Skip to main content

Advertisement

Log in

Fibroblast Growth Factor Receptor-2 IIIc as a Novel Molecular Target in Colorectal Cancer

  • Prevention and Early Detection (N Arber, Section Editor)
  • Published:
Current Colorectal Cancer Reports

Abstract

The prognosis of patients with colorectal carcinoma (CRC) is unfavorable once the disease has progressed to an unresectable stage. A high percentage of CRCs overexpress a number of growth factors and their receptors, including fibroblast growth factor receptor (FGFR). Expression of FGFR-2 IIIc, a splicing isoform of FGFR-2, correlated with distant metastasis and poor prognosis in CRC cases. FGFR-2 IIIc-transfected CRC cells showed increased cell growth, soft agar colony formation, migration, and invasion, as well as decreased adhesion to extracellular matrices. The administration of humanized anti-FGFR-2 IIIc monoclonal antibody inhibited CRC cell growth and migration. FGFR-2 IIIc might contribute to the aggressive growth of certain cancers, including CRC, and is a novel candidate for molecular targeted cancer therapies. In this article, we summarize the recent development of standardized treatments and molecular targeted therapies for CRC, with a focus on FGFR-2 IIIc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Chau I, Cunningham D. Treatment in advanced colorectal cancer: what, when and how? Br J Cancer. 2009;100:1704–19.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Kemeny N, Huang Y, Cohen AM, et al. Hepatic arterial infusion of chemotherapy after resection of hepatic metastases from colorectal cancer. N Engl J Med. 1999;341:2039–48.

    Article  CAS  PubMed  Google Scholar 

  3. Tomlinson JS, Jarnagin WR, DeMatteo RP, et al. Actual 10-year survival after resection of colorectal liver metastases defines cure. J Clin Oncol. 2007;25:4575–80.

    Article  PubMed  Google Scholar 

  4. Wieser M, Sauerland S, Arnold D, et al. Peri-operative chemotherapy for the treatment of resectable liver metastases from colorectal cancer: a systematic review and meta-analysis of randomized trials. BMC Cancer. 2010;10:309.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Cho KR, Vogelstein B. Genetic alterations in the adenoma—carcinoma sequence. Cancer. 1992;70:1727–31.

    Article  CAS  PubMed  Google Scholar 

  6. Tahara E. Growth factors and oncogenes in human gastrointestinal carcinomas. J Cancer Res Clin Oncol. 1990;116:121–31.

    Article  CAS  PubMed  Google Scholar 

  7. Ochs AM, Wong L, Kakani V, et al. Expression of vascular endothelial growth factor and HER2/neu in stage II colon cancer and correlation with survival. Clin Colorectal Cancer. 2004;4:262–7.

    Article  CAS  PubMed  Google Scholar 

  8. Narita K, Fujii T, Ishiwata T, et al. Keratinocyte growth factor induces vascular endothelial growth factor-A expression in colorectal cancer cells. Int J Oncol. 2009;34:355–60.

    CAS  PubMed  Google Scholar 

  9. Sato T, Oshima T, Yoshihara K, et al. Overexpression of the fibroblast growth factor receptor-1 gene correlates with liver metastasis in colorectal cancer. Oncol Rep. 2009;21:211–6.

    CAS  PubMed  Google Scholar 

  10. Yoshino M, Ishiwata T, Watanabe M, et al. Keratinocyte growth factor receptor expression in normal colorectal epithelial cells and differentiated type of colorectal cancer. Oncol Rep. 2005;13:247–52.

    CAS  PubMed  Google Scholar 

  11. Petrelli N, Herrera L, Rustum Y, et al. A prospective randomized trial of 5-fluorouracil versus 5-fluorouracil and high-dose leucovorin versus 5-fluorouracil and methotrexate in previously untreated patients with advanced colorectal carcinoma. J Clin Oncol. 1987;5:1559–65.

    CAS  PubMed  Google Scholar 

  12. Poon MA, O’Connell MJ, Wieand HS, et al. Biochemical modulation of fluorouracil with leucovorin: confirmatory evidence of improved therapeutic efficacy in advanced colorectal cancer. J Clin Oncol. 1991;9:1967–72.

    CAS  PubMed  Google Scholar 

  13. de Gramont A, Bosset JF, Milan C, et al. Randomized trial comparing monthly low-dose leucovorin and fluorouracil bolus with bimonthly high-dose leucovorin and fluorouracil bolus plus continuous infusion for advanced colorectal cancer: a French intergroup study. J Clin Oncol. 1997;15:808–15.

    PubMed  Google Scholar 

  14. Douillard JY, Cunningham D, Roth AD, et al. Irinotecan combined with fluorouracil compared with fluorouracil alone as first-line treatment for metastatic colorectal cancer: a multicentre randomised trial. Lancet. 2000;355:1041–7.

    Article  CAS  PubMed  Google Scholar 

  15. de Gramont A, Figer A, Seymour M, et al. Leucovorin and fluorouracil with or without oxaliplatin as first-line treatment in advanced colorectal cancer. J Clin Oncol. 2000;18:2938–47.

    PubMed  Google Scholar 

  16. Rothenberg ML, Oza AM, Bigelow RH, et al. Superiority of oxaliplatin and fluorouracil-leucovorin compared with either therapy alone in patients with progressive colorectal cancer after irinotecan and fluorouracil-leucovorin: interim results of a phase III trial. J Clin Oncol. 2003;21:2059–69.

    Article  CAS  PubMed  Google Scholar 

  17. Goldberg RM, Sargent DJ, Morton RF, et al. A randomized controlled trial of fluorouracil plus leucovorin, irinotecan, and oxaliplatin combinations in patients with previously untreated metastatic colorectal cancer. J Clin Oncol. 2004;22:23–30.

    Article  CAS  PubMed  Google Scholar 

  18. Muro K, Boku N, Shimada Y, et al. Irinotecan plus S-1 (IRIS) versus fluorouracil and folinic acid plus irinotecan (FOLFIRI) as second-line chemotherapy for metastatic colorectal cancer: a randomised phase 2/3 non-inferiority study (FIRIS study). Lancet Oncol. 2010;11:853–60.

    Article  CAS  PubMed  Google Scholar 

  19. Hong YS, Park YS, Lim HY, et al. S-1 plus oxaliplatin versus capecitabine plus oxaliplatin for first-line treatment of patients with metastatic colorectal cancer: a randomised, non-inferiority phase 3 trial. Lancet Oncol. 2012;13:1125–32.

    Article  CAS  PubMed  Google Scholar 

  20. Watanabe T, Itabashi M, Shimada Y, et al. Japanese Society for Cancer of the Colon and Rectum (JSCCR) guidelines 2010 for the treatment of colorectal cancer. Int J Clin Oncol. 2012;17:1–29.

    Article  PubMed  Google Scholar 

  21. André T, Boni C, Navarro M, et al. Improved overall survival with oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment in stage II or III colon cancer in the MOSAIC trial. J Clin Oncol. 2009;27:3109–16.

    Article  PubMed  Google Scholar 

  22. Lembersky BC, Wieand HS, Petrelli NJ, et al. Oral uracil and tegafur plus leucovorin compared with intravenous fluorouracil and leucovorin in stage II and III carcinoma of the colon: results from National Surgical Adjuvant Breast and Bowel Project Protocol C-06. J Clin Oncol. 2006;24:2059–64.

    Article  CAS  PubMed  Google Scholar 

  23. Hamaguchi T, Shirao K, Moriya Y, et al. Final results of randomized trials by the National Surgical Adjuvant Study of Colorectal Cancer (NSAS-CC). Cancer Chemother Pharmacol. 2011;67:587–96.

    Article  CAS  PubMed  Google Scholar 

  24. Ortega J, Vigil CE, Chodkiewicz C. Current progress in targeted therapy for colorectal cancer. Cancer Control. 2010;17:7–15.

    PubMed  Google Scholar 

  25. Hurwitz H, Fehrenbacher L, Novotny W, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med. 2004;350:2335–42.

    Article  CAS  PubMed  Google Scholar 

  26. Giantonio BJ, Catalano PJ, Meropol NJ, et al. Bevacizumab in combination with oxaliplatin, fluorouracil, and leucovorin (FOLFOX4) for previously treated metastatic colorectal cancer: results from the Eastern Cooperative Oncology Group study E3200. J Clin Oncol. 2007;25:1539–44.

    Article  CAS  PubMed  Google Scholar 

  27. Saltz LB, Clarke S, Díaz-Rubio E, et al. Bevacizumab in combination with oxaliplatin-based chemotherapy as first-line therapy in metastatic colorectal cancer: a randomized phase III study. J Clin Oncol. 2008;26:2013–9.

    Article  CAS  PubMed  Google Scholar 

  28. Jonker DJ, O'Callaghan CJ, Karapetis CS, et al. Cetuximab for the treatment of colorectal cancer. N Engl J Med. 2007;357:2040–8.

    Article  CAS  PubMed  Google Scholar 

  29. Sobrero AF, Maurel J, Fehrenbacher L, et al. EPIC: phase III trial of cetuximab plus irinotecan after fluoropyrimidine and oxaliplatin failure in patients with metastatic colorectal cancer. J Clin Oncol. 2008;26:2311–9.

    Article  CAS  PubMed  Google Scholar 

  30. Van Cutsem E, Köhne CH, Láng I, et al. Cetuximab plus irinotecan, fluorouracil, and leucovorin as first-line treatment for metastatic colorectal cancer: updated analysis of overall survival according to tumor KRAS and BRAF mutation status. J Clin Oncol. 2011;29:2011–9.

    Article  PubMed  Google Scholar 

  31. Bokemeyer C, Bondarenko I, Hartmann JT, et al. Efficacy according to biomarker status of cetuximab plus FOLFOX-4 as first-line treatment for metastatic colorectal cancer: the OPUS study. Ann Oncol. 2011;22:1535–46.

    Article  CAS  PubMed  Google Scholar 

  32. Douillard JY, Siena S, Cassidy J, et al. Randomized, phase III trial of panitumumab with infusional fluorouracil, leucovorin, and oxaliplatin (FOLFOX4) versus FOLFOX4 alone as first-line treatment in patients with previously untreated metastatic colorectal cancer: the PRIME study. J Clin Oncol. 2010;28:4697–705.

    Article  CAS  PubMed  Google Scholar 

  33. Peeters M, Price TJ, Cervantes A, et al. Randomized phase III study of panitumumab with fluorouracil, leucovorin, and irinotecan (FOLFIRI) compared with FOLFIRI alone as second-line treatment in patients with metastatic colorectal cancer. J Clin Oncol. 2010;28:4706–13.

    Article  CAS  PubMed  Google Scholar 

  34. Van Cutsem E, Peeters M, Siena S, et al. Open-label phase III trial of panitumumab plus best supportive care compared with best supportive care alone in patients with chemotherapy-refractory metastatic colorectal cancer. J Clin Oncol. 2007;25:1658–64.

    Article  PubMed  Google Scholar 

  35. Grothey A, Van Cutsem E, Sobrero A, et al. Regorafenib monotherapy for previously treated metastatic colorectal cancer (CORRECT): an international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet. 2013;381:303–12.

    Article  CAS  PubMed  Google Scholar 

  36. Ikeda N, Adachi M, Taki T, et al. Prognostic significance of angiogenesis in human pancreatic cancer. Br J Cancer. 1999;79:1553–63.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Jain RK. Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat Med. 2001;7:987–9.

    Article  CAS  PubMed  Google Scholar 

  38. Goldstein NI, Prewett M, Zuklys K, et al. Biological efficacy of a chimeric antibody to the epidermal growth factor receptor in a human tumor xenograft model. Clin Cancer Res. 1995;1:1311–8.

    CAS  PubMed  Google Scholar 

  39. Imai K, Takaoka A. Comparing antibody and small-molecule therapies for cancer. Nat Rev Cancer. 2006;6:714–27.

    Article  CAS  PubMed  Google Scholar 

  40. Bokemeyer C, Van Cutsem E, Rougier P, et al. Addition of cetuximab to chemotherapy as first-line treatment for KRAS wild-type metastatic colorectal cancer: pooled analysis of the CRYSTAL and OPUS randomised clinical trials. Eur J Cancer. 2012;48:1466–75.

    Article  CAS  PubMed  Google Scholar 

  41. Garnett MJ, Marais R. Guilty as charged: B-RAF is a human oncogene. Cancer Cell. 2004;6:313–9.

    Article  CAS  PubMed  Google Scholar 

  42. Rajagopalan H, Bardelli A, Lengauer C, et al. Tumorigenesis: RAF/RAS oncogenes and mismatch-repair status. Nature. 2002;418:934.

    Article  CAS  PubMed  Google Scholar 

  43. Min BS, Kim NK, Ahn JB, et al. Cetuximab in combination with 5-fluorouracil, leucovorin and irinotecan as a neoadjuvant chemotherapy in patients with initially unresectable colorectal liver metastases. Onkologie. 2007;30:637–43.

    Article  CAS  PubMed  Google Scholar 

  44. Yoshino T, Mizunuma N, Yamazaki K, et al. TAS-102 monotherapy for pretreated metastatic colorectal cancer: a double-blind, randomised, placebo-controlled phase 2 trial. Lancet Oncol. 2012;13:993–1001.

    Article  CAS  PubMed  Google Scholar 

  45. Itoh N, Ornitz DM. Evolution of the Fgf and Fgfr gene families. Trends Genet. 2004;20:563–9.

    Article  CAS  PubMed  Google Scholar 

  46. Ibrahimi OA, Eliseenkova AV, Plotnikov AN, et al. Structural basis for fibroblast growth factor receptor 2 activation in Apert syndrome. Proc Natl Acad Sci U S A. 2001;98:7182–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Mohammadi M, Olsen SK, Ibrahimi OA. Structural basis for fibroblast growth factor receptor activation. Cytokine Growth Factor Rev. 2005;16:107–37.

    Article  CAS  PubMed  Google Scholar 

  48. Eswarakumar VP, Lax I, Schlessinger J. Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev. 2005;16:139–49.

    Article  CAS  PubMed  Google Scholar 

  49. Gavine PR, Mooney L, Kilgour E, et al. AZD4547: an orally bioavailable, potent, and selective inhibitor of the fibroblast growth factor receptor tyrosine kinase family. Cancer Res. 2012;72:2045–56.

    Article  CAS  PubMed  Google Scholar 

  50. Trudel S, Li ZH, Wei E, et al. CHIR-258, a novel, multitargeted tyrosine kinase inhibitor for the potential treatment of t(4;14) multiple myeloma. Blood. 2005;105:2941–8.

    Article  CAS  PubMed  Google Scholar 

  51. Bello E, Colella G, Scarlato V, et al. E-3810 is a potent dual inhibitor of VEGFR and FGFR that exerts antitumor activity in multiple preclinical models. Cancer Res. 2011;71:1396–405.

    Article  CAS  PubMed  Google Scholar 

  52. Guagnano V, Furet P, Spanka C, et al. Discovery of 3-(2,6-dichloro-3,5-dimethoxy-phenyl)-1-{6-[4-(4-ethyl-piperazin-1-yl)-phenylamino]-pyrimidin-4-yl}-1-methyl-urea (NVP-BGJ398), a potent and selective inhibitor of the fibroblast growth factor receptor family of receptor tyrosine kinase. J Med Chem. 2011;54:7066–83.

    Article  CAS  PubMed  Google Scholar 

  53. O'Hare T, Shakespeare WC, Zhu X, et al. AP24534, a pan-BCR-ABL inhibitor for chronic myeloid leukemia, potently inhibits the T315I mutant and overcomes mutation-based resistance. Cancer Cell. 2009;16:401–12.

    Article  PubMed Central  PubMed  Google Scholar 

  54. Squires MS, Saxty G, Murray CW, et al. Development of inhibitors of the fibroblast growth factor receptor kinase using a fragment based approach. Abstract and poster presented at: AACR 99th annual meeting. 2008.

  55. Bhide RS, Cai ZW, Zhang YZ, et al. Discovery and preclinical studies of (R)-1-(4-(4-fluoro-2-methyl-1H-indol-5-yloxy)-5-methylpyrrolo[2,1-f][1,2,4]triazin-6-yloxy)propan-2-ol (BMS-540215), an in vivo active potent VEGFR-2 inhibitor. J Med Chem. 2006;49:2143–6.

    Article  CAS  PubMed  Google Scholar 

  56. Carpinelli P, Ceruti R, Giorgini ML, et al. PHA-739358, a potent inhibitor of Aurora kinases with a selective target inhibition profile relevant to cancer. Mol Cancer Ther. 2007;6:3158–68.

    Article  CAS  PubMed  Google Scholar 

  57. Britten C, Smith DC, Bui LA, et al. A phase 1 dose-escalation study of XL228, a potent IGF-1R/SRC/Aurora inhibitor, in patients with advanced malignancies. Poster presented at: EORTC-NCI-AACR symposium. 2008.

  58. You WK, Sennino B, Williamson CW, et al. VEGF and c-Met blockade amplify angiogenesis inhibition in pancreatic islet cancer. Cancer Res. 2011;71:4758–68.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Hilberg F, Roth GJ, Krssak M, et al. BIBF 1120: triple angiokinase inhibitor with sustained receptor blockade and good antitumor efficacy. Cancer Res. 2008;68:4774–82.

    Article  CAS  PubMed  Google Scholar 

  60. Sun L, Tran N, Liang C, et al. Design, synthesis, and evaluations of substituted 3-[(3- or 4-carboxyethylpyrrol-2-yl)methylidenyl]indolin-2-ones as inhibitors of VEGF, FGF, and PDGF receptor tyrosine kinases. J Med Chem. 1999;42:5120–30.

    Article  CAS  PubMed  Google Scholar 

  61. Wilhelm SM, Carter C, Tang L, et al. BAY 43–9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res. 2004;64:7099–109.

    Article  CAS  PubMed  Google Scholar 

  62. Carlomagno F, Anaganti S, Guida T, et al. BAY 43–9006 inhibition of oncogenic RET mutants. J Natl Cancer Inst. 2006;98:326–34.

    Article  CAS  PubMed  Google Scholar 

  63. Wilhelm S, Carter C, Lynch M, et al. Discovery and development of sorafenib: a multikinase inhibitor for treating cancer. Nat Rev Drug Discov. 2006;5:835–44.

    Article  CAS  PubMed  Google Scholar 

  64. Mendel DB, Laird AD, Xin X, et al. In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: determination of a pharmacokinetic/pharmacodynamic relationship. Clin Cancer Res. 2003;9:327–37.

    CAS  PubMed  Google Scholar 

  65. Harding TC, Long L, Palencia S, et al. Blockade of nonhormonal fibroblast growth factors by FP-1039 inhibits growth of multiple types of cancer. Sci Transl Med. 2013;5:178ra139.

    Article  Google Scholar 

  66. Trudel S, Bergsagel L, Singhal S, et al. A phase I study of the safety and pharmacokinetics of escalating doses of MFGR1877S, a fibroblast growth factor receptor 3 (FGFR3) antibody, in patients with relapsed or refractory t(4;14)-positive multiple myeloma. Oral and poster abstract presented at: 54th ASH annual meeting and exposition. 2012.

  67. Sun HD, Malabunga M, Tonra JR, et al. Monoclonal antibody antagonists of hypothalamic FGFR1 cause potent but reversible hypophagia and weight loss in rodents and monkeys. Am J Physiol Endocrinol Metab. 2007;292:E964–76.

    Article  CAS  PubMed  Google Scholar 

  68. Trudel S, Stewart AK, Rom E, et al. The inhibitory anti-FGFR3 antibody, PRO-001, is cytotoxic to t(4;14) multiple myeloma cells. Blood. 2006;107:4039–46.

    Article  CAS  PubMed  Google Scholar 

  69. • Matsuda Y, Ishiwata T, Yamahatsu K, et al. Overexpressed fibroblast growth factor receptor 2 in the invasive front of colorectal cancer: a potential therapeutic target in colorectal cancer. Cancer Lett. 2011;309:209–19. The authors showed that FGFR-2 short hairpin RNA transfected CRC cells inhibited cell migration, invasion, and tumor growth both in vitro and in vivo; therefore, FGFR-2 could be a novel CRC therapeutic target.

    Article  CAS  PubMed  Google Scholar 

  70. Kudo M, Ishiwata T, Nakazawa N, et al. Keratinocyte growth factor-transfection-stimulated adhesion of colorectal cancer cells to extracellular matrices. Exp Mol Pathol. 2007;83:443–52.

    Article  CAS  PubMed  Google Scholar 

  71. Baum B, Settleman J, Quinlan MP. Transitions between epithelial and mesenchymal states in development and disease. Semin Cell Dev Biol. 2008;19:294–308.

    Article  CAS  PubMed  Google Scholar 

  72. •• Ishiwata T, Matsuda Y, Yamamoto T, et al. Enhanced expression of fibroblast growth factor receptor 2 IIIc promotes human pancreatic cancer cell proliferation. Am J Pathol. 2012;180:1928–41. The authors showed that FGFR-2 IIIc-transfected pancreatic cancer cells exhibited increased proliferation in vitro and formed larger subcutaneous and orthotopic tumors; the latter produced more liver metastases. In addition, the suppression of FGFR-2 IIIc expression inhibited cell proliferation, whereas an anti-FGFR-2 IIIc antibody inhibited cell proliferation and migration. Therefore, FGFR-2 IIIc could be a novel and important therapeutic target in pancreatic cancer.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. •• Matsuda Y, Hagio M, Seya T, et al. Fibroblast growth factor receptor 2 IIIc as a therapeutic target for colorectal cancer cells. Mol Cancer Ther. 2012;11:2010–20. The authors showed that a fully human anti-FGFR-2 IIIc monoclonal antibody inhibited CRC cell growth and migration; therefore, this monoclonal antibody against FGFR-2 IIIc shows promising potential as a CRC therapy.

    Article  CAS  PubMed  Google Scholar 

  74. Rothe C, Urlinger S, Löhning C, et al. The human combinatorial antibody library HuCAL GOLD combines diversification of all six CDRs according to the natural immune system with a novel display method for efficient selection of high-affinity antibodies. J Mol Biol. 2008;376:1182–200.

    Article  CAS  PubMed  Google Scholar 

  75. Ogawa S, Ochi T, Shimada H, et al. Anti-PDGF-B monoclonal antibody reduces liver fibrosis development. Hepatol Res. 2010;40:1128–41.

    Article  CAS  PubMed  Google Scholar 

  76. Steidl S, Ratsch O, Brocks B, et al. In vitro affinity maturation of human GM-CSF antibodies by targeted CDR-diversification. Mol Immunol. 2008;46:135–44.

    Article  CAS  PubMed  Google Scholar 

  77. Nagy ZA, Hubner B, Löhning C, et al. Fully human, HLA-DR-specific monoclonal antibodies efficiently induce programmed death of malignant lymphoid cells. Nat Med. 2002;8:801–7.

    CAS  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Yoko Matsuda, Seiichi Shinji, Hisashi Yoshimura, Zenya Naito, and Toshiyuki Ishiwata declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiyuki Ishiwata.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsuda, Y., Shinji, S., Yoshimura, H. et al. Fibroblast Growth Factor Receptor-2 IIIc as a Novel Molecular Target in Colorectal Cancer. Curr Colorectal Cancer Rep 10, 20–26 (2014). https://doi.org/10.1007/s11888-013-0200-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11888-013-0200-7

Keywords

Navigation