Skip to main content
Log in

The Effects of MicroRNAs in the Development of Heart Failure

  • Heart Failure (HJ Eisen, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Heart failure is a severe clinical syndrome with complex and unclarified mechanisms, and it poses a serious threat to human health. MicroRNA, a non-coding RNA, can directly bind to target genes and regulate their expression. The important role of microRNAs in the development of HF has become a hot topic of research in recent years. This paper summarizes and prospects the mechanisms of microRNAs in regulating cardiac remodeling during heart failure to provide reference ideas for further research and clinical treatment.

Recent Findings

With extensive research, more target genes for microRNAs have been clarified. By modulating various molecules, microRNAs affect the contractile function of the myocardium and alter the process of myocardial hypertrophy, myocyte loss, and fibrosis, thereby interfering with the process of cardiac remodeling and exerting an important effect in the process of heart failure. Based on the above mechanism, microRNAs have promising applications in the diagnosis and treatment of heart failure.

Summary

MicroRNAs form a complex post-transcriptional control mechanism of gene expression, and the increase or decrease of their content during heart failure largely alters the course of cardiac remodeling. By continuously identifying their target genes, it is expected to achieve more precise diagnosis and treatment of this important topic of heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Luscher TF. Heart failure: the cardiovascular epidemic of the 21st century. Eur Heart J. 2015;36(7):395–7.

    Article  PubMed  Google Scholar 

  2. Ponikowski P, et al. Heart failure: preventing disease and death worldwide. ESC Heart Fail. 2014;1(1):4–25.

    Article  PubMed  Google Scholar 

  3. Azevedo PS, et al. Cardiac remodeling: concepts, clinical impact, pathophysiological mechanisms and pharmacologic treatment. Arq Bras Cardiol. 2016;106(1):62–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Cohn JN, Ferrari R, Sharpe N. Cardiac remodeling—concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. J Am Coll Cardiol. 2000;35(3):569–82.

    Article  CAS  PubMed  Google Scholar 

  5. Konstam MA, et al. Left Ventricular remodeling in heart failure: current concepts in clinical significance and assessment. JACC: Cardiovasc Imaging. 2011;4(1):98–108.

  6. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136(2):215–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.

    Article  CAS  PubMed  Google Scholar 

  8. Shukla GC, Singh J, Barik S. MicroRNAs: processing, maturation, target recognition and regulatory functions. Mol Cell Pharmacol. (Windsor Mill, Md.). 2011;3(3):83–92.

  9. Shivdasani RA. MicroRNAs: regulators of gene expression and cell differentiation. Blood. 2006;108(12):3646–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ovchinnikova ES, et al. Signature of circulating microRNAs in patients with acute heart failure. Eur J Heart Fail. 2016;18(4):414–23.

    Article  CAS  PubMed  Google Scholar 

  11. Sygitowicz G, Maciejak-Jastrzebska A, Sitkiewicz D. MicroRNAs in the development of left ventricular remodeling and postmyocardial infarction heart failure. Pol Arch Intern Med. 2020;130(1):59–65.

    PubMed  Google Scholar 

  12. Mann DL, Bristow MR. Mechanisms and models in heart failure: the biomechanical model and beyond. Circulation. 2005;111(21):2837–49.

    Article  PubMed  Google Scholar 

  13. Bernardo BC, et al. Silencing of miR-34a attenuates cardiac dysfunction in a setting of moderate, but not severe, hypertrophic cardiomyopathy. PLoS ONE. 2014;9(2):e90337–e90337.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hu J, et al. RBFox2-miR-34a-Jph2 axis contributes to cardiac decompensation during heart failure. Proc Natl Acad Sci. 2019;116(13):6172–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sipido KR, et al. Altered Na/Ca exchange activity in cardiac hypertrophy and heart failure: a new target for therapy? Cardiovasc Res. 2002;53(4):782–805.

    Article  CAS  PubMed  Google Scholar 

  16. Stølen TO, et al. Exercise training reveals micro-RNAs associated with improved cardiac function and electrophysiology in rats with heart failure after myocardial infarction. J Mol Cell Cardiol. 2020;148:106–19.

    Article  PubMed  Google Scholar 

  17. • Younis NN, et al. Pachymic acid attenuated doxorubicin-induced heart failure by suppressing miR-24 and preserving cardiac junctophilin-2 in rats. Int J Mol Sci. 2021;22(19): p. 10710. This paper showed the possibility of using PA alone or as an adjuvant therapy with LN to attain better management of HF patients, especially those who developed tolerance toward LN.

  18. Santulli G, Iaccarino G. Adrenergic signaling in heart failure and cardiovascular aging. Maturitas. 2016;93:65–72.

  19. Bao M, et al. Let-7 in cardiovascular diseases, heart development and cardiovascular differentiation from stem cells. Int J Mol Sci. 2013;14(11):23086–102.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Du Y, et al. Let-7a regulates expression of β1-adrenoceptors and forms a negative feedback circuit with the β1-adrenoceptor signaling pathway in chronic ischemic heart failure. Oncotarget. 2017;8(5):8752–64.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Liu Z, et al. Over-expression of microRNA-145 drives alterations in β-adrenergic signaling and attenuates cardiac remodeling in heart failure post myocardial infarction. Aging. 2020;12(12):11603–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. •• Kwon J, et al. In Vivo Stimulation of α- and β-adrenoceptors in mice differentially alters small RNA content of circulating extracellular vesicles. Cells. 2021;10(5):1211. Findings from this study provided novel insight into chronic sympathetic nervous system activation in HF where excessive catecholamines may not only participate in pathological remodeling of the heart but also alter other organs due to secretion of EVs with altered miR content.

  23. Chiong M, et al. Cardiomyocyte death: mechanisms and translational implications. Cell Death Dis. 2011;2: e244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kansakar U, et al. Functional role of microRNAs in regulating cardiomyocyte death. Cells (Basel, Switzerland). 2022;11(6):983.

    CAS  Google Scholar 

  25. Sun S, Wang C, Weng J. MicroRNA‑138‑5p drives the progression of heart failure via inhibiting sirtuin 1 signaling. Mol Med Rep. 2021;23(4).

  26. Lin B, et al. Sirt1 improves heart failure through modulating the NF-κB p65/microRNA-155/BNDF signaling cascade. Aging (Albany, NY.). 2021;13(10):14482–14498.

  27. Li J, et al. ETS2 and microRNA-155 regulate the pathogenesis of heart failure through targeting and regulating GPR18 expression. Exp Ther Med. 2020;19(6):3469–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang Y, Zhang Y. LncRNA CAIF suppresses LPS-induced inflammation and apoptosis of cardiomyocytes through regulating miR-16 demethylation. Immunity, Inflammation and Disease. 2021;9(4):1468–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yan K, et al. Mitochondrial miR-762 regulates apoptosis and myocardial infarction by impairing ND2. Cell Death Dis. 2019;10(7):500.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Chen C, et al. Differentially expressed lnc-NOS2P3-miR-939-5p axis in chronic heart failure inhibits myocardial and endothelial cells apoptosis via iNOS/TNFalpha pathway. J Cell Mol Med. 2020;24(19):11381–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shi Y, et al. Cardiac-specific overexpression of miR-122 induces mitochondria-dependent cardiomyocyte apoptosis and promotes heart failure by inhibiting Hand2. J Cell Mol Med. 2021;25(11):5326–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang Z, et al. Knockdown of MicroRNA-122 Protects H9c2 Cardiomyocytes from hypoxia-induced apoptosis and promotes autophagy. Med Sci Monit. 2017;23:4284–90.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Wang Y, et al. microRNA-454-mediated NEDD4-2/TrkA/cAMP axis in heart failure: Mechanisms and cardioprotective implications. J Cell Mol Med. 2021;25(11):5082–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang B, et al. MiR-125b inhibits cardiomyocyte apoptosis by targeting BAK1 in heart failure. Mol Med. (Cambridge, Mass.). 2021:27(1):72–72.

  35. Sun F, et al. LncRNA KCNQ1OT1 attenuates sepsis-induced myocardial injury via regulating miR-192–5p/XIAP axis. Exp Biol Med. (Maywood, N.J.). 2020;245(7):620–630.

  36. Chen K, Zhang B, Sun Z. MicroRNA 379 regulates Klotho deficiency-induced cardiomyocyte apoptosis via repression of Smurf1. Hypertension. 2021;78(2):342–52.

    Article  CAS  PubMed  Google Scholar 

  37. Chun Y, Kim J. Autophagy: an essential degradation program for cellular homeostasis and life. Cells (Basel, Switzerland). 2018;7(12):278.

    CAS  Google Scholar 

  38. Galluzzi L, et al. Molecular definitions of autophagy and related processes. EMBO J. 2017;36(13):1811–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Qi H, et al. MSTN attenuates cardiac hypertrophy through inhibition of excessive cardiac autophagy by blocking AMPK /mTOR and miR-128/PPARgamma/NF-kappaB. Mol Ther Nucleic Acids. 2020;19:507–22.

    Article  CAS  PubMed  Google Scholar 

  40. Zhan H, et al. Downregulation of miR-128 ameliorates Ang II-induced cardiac remodeling via SIRT1/PIK3R1 multiple targets. Oxid Med Cell Longev. 2021;2021:8889195–217.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Jin L, et al. MicroRNA302–367-PI3K-PTEN-AKT-mTORC1 pathway promotes the development of cardiac hypertrophy through controlling autophagy. In vitro cellular & developmental biology. Animal. 2019;56(2):112–119.

  42. Xu X, et al. MicroRNA-17-5p Promotes cardiac hypertrophy by targeting Mfn2 to inhibit autophagy. Cardiovasc Toxicol. 2021;21(9):759–71.

    Article  CAS  PubMed  Google Scholar 

  43. Zhang Y, et al. MicroRNA-34c-5p provokes isoprenaline-induced cardiac hypertrophy by modulating autophagy via targeting ATG4B. Acta Pharm Sin B. 2022;12(5):2374–90.

    Article  CAS  PubMed  Google Scholar 

  44. Wu K, et al. MicroRNA-520d-3p alleviates hypoxia/reoxygenation-induced damage in human cardiomyocytes by targeting ATG-12. J Thromb Thrombolysis. 2021;52(2):429–39.

    Article  CAS  PubMed  Google Scholar 

  45. Chen YQ, et al. Knockdown of lncRNA TTTY15 alleviates myocardial ischemia-reperfusion injury through the miR-374a-5p/FOXO1 axis. IUBMB Life. 2021;73(1):273–85.

    Article  CAS  PubMed  Google Scholar 

  46. Zhang J, et al. Programmed necrosis in cardiomyocytes: mitochondria, death receptors and beyond. Br J Pharmacol. 2019;176(22):4319–39.

    Article  CAS  PubMed  Google Scholar 

  47. Liang Y, et al. Silenced SOX2-OT alleviates ventricular arrhythmia associated with heart failure by inhibiting NLRP3 expression via regulating miR-2355-3p. Immun Inflamm Dis. 2021;9(1):255–64.

    Article  CAS  PubMed  Google Scholar 

  48. Wang K, et al. The long noncoding RNA NRF regulates programmed necrosis and myocardial injury during ischemia and reperfusion by targeting miR-873. Cell Death Differ. 2016;23(8):1394–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang JX, et al. MicroRNA-103/107 regulate programmed necrosis and myocardial ischemia/reperfusion injury through targeting FADD. Circ Res. 2015;117(4):352–63.

    Article  CAS  PubMed  Google Scholar 

  50. Bernardo BC, et al. Molecular distinction between physiological and pathological cardiac hypertrophy: experimental findings and therapeutic strategies. Pharmacol Ther. 2010;128(1):191–227.

    Article  CAS  PubMed  Google Scholar 

  51. Wehbe N, et al. MicroRNAs in cardiac hypertrophy. Int J Mol Sci. 2019;20(19):4714.

    Article  CAS  PubMed Central  Google Scholar 

  52. Bei Y, et al. Extracellular vesicles in cardiovascular theranostics. Theranostics. 2017;7(17):4168–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tian C, et al. Myocardial infarction-induced microRNA-enriched exosomes contribute to cardiac Nrf2 dysregulation in chronic heart failure. Am J Physiol Heart Circ Physiol. 2018;314(5):H928–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Tian C, et al. Extracellular vesicular MicroRNA-27a contributes to cardiac hypertrophy in chronic heart failure. J Mol Cell Cardiol. 2020;143:120–31.

    Article  CAS  PubMed  Google Scholar 

  55. Wang T, et al. NFATc3-dependent expression of miR-153-3p promotes mitochondrial fragmentation in cardiac hypertrophy by impairing mitofusin-1 expression. Theranostics. 2020;10(2):553–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Guo H, et al. mir15a/mir16‐1 cluster and its novel targeting molecules negatively regulate cardiac hypertrophy. Clin Transl Med. 2020;10(8):e242–n/a.

  57. Asensio-Lopez MC, et al. The miRNA199a/SIRT1/P300/Yy1/sST2 signaling axis regulates adverse cardiac remodeling following MI. Sci Rep. 2021;11(1):3915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yan H, et al. Adeno-associated virus-mediated delivery of anti-miR-199a tough decoys attenuates cardiac hypertrophy by targeting PGC-1alpha. Mol Ther Nucleic Acids. 2021;23:406–17.

    Article  CAS  PubMed  Google Scholar 

  59. Li K, Lin Y, Li C. MiR-338-5p ameliorates pathological cardiac hypertrophy by targeting CAMKIIdelta. Arch Pharm Res. 2019;42(12):1071–80.

    Article  CAS  PubMed  Google Scholar 

  60. Fan P, et al. MiR-590-5p inhibits pathological hypertrophy mediated heart failure by targeting RTN4. J Mol Histol. 2021;52(5):955–64.

    Article  PubMed  Google Scholar 

  61. Chen H, Cai K. DSCAM-AS1 mediates pro-hypertrophy role of GRK2 in cardiac hypertrophy aggravation via absorbing miR-188–5p. In vitro cellular & developmental biology. Animal. 2020;56(4):286–295.

  62. Long Y, Wang L, Li Z. SP1-induced SNHG14 aggravates hypertrophic response in in vitro model of cardiac hypertrophy via up-regulation of PCDH17. J Cell Mol Med. 2020;24(13):7115–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yang X, et al. Long Noncoding RNA FTX reduces hypertrophy of neonatal mouse cardiac myocytes and regulates the PTEN/PI3K/Akt signaling pathway by sponging MicroRNA-22. Med Sci Monit. 2019;25:9609–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhang M, et al. Long non-coding RNA cardiac hypertrophy-associated regulator governs cardiac hypertrophy via regulating miR-20b and the downstream PTEN/AKT pathway. J Cell Mol Med. 2019;23(11):7685–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Frangogiannis NG. Cardiac fibrosis: Cell biological mechanisms, molecular pathways and therapeutic opportunities. Mol Aspects Med. 2019;65:70–99.

    Article  CAS  PubMed  Google Scholar 

  66. Creemers EE, van Rooij E. Function and therapeutic potential of noncoding rnas in cardiac fibrosis. Circ Res. 2016;118(1):108–18.

    Article  CAS  PubMed  Google Scholar 

  67. Zhang X, et al. The microRNA in ventricular remodeling: the miR-30 family. Biosci Rep. 2019;39(8):1.

    Article  Google Scholar 

  68. Wang N, et al. Renal sympathetic denervation alleviates myocardial fibrosis following isoproterenol-induced heart failure. Mol Med Rep. 2017;16(4):5091–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Xu J, et al. MicroRNA-30c suppresses the pro-fibrogenic effects of cardiac fibroblasts induced byTGF-β1 and prevents atrial fibrosis by targeting TGF βRII. J Cell Mol Med. 2018;22(6):3045–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Li J, et al. Mir-30d regulates cardiac remodeling by intracellular and paracrine signaling. Circ Res. 2021;128(1):e1–23.

    Article  CAS  PubMed  Google Scholar 

  71. Pu L, et al. Exosomes released from mesenchymal stem cells overexpressing microRNA-30e ameliorate heart failure in rats with myocardial infarction. American journal of translational research. 2021;13(5):4007–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Yuan J, et al. Mir-21 Promotes cardiac fibrosis after myocardial infarction via targeting smad7. Cell Physiol Biochem. 2017;42(6):2207–19.

    Article  CAS  PubMed  Google Scholar 

  73. Zhou XL, et al. miR-21 promotes cardiac fibroblast-to-myofibroblast transformation and myocardial fibrosis by targeting Jagged1. J Cell Mol Med. 2018;22(8):3816–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Li D, et al. MicroRNA-21 mediates a positive feedback on angiotensin II-induced myofibroblast transformation. J Inflamm Res. 2020;13:1007–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Cao W, Shi P, Ge J. miR-21 enhances cardiac fibrotic remodeling and fibroblast proliferation via CADM1/STAT3 pathway. BMC Cardiovasc Disord. 2017;17(1):88–88.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Ramanujam D, et al. MicroRNA-21-dependent macrophage-to-fibroblast signaling determines the cardiac response to pressure overload. Circulation. 2021;143(15):1513–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Verjans R, et al. MicroRNA-221/222 family counteracts myocardial fibrosis in pressure overload–induced heart failure. Hypertension. 2018;71(2):280–8.

    Article  CAS  PubMed  Google Scholar 

  78. Zhou Y, Richards AM, Wang P. MicroRNA-221 is cardioprotective and anti-fibrotic in a rat model of myocardial infarction. Molecular therapy Nucleic acids. 2019;17:185–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zhou Y, et al. microRNA-221 inhibits latent TGF-β1 activation through targeting thrombospondin-1 to attenuate kidney failure-induced cardiac fibrosis. Molecular therapy Nucleic acids. 2020;22:803–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wang Q, et al. miR‑320a in serum exosomes promotes myocardial fibroblast proliferation via regulating the PIK3CA/Akt/mTOR signaling pathway in HEH2 cells. Exp Ther Med. 2021;22(2).

  81. Li F, et al. miR-320 accelerates chronic heart failure with cardiac fibrosis through activation of the IL6/STAT3 axis. Aging (Albany NY). 2021;13(18):22516–27.

    Article  CAS  PubMed  Google Scholar 

  82. Zhang X, et al. The double face of miR-320: cardiomyocytes-derived miR-320 deteriorated while fibroblasts-derived miR-320 protected against heart failure induced by transverse aortic constriction. Signal Transduct Target Ther. 2021;6(1):69–69.

    Article  CAS  PubMed Central  Google Scholar 

  83. Vegter EL, et al. MicroRNAs in heart failure: from biomarker to target for therapy. Eur J Heart Fail. 2016;18(5):457–68.

    Article  CAS  PubMed  Google Scholar 

  84. Poller W, et al. Non-coding RNAs in cardiovascular diseases: diagnostic and therapeutic perspectives. Eur Heart J. 2018;39(29):2704–16.

    Article  CAS  PubMed  Google Scholar 

  85. Kennel PJ, Schulze PC. A review on the evolving roles of MiRNA-based technologies in diagnosing and treating heart failure. Cells. 2021;10(11).

  86. Halushka PV, Goodwin AJ, Halushka MK. Opportunities for microRNAs in the crowded field of cardiovascular biomarkers. Annu Rev Pathol. 2019;14:211–38.

    Article  CAS  PubMed  Google Scholar 

  87. Chen Y, et al. Heart failure with reduced ejection fraction (HFrEF) and preserved ejection fraction (HFpEF): the diagnostic value of circulating microRNAs. Cells (Basel, Switzerland). 2019;8(12):1651.

    Google Scholar 

  88. Su Y, et al. Circulating miR-19b-3p as a novel prognostic biomarker for acute heart failure. J Am Heart Assoc. 2021;10(20): e022304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ding H, et al. Combined detection of miR-21–5p, miR-30a-3p, miR-30a-5p, miR-155–5p, miR-216a and miR-217 for screening of early heart failure diseases. Biosci Rep. 2020;40(3).

  90. Taubel J, et al. Novel antisense therapy targeting microRNA-132 in patients with heart failure: results of a first-in-human Phase 1b randomized, double-blind, placebo-controlled study. Eur Heart J. 2021;42(2):178–88.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Nos. 31971046).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang-Kai Wang.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, YT., Xiao, YC., Xu, Yl. et al. The Effects of MicroRNAs in the Development of Heart Failure. Curr Cardiol Rep 25, 747–759 (2023). https://doi.org/10.1007/s11886-023-01895-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11886-023-01895-6

Keywords

Navigation