAS  Google Scholar 

  15. Young MJ, Marshall A, Adams JE, et al.: Osteopenia, neurological dysfunction, and the development of Charcot neuroarthropathy. Diabetes Care 1995, 18:34–38.

    Article  PubMed  CAS  Google Scholar 

  16. Henderson VE: Joint affectations in tabes dorsalis. J Pathol 1905, 10:211–263.

    Article  Google Scholar 

  17. Leriche R: Sur quelques maladies osseuses et articulaires d’origine vaso-motrice et sur leur traitement. Bull Mem Soc Nat Chir 1927, 53:1022–1030.

    Google Scholar 

  18. Marinescu G, Bruch H: Zur kenntnis der gelenkstürungen bei tabes. Zeitschr F Klin Med 1937, 132:178–182.

    Google Scholar 

  19. Foster DB, Bassett RC: Neurogenic arthropathy associated with (Charcot joint) with diabetic neuropathy: report of two cases. Arch Neurol Psychiat 1947, 57:173–185.

    Google Scholar 

  20. Martin MM: Charcot joints in diabetes mellitus. Proc Roy Soc Med 1952, 45:503–506.

    PubMed  CAS  Google Scholar 

  21. Martin MM: Involvement of autonomic nerve fibres in diabetic neuropathy. Lancet 1953, 1:560–565.

    Article  PubMed  CAS  Google Scholar 

  22. Archer AG, Roberts VC, Watkins PJ: Blood flow patterns in diabetic neuropathy. Diabetologia 1984, 27:563–567.

    Article  PubMed  CAS  Google Scholar 

  23. Ziegler R: Diabetes mellitus and bone metabolism. Horm Metab Res Suppl 1992, 26:90–94.

    PubMed  CAS  Google Scholar 

  24. Cundy T, Edmonds ME, Watkins PJ: Osteopenia and metatarsal fractures in diabetic neuropathy. Diabet Med 1985, 2:461–464.

    PubMed  CAS  Google Scholar 

  25. Kayath MJ, Dib SA, Vieia JG: Prevalence and magnitude of osteopenia associated with insulin-dependent diabetes mellitus. J Diabet Complications 1994, 8:97–104.

    Article  CAS  Google Scholar 

  26. Jeffcoate W: Vascular calcification and osteolysis in diabetic neuropathy—is RANK-L the missing link ? Diabetologia 2004, 47:1488–1492. Reviews the evidence suggesting the importance of the OPG/RANKL signaling pathway in diabetic neuropathy, and includes speculation on possible mechanisms underlying abnormal activation of NF-кB in type 1 and type 2 diabetes, with and without nerve damage.

    Article  PubMed  CAS  Google Scholar 

  27. Forst T, Pfutzner A, Kann P, et al.: Peripheral osteopenia in adult patients with insulin-dependent diabetes mellitus. Diabet Med 1995, 12:874–879.

    Article  PubMed  CAS  Google Scholar 

  28. Rix M, Andresaasen H, Eskilden P: Impact of peripheral neuropathy on bone density in patients with type 1 diabetes. Diabetes Care 1999, 22:827–831.

    Article  PubMed  CAS  Google Scholar 

  29. Petrova NL, Foster AV, Edmonds ME: Calcaneal bone mineral density in patients with Charcot neuropathic osteoarthropathy: differences between type 1 and type 2 diabetes. Diabet Med 2005, 22:756–761.

    Article  PubMed  CAS  Google Scholar 

  30. Herbst SA, Jones KB, Saltzman CL: Pattern of diabetic neuropathic osteoarthropathy associated with the peripheral bone mineral density. J Bone Joint Surg Br 2004, 86:378–383.

    Article  PubMed  CAS  Google Scholar 

  31. Hofbauer LC, Heufelder AE: The role of receptor activator of nuclear factor kappaB ligand and osteoprotegerin in the pathogenesis and treatment of metabolic bone diseases. J Clin Endocrinol Metab 2005, 85:2355–2363.

    Article  Google Scholar 

  32. Khosla S: Minireview: the OPG/RANKL/RANK system. Endocrinology 2001, 142:5050–5055.

    Article  PubMed  CAS  Google Scholar 

  33. Schoppet M, Preissner KT, Hofbauer LC: RANK ligand and osteoprotegerin. Paracrine regulators of bone metabolism and vascular function. Arterioscl Thromb Vasc Biol 2002, 22:549–553.

    Article  PubMed  CAS  Google Scholar 

  34. Ashcroft AJ, Davies FE, Morgan GJ: Aetiology of bone disease and the role of bisphosphonates in multiple myeloma. Lancet Oncol 2003, 4:284–292.

    Article  PubMed  CAS  Google Scholar 

  35. Rogers A, Eastell R: Circulating osteoprotegerin (OPG) and receptor activator for NFkappaB ligand (RANKL): clinical utility in metabolic bone disease assessment. J Clin Endocrinol Metab 2005, Aug 16; [Epub ahead of print]. An up-to-date review of current knowledge of the role of the OPG/RANKL signaling pathway in bone.

  36. Browner WS, Lui LY, Cummings SR: Associations of serum osteoprotegerin levels with diabetes, stroke, bone density, fractures, and mortality in elderly women. J Clin Endocrinol Metab 2001, 86:631–637.

    Article  PubMed  CAS  Google Scholar 

  37. Knudsen ST, Foss CH, Poulsen PL, et al.: Increased plasma concentrations of osteoprotegerin in type 2 diabetic patients with microvascular complications. Eur J Endocrinol 2003, 149:39–42.

    Article  PubMed  CAS  Google Scholar 

  38. Suzuki K, Kurose T, Takizawa M, et al.: Osteoclastic function is accelerated in male patients with type 2 diabetes mellitus: the preventive role of osteoclastogenesis inhibitory factor/ osteoprotegerin (OCIF/OPG) on the decrease off bone mineral density. Diabetes Res Clin Pract 2005, 68:117–125.

    Article  PubMed  CAS  Google Scholar 

  39. Edmonds ME, Morrison N, Laws JW, Watkins PJ: Medial arterial calcification and diabetic neuropathy. BMJ 1982, 284:928–930.

    Article  PubMed  CAS  Google Scholar 

  40. Goebel FD, Fuessl HS: Monckeberg’s sclerosis after sympathetic denervation in diabetic and non-diabetic subjects. Diabetologia 1983, 24:347–350.

    Article  PubMed  CAS  Google Scholar 

  41. Sinha S, Munichoodappa C, Kozak GP: Neuro-arthropathy (Charcot joints) in diabetes mellitus: a clinical study of 101 cases. Medicine (Baltimore) 1972, 51:191–210.

    Article  CAS  Google Scholar 

  42. Clouse ME, Gramm HF, Legg M, Flood T: Diabetic osteoarthropathy: clinical and roentgenographic observations in 90 cases. AJR Am J Roentgenol 1974, 121:22–33.

    CAS  Google Scholar 

  43. Purewal TS: Charcot’s diabetic neuroarthropathy: pathogenesis, diagnosis and management. Pract Diab Int 1996, 13:88–91.

    Article  Google Scholar 

  44. Bucay N, Sarosi I, Dunstan CR, et al.: Osteoprotegerindeficient mice develop early onset osteoporosis and arterial calcification. Genes Dev 1998, 1:1260–1268.

    Google Scholar 

  45. Hofbauer LC, Schoppet M: Osteoprotegerin: a link between osteoporosis and arterial calcification? Lancet 2001, 358:257–259.

    Article  PubMed  CAS  Google Scholar 

  46. Demer LL, Tintut Y, Parhami F: Novel mechanisms in accelerated vascular calcification in renal disease patients. Curr Opin Nephrol Hypertens 2002, 11:437–443.

    Article  PubMed  Google Scholar 

  47. Schoppet M, Al-Fakhari N, Franke FE, et al.: Localization of osteoprotegerin, tumor necrosis factor-related apoptosisinducing ligand, and receptor activator of nuclear factorkappaB ligand in Mönckeberg’s sclerosis and atherosclerosis. J Clin Endocrinol Metab 2004, 89:4101–4112.

    Article  CAS  Google Scholar 

  48. Collin-Osdoby F: Regulation of vascular calcification by osteoclast regulatory factors RANKL and osteoprotegerin. Circ Res 2004, 95:1046–1057.

    Article  PubMed  CAS  Google Scholar 

  49. Pennisi P, Signorelli SS, Riccobene S, et al.: Low bone density and abnormal bone turnover in patients with atherosclerosis of peripheral vessels. Osteoporosis Int 2004, 15:389–395.

    Article  CAS  Google Scholar 

  50. Edelman SV, Kosofsky EM, Paul RA, Kozak GP: Neuro-arthropathy (Charcot’s joints) in diabetes mellitus following revascularisation surgery. Arch Intern Med 1987, 147:1504–1508.

    Article  PubMed  CAS  Google Scholar 

  51. Fleischli JE, Anderson RB, Davis WH: Dorsiflexion metatarsal osteotomy for treatment of recalcitrant diabetic neuropathic ulcers. Foot Ankle Int 1999, 20:80–85.

    PubMed  CAS  Google Scholar 

  52. Gerstenfeld LC, Cho TJ, Kon T, et al.: Impaired fracture healing in the absence of TNF-alpha signaling: the role of TNF-alpha in endochondral cartilage resorption. J Bone Miner Res 2003, 18:1584–1592.

    Article  PubMed  CAS  Google Scholar 

  53. Hofbauer LC, Lacey DL, Dunstan CR, et al.: Interleukin-1 beta and tumor necrosis factor-alpha, but not interleukin-6, stimulate osteoprotegerin ligand gene expression in human osteoblastic cells. Bone 1999, 25:255–259.

    Article  PubMed  CAS  Google Scholar 

  54. Saidenberg-Kermanac’h N, Bessis N, Cohen-Salal M, et al.: Osteoprotegerin and inflammation. Eur Cytokine Netw 2002, 13:144–153.

    PubMed  CAS  Google Scholar 

  55. Lam J, Abu-Amer Y, Nelson, et al.: Tumour necrosis factor superfamily cytokines and the pathogenesis of inflammatory osteolysis. Ann Rheum Dis 2002, 61(suppl 2):ii82-ii83.

    PubMed  CAS  Google Scholar 

  56. Kon T, Cho TJ, Aizawa T, et al.: Expression of osteoprotegerin, receptor-activator of NF-kappaB ligand (osteoprotegerin ligand) and related proinflammatory cytokines during fracture healing. J Bone Miner Res 2001, 16:1004–1014.

    Article  PubMed  CAS  Google Scholar 

  57. Jeffcoate WJ, Game F, Cavanagh PR: The role of proinflammatory cytokines in the cause of neuropathic osteoarthropathy (acute Charcot foot) in diabetes. Lancet 2005, Aug 10; [Epub ahead of print]. This hypothesis outlines the evidence to suggest a central role on inflammation in the development of the acute Charcot foot.

  58. Shapiro SA, Stansberry KB, Hill MA, et al.: Normal blood flow response and vasomotion in the diabetic foot. J Diabetes Complications 1998, 12:147–153.

    Article  PubMed  CAS  Google Scholar 

  59. Perrien DS, Wahl EC, Hogue WR, et al.: IL-1 and TNF antagonists prevent inhibition of fracture healing by ethanol in rats. Toxicol Sci 2004, 82:656–660.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeffcoate, W.J. Theories concerning the pathogenesis of the acute Charcot foot suggest future therapy. Curr Diab Rep 5, 430–435 (2005). https://doi.org/10.1007/s11892-005-0050-z

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11892-005-0050-z

Keywords

Navigation