Skip to main content
Log in

Congenital Cyanotic Heart Disease and the Association with Pheochromocytomas and Paragangliomas

  • Hypertension (DS Geller and DL Cohen, Section Editors)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Pheochromocytomas and paragangliomas (PPGLs) are rare neuroendocrine tumors that commonly produce excess catecholamines causing significant morbidity and mortality. Patients with cyanotic congenital heart disease (CCHD) develop PPGLs at a higher frequency than the general population. This review will summarize recent research in the association of PPGL and CCHD.

Recent Findings

Advances in molecular genetics have provided new insights into a variety of germline mutations and somatic mutations related to PPGLs. In the CCHD population, mutations can occur in the hypoxia signaling pathway with gain-of-function somatic mutations in EPAS1, which prevent degradation of hypoxia-inducible factor-2 alpha. These mutations are implicated in oncogenesis. PPGLs associated with CCHD develop as early as age 15 years and have predominantly noradrenergic secretion. Surgical removal is considered the first line of therapy, although belzutifan, a HIF-2α inhibitor, is currently being tested as a potential therapy.

Summary

Early screening with plasma metanephrines may assist in identifying PPGLs in patients with CCHD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

The data that support the findings of this study are not openly available and are available from the corresponding author upon reasonable request.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. •• Pacak K. New biology of pheochromocytoma and paraganglioma. Endocr Pract. 2022;28(12):1253-69. https://doi.org/10.1016/j.eprac.2022.09.003. A thorough review of the most recent advancements in PPGL biochemical, genetic, and therapeutic advancements.

  2. Dahia PLM. Pheochromocytoma and paraganglioma pathogenesis: learning from genetic heterogeneity. Nat Rev Cancer. 2014;14(2):108–19. https://doi.org/10.1038/nrc3648.

    Article  CAS  PubMed  Google Scholar 

  3. Erickson D, Kudva YC, Ebersold MJ, Thompson GB, Grant CS, van Heerden JA, et al. Benign paragangliomas: clinical presentation and treatment outcomes in 236 patients. J Clin Endocrinol Metab. 2001;86(11):5210–6. https://doi.org/10.1210/jcem.86.11.8034.

    Article  CAS  PubMed  Google Scholar 

  4. Fishbein L, Leshchiner I, Walter V, Danilova L, Robertson AG, Johnson AR, et al. Comprehensive molecular characterization of pheochromocytoma and paraganglioma. Cancer Cell. 2017;31(2):181–93. https://doi.org/10.1016/j.ccell.2017.01.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dahia PLM, Toledo RA. Recognizing hypoxia in phaeochromocytomas and paragangliomas. Nat Rev Endocr. 2020;16(4):191–2. https://doi.org/10.1038/s41574-020-0324-1.

    Article  CAS  Google Scholar 

  6. McQuillen PS, Goff DA, Licht DJ. Effects of congenital heart disease on brain development. Prog Pediatr Cardiol. 2010;29(2):79–85. https://doi.org/10.1016/j.ppedcard.2010.06.011.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Moons P, Bovijn L, Budts W, Belmans A, Gewillig M. Temporal trends in survival to adulthood among patients born with congenital heart disease from 1970 to 1992 in Belgium. Circulation. 2010;122(22):2264–72. https://doi.org/10.1161/circulationaha.110.946343.

    Article  PubMed  Google Scholar 

  8. Marelli AJ, Ionescu-Ittu R, Mackie AS, Guo L, Dendukuri N, Kaouache M. Lifetime prevalence of congenital heart disease in the general population from 2000 to 2010. Circulation. 2014;130(9):749–56. https://doi.org/10.1161/circulationaha.113.008396.

    Article  PubMed  Google Scholar 

  9. • Ogasawara T, Fujii Y, Kakiuchi N, Shiozawa Y, Sakamoto R, Ogawa Y, Ootani K, Ito E, Tanaka T, Watanabe K, Yoshida Y. Genetic analysis of pheochromocytoma and paraganglioma complicating cyanotic congenital heart disease. J Clin Endocrinol Metab. 2022;107(9):2545-55. https://doi.org/10.1210/clinem/dgac362. This study of CCHD-PPGL patients found 15/16 samples carried somaticmutation for EPAS1, suggesting that selective pressure of hypoxia can lead to this mutation.

  10. •• Opotowsky AR, Moko LE, Ginns J, Rosenbaum M, Greutmann M, Aboulhosn J, et al. Pheochromocytoma and paraganglioma in cyanotic congenital heart disease. J Clin Endocrinol Metab. 2015;100(4):1325-34. https://doi.org/10.1210/jc.2014-3863. This study performed clinical, biochemical, and genetic analysis of a cohort of 18 CCHD-PPGL patients and identified noradrenergic, rather than adrenergic, biochemical predominance.

  11. Ponz de Antonio I, Ruiz Cantador J, González García AE, Oliver Ruiz JM, Sánchez-Recalde Á, López-Sendón JL. Prevalence of neuroendocrine tumors in patients with cyanotic congenital heart disease. Rev Esp Cardiol (Engl Ed). 2017;70(8):673-5. https://doi.org/10.1016/j.rec.2016.09.036.

  12. • Dahia PLM, Clifton-Bligh R, Gimenez-Roqueplo A-P, Robledo M, Jimenez C. Hereditary endocrine tumours: current state-of-the-art and research opportunities: metastatic pheochromocytomas and paragangliomas: proceedings of the MEN2019 workshop. Endocrine-Related Cancer. 2020;27(8):T41-T52. https://doi.org/10.1530/erc-19-0435. An excellent review of the current genetic and potential therapeutic targets for PPGL.

  13. Kaelin WG Jr, Ratcliffe PJ, Semenza GL. Pathways for oxygen regulation and homeostasis: the 2016 Albert Lasker basic medical research award. Jama. 2016;316(12):1252–3. https://doi.org/10.1001/jama.2016.12386.

    Article  PubMed  Google Scholar 

  14. Nilsson H, Jögi A, Beckman S, Harris AL, Poellinger L, Påhlman S. HIF-2α expression in human fetal paraganglia and neuroblastoma: relation to sympathetic differentiation, glucose deficiency, and hypoxia. Exp Cell Res. 2005;303(2):447–56. https://doi.org/10.1016/j.yexcr.2004.10.003.

    Article  CAS  PubMed  Google Scholar 

  15. Kim LC, Simon MC. Hypoxia-inducible factors in cancer. Cancer Res. 2022;82(2):195–6. https://doi.org/10.1158/0008-5472.Can-21-3780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M, et al. HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science. 2001;292(5516):464–8. https://doi.org/10.1126/science.1059817.

    Article  CAS  PubMed  Google Scholar 

  17. Latif F, Tory K, Gnarra J, Yao M, Duh FM, Orcutt ML, et al. Identification of the von Hippel-Lindau disease tumor suppressor gene. Science. 1993;260(5112):1317–20. https://doi.org/10.1126/science.8493574.

    Article  CAS  PubMed  Google Scholar 

  18. Burnichon N, Vescovo L, Amar L, Libé R, de Reynies A, Venisse A, et al. Integrative genomic analysis reveals somatic mutations in pheochromocytoma and paraganglioma. Hum Mol Genet. 2011;20(20):3974–85. https://doi.org/10.1093/hmg/ddr324.

    Article  CAS  PubMed  Google Scholar 

  19. López-Jiménez E, Gómez-López G, Leandro-García LJ, Muñoz I, Schiavi F, Montero-Conde C, et al. Research resource: transcriptional profiling reveals different pseudohypoxic signatures in SDHB and VHL-related pheochromocytomas. Mol Endocrinol. 2010;24(12):2382–91. https://doi.org/10.1210/me.2010-0256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Eisenhofer G, Huynh TT, Pacak K, Brouwers FM, Walther MM, Linehan WM, et al. Distinct gene expression profiles in norepinephrine- and epinephrine-producing hereditary and sporadic pheochromocytomas: activation of hypoxia-driven angiogenic pathways in von Hippel-Lindau syndrome. Endocr Relat Cancer. 2004;11(4):897–911. https://doi.org/10.1677/erc.1.00838.

    Article  CAS  PubMed  Google Scholar 

  21. Dahia PL, Ross KN, Wright ME, Hayashida CY, Santagata S, Barontini M, et al. A HIF1alpha regulatory loop links hypoxia and mitochondrial signals in pheochromocytomas. PLoS Genet. 2005;1(1):72–80. https://doi.org/10.1371/journal.pgen.0010008.

    Article  CAS  PubMed  Google Scholar 

  22. Yang C, Zhuang Z, Fliedner SM, Shankavaram U, Sun MG, Bullova P, et al. Germ-line PHD1 and PHD2 mutations detected in patients with pheochromocytoma/paraganglioma-polycythemia. J Mol Med (Berl). 2015;93(1):93–104. https://doi.org/10.1007/s00109-014-1205-7.

    Article  CAS  PubMed  Google Scholar 

  23. Eckardt L, Prange-Barczynska M, Hodson EJ, Fielding JW, Cheng X, Lima J, et al. Developmental role of PHD2 in the pathogenesis of pseudohypoxic pheochromocytoma. Endocr Relat Cancer. 2021;28(12):757–72. https://doi.org/10.1530/erc-21-0211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Castro-Vega LJ, Lepoutre-Lussey C, Gimenez-Roqueplo AP, Favier J. Rethinking pheochromocytomas and paragangliomas from a genomic perspective. Oncogene. 2016;35(9):1080–9. https://doi.org/10.1038/onc.2015.172.

    Article  CAS  PubMed  Google Scholar 

  25. Selak MA, Armour SM, MacKenzie ED, Boulahbel H, Watson DG, Mansfield KD, et al. Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell. 2005;7(1):77–85. https://doi.org/10.1016/j.ccr.2004.11.022.

    Article  CAS  PubMed  Google Scholar 

  26. Smith EH, Janknecht R, Maher LJ 3rd. Succinate inhibition of alpha-ketoglutarate-dependent enzymes in a yeast model of paraganglioma. Hum Mol Genet. 2007;16(24):3136–48. https://doi.org/10.1093/hmg/ddm275.

    Article  CAS  PubMed  Google Scholar 

  27. Losman JA, Koivunen P, Kaelin WG Jr. 2-Oxoglutarate-dependent dioxygenases in cancer. Nat Rev Cancer. 2020;20(12):710–26. https://doi.org/10.1038/s41568-020-00303-3.

    Article  CAS  PubMed  Google Scholar 

  28. Lamy C, Tissot H, Faron M, Baudin E, Lamartina L, Pradon C, et al. Succinate: a serum biomarker of SDHB-mutated paragangliomas and pheochromocytomas. J Clin Endocrinol Metab. 2022;107(10):2801–10. https://doi.org/10.1210/clinem/dgac474.

    Article  PubMed  Google Scholar 

  29. Zhuang Z, Yang C, Lorenzo F, Merino M, Fojo T, Kebebew E, et al. Somatic HIF2A gain-of-function mutations in paraganglioma with polycythemia. N Engl J Med. 2012;367(10):922–30. https://doi.org/10.1056/NEJMoa1205119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Toledo R, Qin Y, Srikantan S, Morales N, Li Q, Deng Y, et al. In vivo and in vitro oncogenic effects of HIF2A mutations in pheochromocytomas and paragangliomas. Endocr Relat Cancer. 2013;20:349–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Comino-Méndez I, de Cubas AA, Bernal C, Álvarez-Escolá C, Sánchez-Malo C, Ramírez-Tortosa CL, et al. Tumoral EPAS1 (HIF2A) mutations explain sporadic pheochromocytoma and paraganglioma in the absence of erythrocytosis. Hum Mol Genet. 2013;22(11):2169–76. https://doi.org/10.1093/hmg/ddt069.

    Article  CAS  PubMed  Google Scholar 

  32. Welander J, Andreasson A, Brauckhoff M, Bäckdahl M, Larsson C, Gimm O, et al. Frequent EPAS1/HIF2α exons 9 and 12 mutations in non-familial pheochromocytoma. Endocr Relat Cancer. 2014;21(3):495–504. https://doi.org/10.1530/erc-13-0384.

    Article  CAS  PubMed  Google Scholar 

  33. Arias-Stella J, Valcarcel J. Chief cell hyperplasia in the human carotid body at high altitudes; physiologic and pathologic significance. Hum Pathol. 1976;7(4):361–73. https://doi.org/10.1016/s0046-8177(76)80052-4.

    Article  CAS  PubMed  Google Scholar 

  34. Rodriguez-Cuevas H, Lau I, Rodriguez HP. High-altitude paragangliomas diagnostic and therapeutic considerations. Cancer. 1986;57(3):672–6. https://doi.org/10.1002/1097-0142(19860201)57:3%3c672::aid-cncr2820570346%3e3.0.co;2-c.

    Article  CAS  PubMed  Google Scholar 

  35. Gonzalez-Urquijo M, Hinojosa-Gonzalez DE, Fabiani MA, González-González M, Cardenas-Figueroa EG, Rosero-Aguirre VA, et al. High altitude carotid body tumors growth during active surveillance. Vasc Endovascular Surg. 2023;57(5):451–5. https://doi.org/10.1177/15385744231154089.

    Article  PubMed  Google Scholar 

  36. Saldana MJ, Salem LE, Travezan R. High altitude hypoxia and chemodectomas. Human Pathol. 1973;4(2):251–63. https://doi.org/10.1016/S0046-8177(73)80012-7.

    Article  CAS  Google Scholar 

  37. Vaidya A, Flores SK, Cheng Z-M, Nicolas M, Deng Y, Opotowsky AR, et al. EPAS1 mutations and paragangliomas in cyanotic congenital heart disease. N Engl J Med. 2018;378(13):1259–61. https://doi.org/10.1056/NEJMc1716652.

    Article  PubMed  PubMed Central  Google Scholar 

  38. • Zhao B, Zhou Y, Zhao Y, Zhao Y, Wu X, Bi Y, et al. Co-occurrence of pheochromocytoma-paraganglioma and cyanotic congenital heart disease: a case report and literature review. Front Endocrinol (Lausanne). 2018;9:165. https://doi.org/10.3389/fendo.2018.00165. A collection of 47 case reports of CCHD-PPGL, this study provides the largest published collection of CCHD-PPGL.

  39. Eisenhofer G, Lenders JW, Timmers H, Mannelli M, Grebe SK, Hofbauer LC, et al. Measurements of plasma methoxytyramine, normetanephrine, and metanephrine as discriminators of different hereditary forms of pheochromocytoma. Clin Chem. 2011;57(3):411–20. https://doi.org/10.1373/clinchem.2010.153320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Eisenhofer G, Walther MM, Huynh TT, Li ST, Bornstein SR, Vortmeyer A, et al. Pheochromocytomas in von Hippel-Lindau syndrome and multiple endocrine neoplasia type 2 display distinct biochemical and clinical phenotypes. J Clin Endocrinol Metab. 2001;86(5):1999–2008. https://doi.org/10.1210/jcem.86.5.7496.

    Article  CAS  PubMed  Google Scholar 

  41. Pacak K, Jochmanova I, Prodanov T, Yang C, Merino MJ, Fojo T, et al. New syndrome of paraganglioma and somatostatinoma associated with polycythemia. J Clin Oncol. 2013;31(13):1690–8. https://doi.org/10.1200/jco.2012.47.1912.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Jasim S, Jimenez C. Metastatic pheochromocytoma and paraganglioma: management of endocrine manifestations, surgery and ablative procedures, and systemic therapies. Best Pract Res Clin Endocrinol Metab. 2020;34(2): 101354. https://doi.org/10.1016/j.beem.2019.101354.

    Article  CAS  PubMed  Google Scholar 

  43. Ayala-Ramirez M, Feng L, Habra MA, Rich T, Dickson PV, Perrier N, et al. Clinical benefits of systemic chemotherapy for patients with metastatic pheochromocytomas or sympathetic extra-adrenal paragangliomas. Cancer. 2012;118(11):2804–12. https://doi.org/10.1002/cncr.26577.

    Article  CAS  PubMed  Google Scholar 

  44. Roodhart MJ, Langenberg HM, Witteveen E, Voest EE. The molecular basis of class side effects due to treatment with inhibitors of the VEGF/VEGFR pathway. Curr Clin Pharmacol. 2008;3(2):132–43. https://doi.org/10.2174/157488408784293705.

    Article  CAS  PubMed  Google Scholar 

  45. Kohlenberg J, Welch B, Hamidi O, Callstrom M, Morris J, Sprung J, et al. Efficacy and safety of ablative therapy in the treatment of patients with metastatic pheochromocytoma and paraganglioma. Cancers. 2019;11(2):195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gravel G, Leboulleux S, Tselikas L, Fassio F, Berraf M, Berdelou A, et al. Prevention of serious skeletal-related events by interventional radiology techniques in patients with malignant paraganglioma and pheochromocytoma. Endocrine. 2018;59(3):547–54. https://doi.org/10.1007/s12020-017-1515-y.

    Article  CAS  PubMed  Google Scholar 

  47. Pryma DA, Chin BB, Noto RB, Dillon JS, Perkins S, Solnes L, et al. Efficacy and safety of high-specific-activity 131I-MIBG therapy in patients with advanced pheochromocytoma or paraganglioma. J Nucl Med. 2019;60(5):623–30. https://doi.org/10.2967/jnumed.118.217463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fallah J, Brave MH, Weinstock C, Mehta GU, Bradford D, Gittleman H, et al. FDA approval summary: belzutifan for von Hippel-Lindau disease-associated tumors. Clin Cancer Res. 2022;28(22):4843–8. https://doi.org/10.1158/1078-0432.Ccr-22-1054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jonasch E, Donskov F, Iliopoulos O, Rathmell WK, Narayan VK, Maughan BL, et al. Belzutifan for renal cell carcinoma in von Hippel-Lindau disease. N Engl J Med. 2021;385(22):2036–46. https://doi.org/10.1056/NEJMoa2103425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kamihara J, Hamilton KV, Pollard JA, Clinton CM, Madden JA, Lin J, et al. Belzutifan, a potent HIF2α inhibitor, in the Pacak-Zhuang syndrome. N Engl J Med. 2021;385(22):2059–65. https://doi.org/10.1056/NEJMoa2110051.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Benson Jones Jr..

Ethics declarations

Conflict of Interest

RBJ reports no financial disclosures. DLC reports no financial disclosures.

Human and Animal Rights and Informed Consent

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jones, R.B., Cohen, D.L. Congenital Cyanotic Heart Disease and the Association with Pheochromocytomas and Paragangliomas. Curr Cardiol Rep 25, 1451–1460 (2023). https://doi.org/10.1007/s11886-023-01974-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11886-023-01974-8

Keywords

Navigation