Skip to main content

Advertisement

Log in

Angioprevention in Colon Cancer from Bench to Bedside

  • Molecular Biology (S Anant, Section Editor)
  • Published:
Current Colorectal Cancer Reports

Abstract

Colon cancer is a deadly disease with an indolent growth pattern that provides a window of opportunity for early detection and a platform for effective prevention. Angiogenesis has been implicated in the transformation of a colonic adenoma into polyp and ultimately into cancer, invading the neighboring tissue and gaining access to systemic circulation before seeding into distant organs. The “angiogenic switch” that occurs early during the preneoplastic stages could be controlled by “angiopreventive” agents before phenotypic and molecular changes result in the progression from dysplasia to invasive cancer. Here, we review the anti-angiogenic agents used in early epidemiologic studies and discuss the new dietary compounds that have a potential role in angioprevention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance, •• Of major importance

  1. Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics, 2014. CA: Cancer J Clin. 2014;64:9–29.

    Google Scholar 

  2. Fearon ER. Molecular genetics of colorectal cancer. Annu Rev Pathol. 2011;6:479–507.

    Article  CAS  PubMed  Google Scholar 

  3. Jain RK. Normalizing tumor microenvironment to treat cancer: bench to bedside to biomarkers. J Clin Oncol: Off J Am Soc Clin Oncol. 2013;31:2205–18.

    Article  CAS  Google Scholar 

  4. Hanrahan V, Currie MJ, Gunningham SP, Morrin HR, Scott PA, Robinson BA, et al. The angiogenic switch for vascular endothelial growth factor (VEGF)-A, VEGF-B, VEGF-C, and VEGF-D in the adenoma-carcinoma sequence during colorectal cancer progression. J Pathol. 2003;200:183–94.

    Article  CAS  PubMed  Google Scholar 

  5. Alameddine RS, Yakan AS, Skouri H, Mukherji D, Temraz S, Shamseddine A. Cardiac and vascular toxicities of angiogenesis inhibitors: the other side of the coin. Critical reviews in oncology/hematology. 2015. This review highlights the potential drawbacks associated with the use of angiogenesis inhibitors. Several meta-analysis reveal vascular side effects and cardiac adverse effects with the use of angiogenesis inhibitors.

  6. Rasheed S, McDonald PJ, Northover JM, Guenther T. Angiogenesis and hypoxic factors in colorectal cancer. Pathol Res Pract. 2008;204:501–10.

    Article  PubMed  Google Scholar 

  7. Choi KS, Bae MK, Jeong JW, Moon HE, Kim KW. Hypoxia-induced angiogenesis during carcinogenesis. J Biochem Mol Biol. 2003;36:120–7.

    Article  CAS  PubMed  Google Scholar 

  8. Lin Z, Chen S, Ye C, Zhu S. Nitric oxide synthase expression in human bladder cancer and its relation to angiogenesis. Urol Res. 2003;31:232–5.

    Article  CAS  PubMed  Google Scholar 

  9. Crawford Y, Ferrara N. VEGF inhibition: insights from preclinical and clinical studies. Cell Tissue Res. 2009;335:261–9.

    Article  CAS  PubMed  Google Scholar 

  10. Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature. 2008;454:436–44.

    Article  CAS  PubMed  Google Scholar 

  11. Orlowski RZ, Baldwin Jr AS. NF-kappaB as a therapeutic target in cancer. Trends Mol Med. 2002;8:385–9.

    Article  CAS  PubMed  Google Scholar 

  12. Ray R, Cabal-Manzano R, Moser AR, Waldman T, Zipper LM, Aigner A, et al. Up-regulation of fibroblast growth factor-binding protein, by beta-catenin during colon carcinogenesis. Cancer Res. 2003;63:8085–9.

    CAS  PubMed  Google Scholar 

  13. Wali RK, Roy HK, Kim YL, Liu Y, Koetsier JL, Kunte DP, et al. Increased microvascular blood content is an early event in colon carcinogenesis. Gut. 2005;54:654–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Bossi P, Viale G, Lee AK, Alfano R, Coggi G, Bosari S. Angiogenesis in colorectal tumors: microvessel quantitation in adenomas and carcinomas with clinicopathological correlations. Cancer Res. 1995;55:5049–53.

    CAS  PubMed  Google Scholar 

  15. Skinner SA, Frydman GM, O'Brien PE. Microvascular structure of benign and malignant tumors of the colon in humans. Dig Dis Sci. 1995;40:373–84.

    Article  CAS  PubMed  Google Scholar 

  16. Takahashi Y, Kitadai Y, Bucana CD, Cleary KR, Ellis LM. Expression of vascular endothelial growth factor and its receptor, KDR, correlates with vascularity, metastasis, and proliferation of human colon cancer. Cancer Res. 1995;55:3964–8.

    CAS  PubMed  Google Scholar 

  17. Takahashi Y, Tucker SL, Kitadai Y, Koura AN, Bucana CD, Cleary KR, et al. Vessel counts and expression of vascular endothelial growth factor as prognostic factors in node-negative colon cancer. Arch Surg. 1997;132:541–6.

    Article  CAS  PubMed  Google Scholar 

  18. Fujisaki K, Mitsuyama K, Toyonaga A, Matsuo K, Tanikawa K. Circulating vascular endothelial growth factor in patients with colorectal cancer. Am J Gastroenterology. 1998;93:249–52.

    Article  CAS  Google Scholar 

  19. Jacobs ET, Hibler EA, Lance P, Sardo CL, Jurutka PW. Association between circulating concentrations of 25(OH)D and colorectal adenoma: a pooled analysis. Int J Cancer J Int du Cancer. 2013;133:2980–8. A pooled population-based analysis of two clinical intervention trials of colorectal adenoma recurrence. The findings support the concept that the relationship between vitamin D and colorectal neoplasia may vary by stage of adenoma development.

    CAS  Google Scholar 

  20. Gandini S, Boniol M, Haukka J, Byrnes G, Cox B, Sneyd MJ, et al. Meta-analysis of observational studies of serum 25-hydroxyvitamin D levels and colorectal, breast and prostate cancer and colorectal adenoma. Int J Cancer J Int du Cancer. 2011;128:1414–24.

    Article  CAS  Google Scholar 

  21. Hopkins MH, Owen J, Ahearn T, Fedirko V, Flanders WD, Jones DP, et al. Effects of supplemental vitamin D and calcium on biomarkers of inflammation in colorectal adenoma patients: a randomized, controlled clinical trial. Cancer Prev Res. 2011;4:1645–54.

    Article  CAS  Google Scholar 

  22. Kaler P, Augenlicht L, Klampfer L. Macrophage-derived IL-1beta stimulates Wnt signaling and growth of colon cancer cells: a crosstalk interrupted by vitamin D3. Oncogene. 2009;28:3892–902.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Iseki K, Tatsuta M, Uehara H, Iishi H, Yano H, Sakai N, et al. Inhibition of angiogenesis as a mechanism for inhibition by 1alpha-hydroxyvitamin D3 and 1,25-dihydroxyvitamin D3 of colon carcinogenesis induced by azoxymethane in Wistar rats. Int J Cancer J Int du Cancer. 1999;81:730–3.

    Article  CAS  Google Scholar 

  24. Ben-Shoshan M, Amir S, Dang DT, Dang LH, Weisman Y, Mabjeesh NJ. 1alpha,25-dihydroxyvitamin D3 (calcitriol) inhibits hypoxia-inducible factor-1/vascular endothelial growth factor pathway in human cancer cells. Mol Cancer Ther. 2007;6:1433–9.

    Article  CAS  PubMed  Google Scholar 

  25. Chen YC, Prabhu KS, Mastro AM. Is selenium a potential treatment for cancer metastasis? Nutrients. 2013;5:1149–68. A review evaluating the role of selenium in cancer. Se may be an anti-metastatic element in addition to being a cancer preventative agent.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Jacobs ET, Jiang R, Alberts DS, Greenberg ER, Gunter EW, Karagas MR, et al. Selenium and colorectal adenoma: results of a pooled analysis. J Natl Cancer Inst. 2004;96:1669–75.

    Article  CAS  PubMed  Google Scholar 

  27. Bhattacharya A, Toth K, Sen A, Seshadri M, Cao S, Durrani FA, et al. Inhibition of colon cancer growth by methylselenocysteine-induced angiogenic chemomodulation is influenced by histologic characteristics of the tumor. Clin Colorectal Cancer. 2009;8:155–62.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Bhattacharya A, Turowski SG, San Martin ID, Rajput A, Rustum YM, Hoffman RM, et al. Magnetic resonance and fluorescence-protein imaging of the anti-angiogenic and anti-tumor efficacy of selenium in an orthotopic model of human colon cancer. Anticancer Res. 2011;31:387–93.

    PubMed Central  CAS  PubMed  Google Scholar 

  29. Rothwell PM, Fowkes FG, Belch JF, Ogawa H, Warlow CP, Meade TW. Effect of daily aspirin on long-term risk of death due to cancer: analysis of individual patient data from randomized trials. Lancet. 2011;377:31–41.

    Article  CAS  PubMed  Google Scholar 

  30. Dube C, Rostom A, Lewin G, Tsertsvadze A, Barrowman N, Code C, et al. The use of aspirin for primary prevention of colorectal cancer: a systematic review prepared for the U.S. Preventive Services Task Force. Ann Intern Med. 2007;146:365–75.

    Article  PubMed  Google Scholar 

  31. Cole BF, Logan RF, Halabi S, Benamouzig R, Sandler RS, Grainge MJ, et al. Aspirin for the chemoprevention of colorectal adenomas: meta-analysis of the randomized trials. J Natl Cancer Inst. 2009;101:256–66.

    Article  CAS  PubMed  Google Scholar 

  32. McQuaid KR, Laine L. Systematic review and meta-analysis of adverse events of low-dose aspirin and clopidogrel in randomized controlled trials. Am J Med. 2006;119:624–38.

    Article  CAS  PubMed  Google Scholar 

  33. Tougeron D, Sha D, Manthravadi S, Sinicrope FA. Aspirin and colorectal cancer: back to the future. Clin Cancer Res: Off J Am Assoc Cancer Res. 2014;20:1087–94. A review addressing the role of aspirin in chemoprevention of colorectal cancer as well as focusing on its mechanisms of action leading to its chemopreventive abilities.

    Article  CAS  Google Scholar 

  34. Rostom A, Dube C, Lewin G, Tsertsvadze A, Barrowman N, Code C, et al. Nonsteroidal anti-inflammatory drugs and cyclooxygenase-2 inhibitors for primary prevention of colorectal cancer: a systematic review prepared for the U.S. Preventive Services Task Force. Ann Intern Med. 2007;146:376–89.

    Article  PubMed  Google Scholar 

  35. Thun MJ, Jacobs EJ, Patrono C. The role of aspirin in cancer prevention. Nature Rev Clin Oncol. 2012;9:259–67.

    Article  CAS  Google Scholar 

  36. Liao X, Lochhead P, Nishihara R, Morikawa T, Kuchiba A, Yamauchi M, et al. Aspirin use, tumor PIK3CA mutation, and colorectal-cancer survival. N Engl J Med. 2012;367:1596–606.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Lochhead P, Chan AT. Statins and colorectal cancer. Clin Gastroenterol Hepatol: Off Clin Pract J Am Gastroenterol Assoc. 2013;11:109–18. quiz e13-4.

    Article  CAS  Google Scholar 

  38. Macedo AF, Taylor FC, Casas JP, Adler A, Prieto-Merino D, Ebrahim S. Unintended effects of statins from observational studies in the general population: systematic review and meta-analysis. BMC Med. 2014;12:51.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Singh RP, Deep G, Blouin MJ, Pollak MN, Agarwal R. Silibinin suppresses in vivo growth of human prostate carcinoma PC-3 tumor xenograft. Carcinogenesis. 2007;28:2567–74.

    Article  CAS  PubMed  Google Scholar 

  40. Tyagi A, Raina K, Singh RP, Gu M, Agarwal C, Harrison G, et al. Chemopreventive effects of silymarin and silibinin on N-butyl-N-(4-hydroxybutyl) nitrosamine induced urinary bladder carcinogenesis in male ICR mice. Mol Cancer Ther. 2007;6:3248–55.

    Article  CAS  PubMed  Google Scholar 

  41. Singh RP, Agarwal R. Tumor angiogenesis: a potential target in cancer control by phytochemicals. Curr Cancer Drug Targets. 2003;3:205–17.

    Article  CAS  PubMed  Google Scholar 

  42. Singh RP, Gu M, Agarwal R. Silibinin inhibits colorectal cancer growth by inhibiting tumor cell proliferation and angiogenesis. Cancer Res. 2008;68:2043–50.

    Article  CAS  PubMed  Google Scholar 

  43. Ravichandran K, Velmurugan B, Gu M, Singh RP, Agarwal R. Inhibitory effect of silibinin against azoxymethane-induced colon tumorigenesis in A/J mice. Clin Cancer Res: Off J Am Assoc Cancer Res. 2010;16:4595–606.

    Article  CAS  Google Scholar 

  44. Rajamanickam S, Velmurugan B, Kaur M, Singh RP, Agarwal R. Chemoprevention of intestinal tumorigenesis in APCmin/+ mice by silibinin. Cancer Res. 2010;70:2368–78.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Kunnumakkara AB, Anand P, Aggarwal BB. Curcumin inhibits proliferation, invasion, angiogenesis and metastasis of different cancers through interaction with multiple cell signaling proteins. Cancer Lett. 2008;269:199–225.

    Article  CAS  PubMed  Google Scholar 

  46. Kunnumakkara AB, Diagaradjane P, Guha S, Deorukhkar A, Shentu S, Aggarwal BB, et al. Curcumin sensitizes human colorectal cancer xenografts in nude mice to gamma-radiation by targeting nuclear factor-kappaB-regulated gene products. Clin Cancer Res: Off J Am Assoc Cancer Res. 2008;14:2128–36.

    Article  CAS  Google Scholar 

  47. Bharti AC, Donato N, Aggarwal BB. Curcumin (diferuloylmethane) inhibits constitutive and IL-6-inducible STAT3 phosphorylation in human multiple myeloma cells. J Immunol. 2003;171:3863–71.

    Article  CAS  PubMed  Google Scholar 

  48. Bae MK, Kim SH, Jeong JW, Lee YM, Kim HS, Kim SR, et al. Curcumin inhibits hypoxia-induced angiogenesis via down-regulation of HIF-1. Oncol Rep. 2006;15:1557–62.

    CAS  PubMed  Google Scholar 

  49. Xu J, Fu Y, Chen A. Activation of peroxisome proliferator-activated receptor-gamma contributes to the inhibitory effects of curcumin on rat hepatic stellate cell growth. Am J Physiol Gastrointestinal Liver Physiol. 2003;285:G20–30.

    Article  CAS  Google Scholar 

  50. Rao CV. Regulation of COX and LOX by curcumin. Adv Exp Med Biol. 2007;595:213–26.

    Article  PubMed  Google Scholar 

  51. Rafiee P, Binion DG, Wellner M, Behmaram B, Floer M, Mitton E, et al. Modulatory effect of curcumin on survival of irradiated human intestinal microvascular endothelial cells: role of Akt/mTOR and NF-{kappa}B. Am J Physiol Gastrointestinal Liver Physiol. 2010;298:G865–77.

    Article  CAS  Google Scholar 

  52. Li L, Ahmed B, Mehta K, Kurzrock R. Liposomal curcumin with and without oxaliplatin: effects on cell growth, apoptosis, and angiogenesis in colorectal cancer. Mol Cancer Ther. 2007;6:1276–82.

    Article  CAS  PubMed  Google Scholar 

  53. Storka A, Vcelar B, Klickovic U, Gouya G, Weisshaar S, Aschauer S, et al. Safety, tolerability and pharmacokinetics of liposomal curcumin in healthy humans. Int J Clin Pharmacol Ther. 2015;53:54–65. Fifty male and female participants were included in this randomized, placebo-controlled double-blind phase I dose escalation study. Short-term intravenous dosing of liposomal curcumin appears to be safe up to a dose of 120 mg/m2.

    Article  CAS  PubMed  Google Scholar 

  54. Ammon HP, Wahl MA. Pharmacology of Curcuma longa. Planta Med. 1991;57:1–7.

    Article  CAS  PubMed  Google Scholar 

  55. Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bioavailability of curcumin: problems and promises. Mol Pharm. 2007;4:807–18.

    Article  CAS  PubMed  Google Scholar 

  56. Chaurasia S, Patel RR, Chaubey P, Kumar N, Khan G, Mishra B. Lipopolysaccharide based oral nanocarriers for the improvement of bioavailability and anticancer efficacy of curcumin. Carbohydr Polym. 2015;130:9–17. A study that aims to improve the bioavailability and efficacy of curcumin. Lipopolysaccharide nanocarriers show potential delivery strategy to improve oral bioavailability and anticancer efficacy of curcumin in the treatment of colorectal cancer.

    Article  CAS  PubMed  Google Scholar 

  57. Harris GK, Gupta A, Nines RG, Kresty LA, Habib SG, Frankel WL, et al. Effects of lyophilized black raspberries on azoxymethane-induced colon cancer and 8-hydroxy-2′-deoxyguanosine levels in the Fischer 344 rat. Nutr Cancer. 2001;40:125–33.

    Article  CAS  PubMed  Google Scholar 

  58. Bi X, Fang W, Wang LS, Stoner GD, Yang W. Black raspberries inhibit intestinal tumorigenesis in Apc1638+/− and Muc2−/− mouse models of colorectal cancer. Cancer Prev Res. 2010;3:1443–50.

    Article  CAS  Google Scholar 

  59. Wang LS, Arnold M, Huang YW, Sardo C, Seguin C, Martin E, et al. Modulation of genetic and epigenetic biomarkers of colorectal cancer in humans by black raspberries: a phase I pilot study. Clin Cancer Res: Off J Am Assoc Cancer Res. 2011;17:598–610.

    Article  CAS  Google Scholar 

  60. Lee HY, Oh SH, Woo JK, Kim WY, Van Pelt CS, Price RE, et al. Chemopreventive effects of deguelin, a novel Akt inhibitor, on tobacco-induced lung tumorigenesis. J Natl Cancer Inst. 2005;97:1695–9.

    Article  CAS  PubMed  Google Scholar 

  61. Udeani GO, Gerhauser C, Thomas CF, Moon RC, Kosmeder JW, Kinghorn AD, et al. Cancer chemopreventive activity mediated by deguelin, a naturally occurring rotenoid. Cancer Res. 1997;57:3424–8.

    CAS  PubMed  Google Scholar 

  62. Murillo G, Kosmeder 2nd JW, Pezzuto JM, Mehta RG. Deguelin suppresses the formation of carcinogen-induced aberrant crypt foci in the colon of CF-1 mice. Int J Cancer J Int du Cancer. 2003;104:7–11.

    Article  CAS  Google Scholar 

  63. Murillo G, Salti GI, Kosmeder 2nd JW, Pezzuto JM, Mehta RG. Deguelin inhibits the growth of colon cancer cells through the induction of apoptosis and cell cycle arrest. Eur J Cancer. 2002;38:2446–54.

    Article  CAS  PubMed  Google Scholar 

  64. Dell'Eva R, Ambrosini C, Minghelli S, Noonan DM, Albini A, Ferrari N. The Akt inhibitor deguelin, is an angiopreventive agent also acting on the NF-kappaB pathway. Carcinogenesis. 2007;28:404–13.

    Article  PubMed  Google Scholar 

  65. Katsuki T, Hirata K, Ishikawa H, Matsuura N, Sumi S, Itoh H. Aged garlic extract has chemopreventative effects on 1,2-dimethylhydrazine-induced colon tumors in rats. J Nutr. 2006;136:847S–51S.

    CAS  PubMed  Google Scholar 

  66. Matsuura N, Miyamae Y, Yamane K, Nagao Y, Hamada Y, Kawaguchi N, et al. Aged garlic extract inhibits angiogenesis and proliferation of colorectal carcinoma cells. J Nutr. 2006;136:842S–6S.

    CAS  PubMed  Google Scholar 

  67. Hu JY, Hu YW, Zhou JJ, Zhang MW, Li D, Zheng S. Consumption of garlic and risk of colorectal cancer: an updated meta-analysis of prospective studies. World J Gastroenterol: WJG. 2014;20:15413–22. A meta-analysis evaluating the role of garlic in prevention of colorectal cancer. Consumption of RC garlic or garlic supplements is not significantly associated with reduced colorectal cancer risk.

    Article  PubMed Central  PubMed  Google Scholar 

  68. Zhang X, Cao J, Zhong L. Hydroxytyrosol inhibits pro-inflammatory cytokines, iNOS, and COX-2 expression in human monocytic cells. Naunyn Schmiedeberg’s Arch Pharmacol. 2009;379:581–6.

    Article  CAS  Google Scholar 

  69. Manna C, Galletti P, Cucciolla V, Montedoro G, Zappia V. Olive oil hydroxytyrosol protects human erythrocytes against oxidative damages. J Nutr Biochem. 1999;10:159–65.

    Article  CAS  PubMed  Google Scholar 

  70. Fukuda R, Kelly B, Semenza GL. Vascular endothelial growth factor gene expression in colon cancer cells exposed to prostaglandin E2 is mediated by hypoxia-inducible factor 1. Cancer Res. 2003;63:2330–4.

    CAS  PubMed  Google Scholar 

  71. Terzuoli E, Donnini S, Giachetti A, Iniguez MA, Fresno M, Melillo G, et al. Inhibition of hypoxia inducible factor-1alpha by dihydroxyphenylethanol, a product from olive oil, blocks microsomal prostaglandin-E synthase-1/vascular endothelial growth factor expression and reduces tumor angiogenesis. Clin Cancer Res: Off J Am Assoc Cancer Res. 2010;16:4207–16.

    Article  CAS  Google Scholar 

  72. Pompei R, Flore O, Marccialis MA, Pani A, Loddo B. Glycyrrhizic acid inhibits virus growth and inactivates virus particles. Nature. 1979;281:689–90.

    Article  CAS  PubMed  Google Scholar 

  73. Curreli F, Friedman-Kien AE, Flore O. Glycyrrhizic acid alters Kaposi sarcoma-associated herpesvirus latency, triggering p53-mediated apoptosis in transformed B lymphocytes. J Clin Invest. 2005;115:642–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Shiota G, Harada K, Ishida M, Tomie Y, Okubo M, Katayama S, et al. Inhibition of hepatocellular carcinoma by glycyrrhizin in diethylnitrosamine-treated mice. Carcinogenesis. 1999;20:59–63.

    Article  CAS  PubMed  Google Scholar 

  75. Agarwal R, Wang ZY, Mukhtar H. Inhibition of mouse skin tumor-initiating activity of DMBA by chronic oral feeding of glycyrrhizin in drinking water. Nutr Cancer. 1991;15:187–93.

    Article  CAS  PubMed  Google Scholar 

  76. Takeda S, Ishthara K, Wakui Y, Amagaya S, Maruno M, Akao T, et al. Bioavailability study of glycyrrhetic acid after oral administration of glycyrrhizin in rats; relevance to the intestinal bacterial hydrolysis. J Pharm Pharmacol. 1996;48:902–5.

    Article  CAS  PubMed  Google Scholar 

  77. Khan R, Khan AQ, Lateef A, Rehman MU, Tahir M, Ali F, et al. Glycyrrhizic acid suppresses the development of precancerous lesions via regulating the hyperproliferation, inflammation, angiogenesis and apoptosis in the colon of Wistar rats. PLoS One. 2013;8, e56020. A study evaluating the effect of glycyrrhizic acid in DMH-induced precancerous lesions. Glycyrrhizic acid suppressed the immunostaining of Ki-67, NF-kB-p65, COX-2, iNOS and VEGF.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Wang Y, Van Becelaere K, Jiang P, Przybranowski S, Omer C, Sebolt-Leopold J. A role for K-ras in conferring resistance to the MEK inhibitor, CI-1040. Neoplasia. 2005;7:336–47.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Chen JH, Tsai SJ, Chen HI. Welsh onion (Allium fistulosum L.) extracts alter vascular responses in rat aortae. J Cardiovasc Pharmacol. 1999;33:515–20.

    Article  CAS  PubMed  Google Scholar 

  80. Yamamoto Y, Aoyama S, Hamaguchi N, Rhi GS. Antioxidative and antihypertensive effects of Welsh onion on rats fed with a high-fat high-sucrose diet. Biosci Biotechnol Biochem. 2005;69:1311–7.

    Article  CAS  PubMed  Google Scholar 

  81. Arulselvan P, Wen CC, Lan CW, Chen YH, Wei WC, Yang NS. Dietary administration of scallion extract effectively inhibits colorectal tumor growth: cellular and molecular mechanisms in mice. PLoS One. 2012;7, e44658. A study evaluating the effect of scallion extract on colon cancer using a mouse model of colon carcinoma. Scallion inhibited the key inflammatory markers COX-2 and iNOS, and suppressed the expression of tumor apoptosis, proliferation, angiogenesis and tumor invasion.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Kaur M, Agarwal C, Agarwal R. Anticancer and cancer chemopreventive potential of grape seed extract and other grape-based products. J Nutr. 2009;139:1806S–12S.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Rios LY, Bennett RN, Lazarus SA, Remesy C, Scalbert A, Williamson G. Cocoa procyanidins are stable during gastric transit in humans. Am J Clin Nutr. 2002;76:1106–10.

    CAS  PubMed  Google Scholar 

  84. Prior RL, Gu L. Occurrence and biological significance of proanthocyanidins in the American diet. Phytochemistry. 2005;66:2264–80.

    Article  CAS  PubMed  Google Scholar 

  85. Rossi M, Negri E, Parpinel M, Lagiou P, Bosetti C, Talamini R, et al. Proanthocyanidins and the risk of colorectal cancer in Italy. Cancer Causes Control: CCC. 2010;21:243–50.

    Article  PubMed  Google Scholar 

  86. Kaur M, Singh RP, Gu M, Agarwal R, Agarwal C. Grape seed extract inhibits in vitro and in vivo growth of human colorectal carcinoma cells. Clin Cancer Res: Off J Am Assoc Cancer Res. 2006;12:6194–202.

    Article  CAS  Google Scholar 

  87. Kaur M, Mandair R, Agarwal R, Agarwal C. Grape seed extract induces cell cycle arrest and apoptosis in human colon carcinoma cells. Nutr Cancer. 2008;60 Suppl 1:2–11.

    Article  PubMed Central  PubMed  Google Scholar 

  88. Hsu CP, Lin YH, Chou CC, Zhou SP, Hsu YC, Liu CL, et al. Mechanisms of grape seed procyanidin-induced apoptosis in colorectal carcinoma cells. Anticancer Res. 2009;29:283–9.

    CAS  PubMed  Google Scholar 

  89. Velmurugan B, Singh RP, Agarwal R, Agarwal C. Dietary-feeding of grape seed extract prevents azoxymethane-induced colonic aberrant crypt foci formation in Fischer 344 rats. Mol Carcinog. 2010;49:641–52.

    PubMed Central  CAS  PubMed  Google Scholar 

  90. Huang S, Yang N, Liu Y, Gao J, Huang T, Hu L, et al. Grape seed proanthocyanidins inhibit colon cancer-induced angiogenesis through suppressing the expression of VEGF and Ang1. Int J Mol Med. 2012;30:1410–6. This study evaluated the role of grape seed proanthocyanidins on colon tumor xenografts on the chick chorioallantoic membranes. Grape seed proanthocyanidins showed angiopreventive properties through inhibiting VEGF and Ang1 expression.

    CAS  PubMed  Google Scholar 

  91. Yang CS, Maliakal P, Meng X. Inhibition of carcinogenesis by tea. Annu Rev Pharmacol Toxicol. 2002;42:25–54.

    Article  CAS  PubMed  Google Scholar 

  92. Shimizu M, Fukutomi Y, Ninomiya M, Nagura K, Kato T, Araki H, et al. Green tea extracts for the prevention of metachronous colorectal adenomas: a pilot study. Cancer Epidemiol, Biomarkers Prev: Publ Am Assoc Cancer Res, Cosponsored Am Soc Prev Oncol. 2008;17:3020–5.

    Article  CAS  Google Scholar 

  93. Shimizu M, Deguchi A, Hara Y, Moriwaki H, Weinstein IB. EGCG inhibits activation of the insulin-like growth factor-1 receptor in human colon cancer cells. Biochem Biophys Res Commun. 2005;334:947–53.

    Article  CAS  PubMed  Google Scholar 

  94. Shimizu M, Deguchi A, Joe AK, McKoy JF, Moriwaki H, Weinstein IB. EGCG inhibits activation of HER3 and expression of cyclooxygenase-2 in human colon cancer cells. J Exp Therapeutics Oncol. 2005;5:69–78.

    Google Scholar 

  95. Shimizu M, Deguchi A, Lim JT, Moriwaki H, Kopelovich L, Weinstein IB. (−)-Epigallocatechin gallate and polyphenon E inhibit growth and activation of the epidermal growth factor receptor and human epidermal growth factor receptor-2 signaling pathways in human colon cancer cells. Clin Cancer Res: Off J Am Assoc Cancer Res. 2005;11:2735–46.

    Article  CAS  Google Scholar 

  96. Shimizu M, Shirakami Y, Sakai H, Yasuda Y, Kubota M, Adachi S, et al. (−)-Epigallocatechin gallate inhibits growth and activation of the VEGF/VEGFR axis in human colorectal cancer cells. Chem Biol Interact. 2010;185:247–52.

    Article  CAS  PubMed  Google Scholar 

  97. Sadik NA. Chemopreventive efficacy of green tea drinking against 1,2-dimethyl hydrazine-induced rat colon carcinogenesis. Cell Biochem Funct. 2013;31:196–207. This study evaluated the effect of green tea on DMH-induced colon carcinogenesis in male Wistar rats. Green tea exerted its effects through inhibition of NF-kB.

    Article  CAS  PubMed  Google Scholar 

  98. Fridrich D, Teller N, Esselen M, Pahlke G, Marko D. Comparison of delphinidin, quercetin and (−)-epigallocatechin-3-gallate as inhibitors of the EGFR and the ErbB2 receptor phosphorylation. Mol Nutr Food Res. 2008;52:815–22.

    Article  CAS  PubMed  Google Scholar 

  99. Li S, Lo CY, Ho CT. Hydroxylated polymethoxyflavones and methylated flavonoids in sweet orange (Citrus sinensis) peel. J Agric Food Chem. 2006;54:4176–85.

    Article  CAS  PubMed  Google Scholar 

  100. Lai CS, Tsai ML, Cheng AC, Li S, Lo CY, Wang Y, et al. Chemoprevention of colonic tumorigenesis by dietary hydroxylated polymethoxyflavones in azoxymethane-treated mice. Mol Nutr Food Res. 2011;55:278–90.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Shamseddine.

Ethics declarations

Conflict of Interest

Sally Temraz has received compensation for service as a consultant and travel support from Roche and Novartis.

Raafat Alameddine declares that he has no conflict of interest.

Ali Shamseddine has received research funding through grants from Roche, Sanofi, Novartis, and GSK; has served on advisory boards for Roche, Sanofi, Pharmamed, Pfizer, Astella, and Bayer; and has received compensation from Roche, Sanofi, Amgen, and Lilly for service as a consultant.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Molecular Biology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Temraz, S., Alameddine, R. & Shamseddine, A. Angioprevention in Colon Cancer from Bench to Bedside. Curr Colorectal Cancer Rep 11, 422–431 (2015). https://doi.org/10.1007/s11888-015-0300-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11888-015-0300-7

Keywords

Navigation