Skip to main content

Advertisement

Log in

COVID Vaccination as a Strategy for Cardiovascular Disease Prevention

  • Global Cardiovascular Health (L Sperling and D Gaita, Section Editors)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Cardiovascular (CV) disease is a known complication of SARS-CoV-2 infection. A clear benefit of COVID-19 vaccination is a reduction mortality; however, COVID-19 vaccination may also prevent cardiovascular disease (CVD). We aim to describe CV pathology associated with SARS-CoV-2 infection and describe how COVID-19 vaccination is a strategy for CVD prevention.

Recent Findings

The risks and benefits of COVID-19 vaccination have been widely studied. Analysis of individuals with and without pre-existing CVD has shown that COVID-19 vaccination can prevent morbidity associated with SARS-CoV-2 infection and reduce mortality.

Summary

COVID-19 vaccination is effective in preventing myocardial infarction, cerebrovascular events, myopericarditis, and long COVID, all associated with CVD risk factors. Vaccination reduces mortality in patients with pre-existing CVD. Further study investigating ideal vaccination schedules for individuals with CVD should be undertaken to protect this vulnerable group and address new risks from variants of concern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •  Of importance •• Of major importance

  1. Guo T, Fan Y, Chen M, Wu X, Zhang L, He T, et al. Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020;5(7):811–8.

    Article  PubMed  Google Scholar 

  2. Hall EJ, Das SR, Ayers C, Bradley SM, Elkind M, Hall JL, et al. Longitudinal trends in cardiovascular complications among patients hospitalized for Covid-19 infection: a national multi-center analysis. Circulation. 2022;146(Suppl_1):A10406-A.

  3. • Xie Y, Xu E, Bowe B, Al-Aly Z. Long-term cardiovascular outcomes of COVID-19. Nat Med. 2022;28(3):583–90. https://doi.org/10.1038/s41591-022-01689-3Findings from this study demonstrated the increased risks of a multitude of adverse cardiovascular outcomes associated with COVID-19.

  4. Giustino G, Pinney SP, Lala A, Reddy VY, Johnston-Cox HA, Mechanick JI, et al. Coronavirus and cardiovascular disease, myocardial injury, and arrhythmia: JACC focus seminar. J Am Coll Cardiol. 2020;76(17):2011–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Katsoularis I, Fonseca-Rodríguez O, Farrington P, Jerndal H, Lundevaller EH, Sund M, et al. Risks of deep vein thrombosis, pulmonary embolism, and bleeding after covid-19: nationwide self-controlled cases series and matched cohort study. BMJ. 2022;377:e069590. https://doi.org/10.1136/bmj-2021-069590.

  6. Katsoularis I, Fonseca-Rodríguez O, Farrington P, Lindmark K, Connolly AMF. Risk of acute myocardial infarction and ischaemic stroke following COVID-19 in Sweden: a self-controlled case series and matched cohort study. Lancet. 2021;398(10300):599–607.

  7. Kim YE, Huh K, Park YJ, Peck KR, Jung J. Association between vaccination and acute myocardial infarction and ischemic stroke after COVID-19 infection. JAMA. 2022;328(9):887–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lala A, Johnson KW, Januzzi JL, Russak AJ, Paranjpe I, Richter F, et al. Prevalence and impact of myocardial injury in patients hospitalized with COVID-19 infection. J Am Coll Cardiol. 2020;76(5):533–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Luetkens JA, Isaak A, Zimmer S, Nattermann J, Sprinkart AM, Boesecke C, et al. Diffuse myocardial inflammation in COVID-19 associated myocarditis detected by multiparametric cardiac magnetic resonance imaging. Circ Cardiovasc Imaging. 2020;13(5):e010897.

  10. Modin D, Claggett B, Sindet-Pedersen C, Lassen MCH, Skaarup KG, Jensen JUS, et al. Acute COVID-19 and the incidence of ischemic stroke and acute myocardial infarction. Circulation. 2020;142(21):2080–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zahra RE, Jackie C, Ahmed S, Betty R, Aaron Mark L, Stefan N, et al. Cardiovascular disease and mortality sequelae of COVID-19 in the UK Biobank. Heart. 2023;109(2):119. https://doi.org/10.1136/heartjnl-2022-321492.

    Article  Google Scholar 

  12. Vasudeva R, Challa A, Al Rifai M, Polana T, Duran B, Vindhyal M, et al. Prevalence of cardiovascular diseases in COVID-19 related mortality in the United States. Prog Cardiovasc Dis. 2022.

  13. Del Sole F, Farcomeni A, Loffredo L, Carnevale R, Menichelli D, Vicario T, et al. Features of severe COVID-19: a systematic review and meta-analysis. Eur J Clin Invest. 2020;50(10):e13378.

  14. Figliozzi S, Masci PG, Ahmadi N, Tondi L, Koutli E, Aimo A, et al. Predictors of adverse prognosis in COVID-19: a systematic review and meta-analysis. Eur J Clin Invest. 2020;50(10):e13362.

  15. Ssentongo P, Ssentongo AE, Heilbrunn ES, Ba DM, Chinchilli VM. Association of cardiovascular disease and 10 other pre-existing comorbidities with COVID-19 mortality: A systematic review and meta-analysis. PLoS One. 2020;15(8):e0238215.

  16. Barron E, Bakhai C, Kar P, Weaver A, Bradley D, Ismail H, et al. Associations of type 1 and type 2 diabetes with COVID-19-related mortality in England: a whole-population study. Lancet Diabetes Endocrinol. 2020;8(10):813–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Xu E, Xie Y, Al-Aly Z. Risks and burdens of incident dyslipidaemia in long COVID: a cohort study. Lancet Diabetes Endocrinol. 2023.

  18. Hayes LD, Ingram J, Sculthorpe NF. More than 100 persistent symptoms of SARS-CoV-2 (long COVID): a scoping review. Front Med. 2021;8: 750378.

    Article  Google Scholar 

  19. Simone A, Herald J, Chen A, Nayak R, Shen AYJ, Lee MS. Exacerbation of pre-existing cardiovascular disease following COVID-19 mRNA vaccination. Circulation. 2022;146(Suppl_1):A11371-A.

  20. Peiris S, Ordunez P, DiPette D, Padwal R, Ambrosi P, Toledo J, et al. Cardiac manifestations in patients with COVID-19: a scoping review. Global Heart. 2022;17(1).

  21. Polito MV, Silverio A, Bellino M, Iuliano G, Di Maio M, Alfano C, et al. Cardiovascular involvement in COVID-19: what sequelae should we expect? Cardiol Ther. 2021;10(2):377–96.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wang W, Wang C-Y, Wang SI, Wei JCC. Long-term cardiovascular outcomes in COVID-19 survivors among non-vaccinated population: a retrospective cohort study from the TriNetX US collaborative networks. EClinicalMedicine. 2022;53:101619.

  23. Richardson S, Hirsch JS, Narasimhan M, Crawford JM, McGinn T, Davidson KW, et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area. JAMA. 2020;323(20):2052–9. https://doi.org/10.1001/jama.2020.6775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Woodruff RC, Garg S, George MG, Patel K, Jackson SL, Loustalot F, et al. Acute cardiac events during COVID-19-associated hospitalizations. J Am Coll Cardiol. 2023;81(6):557–69.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lombardi CM, Carubelli V, Iorio A, Inciardi RM, Bellasi A, Canale C, et al. Association of troponin levels with mortality in Italian patients hospitalized with coronavirus disease 2019: results of a multicenter study. JAMA Cardiol. 2020;5(11):1274–80.

    Article  PubMed  Google Scholar 

  26. Sandoval Y, Januzzi JL Jr, Jaffe AS. Cardiac troponin for assessment of myocardial injury in COVID-19: JACC review topic of the week. J Am Coll Cardiol. 2020;76(10):1244–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Al-Aly Z, Xie Y, Bowe B. High-dimensional characterization of post-acute sequelae of COVID-19. Nature. 2021;594(7862):259–64.

    Article  CAS  PubMed  Google Scholar 

  28. Hall EJ, Ayers CR, Kolkailah AA, Rutan C, Walchok J, Williams IV JH, et al. Longitudinal trends in cardiovascular risk factor profiles and complications among patients hospitalized for COVID-19 infection: results from the American Heart Association COVID-19 Cardiovascular Disease Registry. Circ Cardiovasc Qual Outcomes. 2023:e009652.

  29. Li Y, Li M, Wang M, Zhou Y, Chang J, Xian Y, et al. Acute cerebrovascular disease following COVID-19: a single center, retrospective, observational study. Stroke Vasc Neurol. 2020;5(3).

  30. Bilaloglu S, Aphinyanaphongs Y, Jones S, Iturrate E, Hochman J, Berger JS. Thrombosis in hospitalized patients with COVID-19 in a New York City health system. JAMA. 2020;324(8):799–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lewek J, Jatczak-Pawlik I, Maciejewski M, Jankowski P, Banach M. COVID-19 and cardiovascular complications–preliminary results of the LATE-COVID study. Arch Med Sci. 2021;17(3):818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Perego E, Callard F, Stras L, Melville-Johannesson B, Pope R, Alwan N. Why we need to keep using the patient made term “Long Covid. 2020.

  33. Mendelson M, Nel J, Blumberg L, Madhi S, Dryden M, Stevens W, et al. Long-COVID: an evolving problem with an extensive impact. S Afr Med J. 2021;111(1):10–2.

  34. Sorokin AV, Karathanasis SK, Yang ZH, Freeman L, Kotani K, Remaley AT. COVID-19—associated dyslipidemia: implications for mechanism of impaired resolution and novel therapeutic approaches. FASEB J. 2020;34(8):9843.

    Article  CAS  PubMed  Google Scholar 

  35. Roccaforte V, Daves M, Lippi G, Spreafico M, Bonato C. Altered lipid profile in patients with COVID-19 infection. J Lab Precis Med. 2021;6:2-.

  36. Chen Y, Yao H, Zhang N, Wu J, Gao S, Guo J, et al. Proteomic analysis identifies prolonged disturbances in pathways related to cholesterol metabolism and myocardium function in the COVID-19 recovery stage. J Proteome Res. 2021;20(7):3463–74.

    Article  CAS  PubMed  Google Scholar 

  37. Jone PN, John A, Oster ME, Allen K, Tremoulet AH, Saarel EV, et al. SARS-CoV-2 infection and associated cardiovascular manifestations and complications in children and young adults: a scientific statement from the American Heart Association. Circulation. 2022;145(19):e1037–52.

    Article  CAS  PubMed  Google Scholar 

  38. Lasa JJ, Alali A, Anders M, Tume SC, Muscal E, Tejtel SKS, et al. Cardiovascular sequelae from COVID-19: perspectives from a paediatric cardiac ICU. Cardiol Young. 2023;33(1):52–9.

    Article  Google Scholar 

  39. Williams N, Radia T, Harman K, Agrawal P, Cook J, Gupta A. COVID-19 Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in children and adolescents: a systematic review of critically unwell children and the association with underlying comorbidities. Eur J Pediatr. 2021;180:689–97.

    Article  CAS  PubMed  Google Scholar 

  40. Fremed MA, Healy EW, Choi NH, Cheung EW, Choudhury TA, Jiang P, et al. Elevated cardiac biomarkers and outcomes in children and adolescents with acute COVID-19. Cardiol Young. 2023;33(2):183–9.

    Article  PubMed  Google Scholar 

  41. Guner Ozenen G, Akaslan Kara A, Kiymet E, Boncuoglu E, Sahinkaya S, Cem E, et al. The evaluation of troponin I levels and myocarditis in children with COVID-19: a pediatric single-center experience. Pediatr Cardiol. 2023;44(4):873–81.

    Article  PubMed  Google Scholar 

  42. Daniels CJ, Rajpal S, Greenshields JT, Rosenthal GL, Chung EH, Terrin M, et al. Prevalence of clinical and subclinical myocarditis in competitive athletes with recent SARS-CoV-2 infection: results from the big ten COVID-19 cardiac registry. JAMA Cardiol. 2021;6(9):1078–87.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Clark DE, Parikh A, Dendy JM, Diamond AB, George-Durrett K, Fish FA, et al. COVID-19 myocardial pathology evaluation in athletes with cardiac magnetic resonance (COMPETE CMR). Circulation. 2021;143(6):609–12.

    Article  CAS  PubMed  Google Scholar 

  44. Feldstein LR, Rose EB, Horwitz SM, Collins JP, Newhams MM, Son MBF, et al. Multisystem inflammatory syndrome in US children and adolescents. N Engl J Med. 2020;383(4):334–46.

    Article  CAS  PubMed  Google Scholar 

  45. Dufort EM, Koumans EH, Chow EJ, Rosenthal EM, Muse A, Rowlands J, et al. Multisystem inflammatory syndrome in children in New York State. N Engl J Med. 2020;383(4):347–58.

    Article  CAS  PubMed  Google Scholar 

  46. Belay ED, Abrams J, Oster ME, Giovanni J, Pierce T, Meng L, et al. Trends in geographic and temporal distribution of US children with multisystem inflammatory syndrome during the COVID-19 pandemic. JAMA Pediatr. 2021;175(8):837–45.

    Article  PubMed  Google Scholar 

  47. Gilboa SM, Devine OJ, Kucik JE, Oster ME, Riehle-Colarusso T, Nembhard WN, et al. Congenital heart defects in the United States: estimating the magnitude of the affected population in 2010. Circulation. 2016;134(2):101–9.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Ehwerhemuepha L, Roth B, Patel AK, Heutlinger O, Heffernan C, Arrieta AC, et al. Association of congenital and acquired cardiovascular conditions with COVID-19 severity among pediatric patients in the US. JAMA Netw Open. 2022;5(5):e2211967-e.

  49. Pagnesi M, Baldetti L, Beneduce A, Calvo F, Gramegna M, Pazzanese V, et al. Pulmonary hypertension and right ventricular involvement in hospitalised patients with COVID-19. Heart. 2020;106(17):1324–31.

    Article  CAS  PubMed  Google Scholar 

  50. Broberg CS, Kovacs AH, Sadeghi S, Rosenbaum MS, Lewis MJ, Carazo MR, et al. COVID-19 in adults with congenital heart disease. J Am Coll Cardiol. 2021;77(13):1644–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lewis MJ, Anderson BR, Fremed M, Argenio M, Krishnan U, Weller R, et al. Impact of coronavirus disease 2019 (COVID-19) on patients with congenital heart disease across the lifespan: the experience of an academic congenital heart disease center in New York City. J Am Heart Assoc. 2020;9(23):e017580.

  52. Ferrero P, Piazza I, Ciuffreda M. COVID-19 in adult patients with CHD: a matter of anatomy or comorbidities? Cardiol Young. 2020;30(8):1196–8.

    Article  PubMed  Google Scholar 

  53. Wang F, Liu A, Brophy JM, Cohen S, Abrahamowicz M, Paradis G, et al. Determinants of survival in older adults with congenital heart disease newly hospitalized for heart failure. Circ Heart Fail. 2020;13(8):e006490.

  54. Downing KF, Simeone RM, Oster ME, Farr SL. Critical illness among patients hospitalized with acute COVID-19 with and without congenital heart defects. Circulation. 2022;145(15):1182–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Baden LR, El Sahly HM, Essink B, Kotloff K, Frey S, Novak R, et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N Engl J Med. 2021;384(5):403–16. https://doi.org/10.1056/NEJMoa2035389.

    Article  CAS  PubMed  Google Scholar 

  56. Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S, et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N Engl J Med. 2020;383(27):2603–15. https://doi.org/10.1056/NEJMoa2034577.

    Article  CAS  PubMed  Google Scholar 

  57. Sadoff J, Gray G, Vandebosch A, Cárdenas V, Shukarev G, Grinsztejn B, et al. Safety and efficacy of single-dose Ad26.COV2.S vaccine against Covid-19. N Engl J Med. 2021;384(23):2187–201. https://doi.org/10.1056/NEJMoa2101544.

  58. Heath PT, Galiza EP, Baxter DN, Boffito M, Browne D, Burns F, et al. Safety and efficacy of NVX-CoV2373 Covid-19 vaccine. N Engl J Med. 2021;385(13):1172–83. https://doi.org/10.1056/NEJMoa2107659.

    Article  CAS  PubMed  Google Scholar 

  59. Madewell ZJ, Yang Y, Longini IM, Halloran ME, Dean NE. Factors associated with household transmission of SARS-CoV-2: an updated systematic review and meta-analysis. JAMA Netw Open. 2021;4(8):e2122240-e.

  60. Riemersma KK, Haddock LA, 3rd, Wilson NA, Minor N, Eickhoff J, Grogan BE, et al. Shedding of infectious SARS-CoV-2 despite vaccination. PLoS Pathog. 2022;18(9):e1010876. https://doi.org/10.1371/journal.ppat.1010876.

  61. Shah AS, Gribben C, Bishop J, Hanlon P, Caldwell D, Wood R, et al. Effect of vaccination on transmission of SARS-CoV-2. N Engl J Med. 2021;385(18):1718–20.

    Article  CAS  PubMed  Google Scholar 

  62. Harris RJ, Hall JA, Zaidi A, Andrews NJ, Dunbar JK, Dabrera G. Effect of vaccination on household transmission of SARS-CoV-2 in England. N Engl J Med. 2021;385(8):759–60.

    Article  PubMed  Google Scholar 

  63. Madewell ZJ, Yang Y, Longini IM, Jr, Halloran ME, Dean NE. Household secondary attack rates of SARS-CoV-2 by variant and vaccination status: an updated systematic review and meta-analysis. JAMA Netw Open. 2022;5(4):e229317-e. https://doi.org/10.1001/jamanetworkopen.2022.9317.

  64. Eyre DW, Taylor D, Purver M, Chapman D, Fowler T, Pouwels KB, et al. Effect of Covid-19 vaccination on transmission of alpha and delta variants. N Engl J Med. 2022;386(8):744–56. https://doi.org/10.1056/NEJMoa2116597.

    Article  CAS  PubMed  Google Scholar 

  65. Núñez-Gil IJ, Feltes G, Viana-Llamas MC, Raposeiras-Roubin S, Romero R, Alfonso-Rodríguez E, et al. Post-COVID-19 symptoms and heart disease: incidence, prognostic factors, outcomes and vaccination: results from a multi-center international prospective registry (HOPE 2). J Clin Med. 2023;12(2):706.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Akhtar Z, Trent M, Moa A, Tan TC, Fröbert O, MacIntyre CR. The impact of COVID-19 and COVID vaccination on cardiovascular outcomes. Eur Heart J Suppl. 2023;25(Supplement_A):A42-A9. https://doi.org/10.1093/eurheartjsupp/suac123.

  67. Parodi JB, Indavere A, Jacob PB, Toledo GC, Micali RG, Waisman G, et al. Impact of COVID-19 vaccination in post-COVID cardiac complications. Vaccine. 2023;41(8):1524–8.

    Article  PubMed  PubMed Central  Google Scholar 

  68. •• Jiang J, Chan L, Kauffman J, Narula J, Charney AW, Oh W, et al. Impact of vaccination on major adverse cardiovascular events in patients with COVID-19 infection. J Am Coll Cardiol. 2023;81(9):928–30. This article demonstrates that COVID-19 vaccination not only protects individuals from contracting COVID-19, but in instances where an individual does contract COVID-19 the likelihood of major adverse cardiovascular events is reduced.

  69. Ye X, Yan VK, Yiu HHE, Shami JJ, Kang W, Ma T, et al. BNT162b2 or CoronaVac vaccinations are associated with a lower risk of myocardial infarction and stroke after SARS‐CoV‐2 infection among patients with cardiovascular disease. J Am Heart Assoc. 2022:e029291.

  70. Whiteley WN, Ip S, Cooper JA, Bolton T, Keene S, Walker V, et al. Association of COVID-19 vaccines ChAdOx1 and BNT162b2 with major venous, arterial, or thrombocytopenic events: a population-based cohort study of 46 million adults in England. PLoS Med. 2022;19(2):e1003926.

  71. Patone M, Mei XW, Handunnetthi L, Dixon S, Zaccardi F, Shankar-Hari M, et al. Risks of myocarditis, pericarditis, and cardiac arrhythmias associated with COVID-19 vaccination or SARS-CoV-2 infection. Nat Med. 2022;28(2):410–22.

    Article  CAS  PubMed  Google Scholar 

  72. Zambrano LD, Newhams MM, Olson SM, Halasa NB, Price AM, Boom JA, et al. Effectiveness of BNT162b2 (Pfizer-BioNTech) mRNA vaccination against multisystem inflammatory syndrome in children among persons aged 12–18 years—United States, July–December 2021. Morb Mortal Wkly Rep. 2022;71(2):52.

    Article  CAS  Google Scholar 

  73. • Oster ME, Shay DK, Su JR, Gee J, Creech CB, Broder KR, et al. Myocarditis cases reported after mRNA-based COVID-19 vaccination in the US from December 2020 to August 2021. Jama. 2022;327(4):331–40. https://doi.org/10.1001/jama.2021.24110. This manuscript details the incidence and clinical findings of acute myocarditis associated with COVID-19 vaccination from cases reported to the US Vaccine Adverse Event Reporting System.

  74. Chin SE, Bhavsar SM, Corson A, Ghersin ZJ, Kim HS. Cardiac complications associated with COVID-19, MIS-C, and mRNA COVID-19 vaccination. Pediatr Cardiol. 2022;43(3):483–8.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Block JP, Boehmer TK, Forrest CB, Carton TW, Lee GM, Ajani UA, et al. Cardiac complications after SARS-CoV-2 infection and mRNA COVID-19 vaccination—PCORnet, United States, january 2021–January 2022. Morb Mortal Wkly Rep. 2022;71(14):517.

    Article  CAS  Google Scholar 

  76. Goddard K, Donahue JG, Lewis N, Hanson KE, Weintraub ES, Fireman B, et al. Safety of COVID-19 mRNA vaccination among young children in the vaccine safety datalink. Pediatrics. 2023;152(1). https://doi.org/10.1542/peds.2023-061894.

  77. Hause AM, Marquez P, Zhang B, Myers TR, Gee J, Su JR, et al. COVID-19 mRNA vaccine safety among children aged 6 months–5 years—United States, June 18, 2022–August 21, 2022. Morb Mortal Wkly Rep. 2022;71(35):1115.

    Article  CAS  Google Scholar 

  78. Davis C, Logan N, Tyson G, Orton R, Harvey WT, Perkins JS, et al. Reduced neutralisation of the Delta (B.1.617.2) SARS-CoV-2 variant of concern following vaccination. PLOS Pathogens. 2021;17(12):e1010022. https://doi.org/10.1371/journal.ppat.1010022.

  79. Pouwels KB, Pritchard E, Matthews PC, Stoesser N, Eyre DW, Vihta KD, et al. Effect of Delta variant on viral burden and vaccine effectiveness against new SARS-CoV-2 infections in the UK. Nat Med. 2021;27(12):2127–35. https://doi.org/10.1038/s41591-021-01548-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Noori M, Nejadghaderi SA, Arshi S, Carson-Chahhoud K, Ansarin K, Kolahi AA, et al. Potency of BNT162b2 and mRNA-1273 vaccine-induced neutralizing antibodies against severe acute respiratory syndrome-CoV-2 variants of concern: A systematic review of in vitro studies. Rev Med Vir. 2022;32(2):e2277. https://doi.org/10.1002/rmv.2277.

  81. Bayart JL, Douxfils J, Gillot C, David C, Mullier F, Elsen M, et al. Waning of IgG, total and neutralizing antibodies 6 months post-vaccination with BNT162b2 in healthcare workers. Vaccines. 2021;9(10):1092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Israel A, Merzon E, Schäffer AA, Shenhar Y, Green I, Golan-Cohen A, et al. Elapsed time since BNT162b2 vaccine and risk of SARS-CoV-2 infection: test negative design study. BMJ. 2021;375:e067873. https://doi.org/10.1136/bmj-2021-067873.

  83. Menegale F, Manica M, Zardini A, Guzzetta G, Marziano V, d'Andrea V, et al. Evaluation of waning of SARS-CoV-2 vaccine–induced immunity: a systematic review and meta-analysis. JAMA Netw Open. 2023;6(5):e2310650-e. https://doi.org/10.1001/jamanetworkopen.2023.10650.

  84. Ferdinands JM, Rao S, Dixon BE, Mitchell PK, DeSilva MB, Irving SA, et al. Waning of vaccine effectiveness against moderate and severe covid-19 among adults in the US from the VISION network: test negative, case-control study. BMJ. 2022;379:e072141. https://doi.org/10.1136/bmj-2022-072141.

  85. Tan WC, Tan JYJ, Lim JSJ, Tan RYC, Lee ARYB, Leong FL, et al. COVID-19 severity and waning immunity after up to 4 mRNA vaccine doses in 73 608 patients with cancer and 621 475 matched controls in Singapore: a nationwide cohort study. JAMA Oncol. 2023. https://doi.org/10.1001/jamaoncol.2023.2271.

    Article  PubMed  PubMed Central  Google Scholar 

  86. National Institute of Allergy and Infectious Diseases. https://www.niaid.nih.gov/diseases-conditions/next-generation-covid-19-vaccines. Accessed 7 Aug 2023.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew E. Oster.

Ethics declarations

Conflict of Interest

Dr. Kamidani’s institution has received research support from Pfizer, Emergent BioSolutions, Meissa, the US Centers for Disease Control and Prevention, and the National Institutes of Health. Dr. Kamidani has also received personal fees from the American Academy of Pediatrics. Dr. Oster reports support for a Pfizer-funded NIH grant to study COVID vaccine-associated myocarditis. Dr. Fundora has nothing to disclose.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fundora, M.P., Kamidani, S. & Oster, M.E. COVID Vaccination as a Strategy for Cardiovascular Disease Prevention. Curr Cardiol Rep 25, 1327–1335 (2023). https://doi.org/10.1007/s11886-023-01950-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11886-023-01950-2

Keywords

Navigation