Skip to main content

Advertisement

Log in

Prediction of Sudden Cardiac Death: Looking Beyond Ejection Fraction

  • Invasive Electrophysiology and Pacing (EK Heist, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Sudden cardiac death (SCD) is a major public health burden accounting for 15–20% of global mortality. Contemporary guidelines for SCD prevention are centered around the presence of low left ventricular ejection fraction, although the majority of SCD accrues in those not meeting contemporary criteria for SCD prevention. The goal of this review is to elaborate on the contemporary landscape of SCD prediction tools and further highlight gaps and opportunities in SCD prediction and prevention.

Recent Findings

There have been considerable advancements in both non-invasive and invasive measures for SCD risk prediction including clinical morbidities, electrocardiographic measures, cardiac imaging (nuclear, magnetic resonance, computed tomography), serum biomarkers, genetics, and invasively assessed electrophysiological characteristics. Novel methodological approaches including application of machine learning, incorporation of competing risk, and use of computational modeling have underscored a future of personalized risk prediction.

Summary

SCD remains a vital public health challenge. Emerging methods highlight opportunities to improve SCD prediction in the majority of those at risk who do not meet contemporary criteria for SCD prevention therapies. Future efforts will need to focus on easily deployed, multi-parametric risk models that enrich for SCD risk and not for competing mortality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Langer C, Lutz M, Eden M, Lüdde M, Hohnhorst M, Gierloff C, et al. Hypertrophic cardiomyopathy in cardiac CT: a validation study on the detection of intramyocardial fibrosis in consecutive patients. Int J Cardiovasc Imaging. 2014;30(3):659–67. https://doi.org/10.1007/s10554-013-0358-8.

    Article  CAS  PubMed  Google Scholar 

  2. Takigawa M, Duchateau J, Sacher F, Martin R, Vlachos K, Kitamura T, et al. Are wall thickness channels defined by computed tomography predictive of isthmuses of postinfarction ventricular tachycardia? Heart Rhythm. 2019;16(11):1661–8. https://doi.org/10.1016/j.hrthm.2019.06.012.

    Article  PubMed  Google Scholar 

  3. Jacobson AF, Senior R, Cerqueira MD, Wong ND, Thomas GS, Lopez VA, et al. Myocardial iodine-123 meta-iodobenzylguanidine imaging and cardiac events in heart failure. Results of the prospective ADMIRE-HF (AdreView Myocardial Imaging for Risk Evaluation in Heart Failure) study. J Am Coll Cardiol. 2010;55(20):2212–21. https://doi.org/10.1016/j.jacc.2010.01.014.

  4. Fallavollita JA, Heavey BM, Luisi AJ Jr, Michalek SM, Baldwa S, Mashtare TL Jr, et al. Regional myocardial sympathetic denervation predicts the risk of sudden cardiac arrest in ischemic cardiomyopathy. J Am Coll Cardiol. 2014;63(2):141–9. https://doi.org/10.1016/j.jacc.2013.07.096.

    Article  PubMed  Google Scholar 

  5. Blankstein R, Osborne M, Naya M, Waller A, Kim CK, Murthy VL, et al. Cardiac positron emission tomography enhances prognostic assessments of patients with suspected cardiac sarcoidosis. J Am Coll Cardiol. 2014;63(4):329–36. https://doi.org/10.1016/j.jacc.2013.09.022.

    Article  PubMed  Google Scholar 

  6. Tung R, Bauer B, Schelbert H, Lynch JP 3rd, Auerbach M, Gupta P, et al. Incidence of abnormal positron emission tomography in patients with unexplained cardiomyopathy and ventricular arrhythmias: the potential role of occult inflammation in arrhythmogenesis. Heart Rhythm. 2015;12(12):2488–98. https://doi.org/10.1016/j.hrthm.2015.08.014.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lal M, Chen C, Newsome B, Masha L, Camacho SA, Masri A, et al. Genetic cardiomyopathy masquerading as cardiac sarcoidosis. J Am Coll Cardiol. 2023;81(1):100–2. https://doi.org/10.1016/j.jacc.2022.10.021.

    Article  CAS  PubMed  Google Scholar 

  8. Li A, Tung R, Shivkumar K, Bradfield JS. Brugada syndrome-malignant phenotype associated with acute cardiac inflammation? HeartRhythm Case Rep. 2017;3(8):384–8. https://doi.org/10.1016/j.hrcr.2017.04.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Norby FL, Nakamura K, Fu Q, Venkatraman V, Sundararaman N, Mastali M, et al. A panel of blood biomarkers unique to sudden cardiac arrest. Heart Rhythm. 2022. https://doi.org/10.1016/j.hrthm.2022.12.014.

    Article  PubMed  Google Scholar 

  10. Silverman MG, Yeri A, Moorthy MV, Camacho Garcia F, Chatterjee NA, Glinge CSA, et al. Circulating miRNAs and risk of sudden death in patients with coronary heart disease. JACC Clin Electrophysiol. 2020;6(1):70–9. https://doi.org/10.1016/j.jacep.2019.08.011.

    Article  PubMed  Google Scholar 

  11. Empana JP, Jouven X, Canouï-Poitrine F, Luc G, Tafflet M, Haas B, et al. C-reactive protein, interleukin 6, fibrinogen and risk of sudden death in European middle-aged men: the PRIME study. Arterioscler Thromb Vasc Biol. 2010;30(10):2047–52. https://doi.org/10.1161/atvbaha.110.208785.

    Article  CAS  PubMed  Google Scholar 

  12. Albert CM, Ma J, Rifai N, Stampfer MJ, Ridker PM. Prospective study of C-reactive protein, homocysteine, and plasma lipid levels as predictors of sudden cardiac death. Circulation. 2002;105(22):2595–9. https://doi.org/10.1161/01.cir.0000017493.03108.1c.

    Article  CAS  PubMed  Google Scholar 

  13. Albert CM, Campos H, Stampfer MJ, Ridker PM, Manson JE, Willett WC, et al. Blood levels of long-chain n-3 fatty acids and the risk of sudden death. N Engl J Med. 2002;346(15):1113–8. https://doi.org/10.1056/NEJMoa012918.

    Article  CAS  PubMed  Google Scholar 

  14. Deo R, Sotoodehnia N, Katz R, Sarnak MJ, Fried LF, Chonchol M, et al. Cystatin C and sudden cardiac death risk in the elderly. Circ Cardiovasc Qual Outcomes. 2010;3(2):159–64. https://doi.org/10.1161/circoutcomes.109.875369.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Tomaschitz A, Pilz S, Ritz E, Morganti A, Grammer T, Amrein K, et al. Associations of plasma renin with 10-year cardiovascular mortality, sudden cardiac death, and death due to heart failure. Eur Heart J. 2011;32(21):2642–9. https://doi.org/10.1093/eurheartj/ehr150.

    Article  CAS  PubMed  Google Scholar 

  16. Butt JH, Yafasova A, Elming MB, Dixen U, Nielsen JC, Haarbo J, et al. NT-proBNP and ICD in nonischemic systolic heart failure: extended follow-up of the DANISH trial. JACC Heart failure. 2022;10(3):161–71. https://doi.org/10.1016/j.jchf.2022.01.003.

    Article  PubMed  Google Scholar 

  17. Deo R, Albert CM. Epidemiology and genetics of sudden cardiac death. Circulation. 2012;125(4):620–37. https://doi.org/10.1161/circulationaha.111.023838.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Noseworthy PA, Havulinna AS, Porthan K, Lahtinen AM, Jula A, Karhunen PJ, et al. Common genetic variants, QT interval, and sudden cardiac death in a Finnish population-based study. Circ Cardiovasc Genet. 2011;4(3):305–11. https://doi.org/10.1161/circgenetics.110.959049.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Schunkert H, König IR, Kathiresan S, Reilly MP, Assimes TL, Holm H, et al. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat Genet. 2011;43(4):333–8. https://doi.org/10.1038/ng.784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sandhu RK, Dron JS, Liu Y, Moorthy MV, Chatterjee NA, Ellinor PT, et al. Polygenic risk score predicts sudden death in patients with coronary disease and preserved systolic function. J Am Coll Cardiol. 2022;80(9):873–83. https://doi.org/10.1016/j.jacc.2022.05.049.

    Article  PubMed  Google Scholar 

  21. Albert CM, Nam EG, Rimm EB, Jin HW, Hajjar RJ, Hunter DJ, et al. Cardiac sodium channel gene variants and sudden cardiac death in women. Circulation. 2008;117(1):16–23. https://doi.org/10.1161/circulationaha.107.736330.

    Article  CAS  PubMed  Google Scholar 

  22. Bezzina CR, Pazoki R, Bardai A, Marsman RF, de Jong J, Blom MT, et al. Genome-wide association study identifies a susceptibility locus at 21q21 for ventricular fibrillation in acute myocardial infarction. Nat Genet. 2010;42(8):688–91. https://doi.org/10.1038/ng.623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Khera AV, Mason-Suares H, Brockman D, Wang M, VanDenburgh MJ, Senol-Cosar O, et al. Rare genetic variants associated with sudden cardiac death in adults. J Am Coll Cardiol. 2019;74(21):2623–34. https://doi.org/10.1016/j.jacc.2019.08.1060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Trayanova NA, Pashakhanloo F, Wu KC, Halperin HR. Imaging-based simulations for predicting sudden death and guiding ventricular tachycardia ablation. Circ Arrhythm Electrophysiol. 2017;10(7). https://doi.org/10.1161/circep.117.004743.

  25. Arevalo HJ, Vadakkumpadan F, Guallar E, Jebb A, Malamas P, Wu KC, et al. Arrhythmia risk stratification of patients after myocardial infarction using personalized heart models. Nat Commun. 2016;7:11437. https://doi.org/10.1038/ncomms11437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rogers AJ, Selvalingam A, Alhusseini MI, Krummen DE, Corrado C, Abuzaid F, et al. Machine learned cellular phenotypes in cardiomyopathy predict sudden death. Circ Res. 2021;128(2):172–84. https://doi.org/10.1161/circresaha.120.317345.

    Article  CAS  PubMed  Google Scholar 

  27. O’Mahony C, Jichi F, Pavlou M, Monserrat L, Anastasakis A, Rapezzi C, et al. A novel clinical risk prediction model for sudden cardiac death in hypertrophic cardiomyopathy (HCM risk-SCD). Eur Heart J. 2014;35(30):2010–20. https://doi.org/10.1093/eurheartj/eht439.

    Article  PubMed  Google Scholar 

  28. Zeppenfeld K, Tfelt-Hansen J, de Riva M, Winkel BG, Behr ER, Blom NA, et al. 2022 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. Eur Heart J. 2022;43(40):3997–4126. https://doi.org/10.1093/eurheartj/ehac262.

    Article  PubMed  Google Scholar 

  29. Cadrin-Tourigny J, Bosman LP, Nozza A, Wang W, Tadros R, Bhonsale A, et al. A new prediction model for ventricular arrhythmias in arrhythmogenic right ventricular cardiomyopathy. Eur Heart J. 2022;43(32):e1–9. https://doi.org/10.1093/eurheartj/ehac180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chatterjee NA, Tikkanen JT, Panicker GK, Narula D, Lee DC, Kentta T, et al. Simple electrocardiographic measures improve sudden arrhythmic death prediction in coronary disease. Eur Heart J. 2020. https://doi.org/10.1093/eurheartj/ehaa177.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Chugh SS, Reinier K, Uy-Evanado A, Chugh HS, Elashoff D, Young C, et al. Prediction of sudden cardiac death manifesting with documented ventricular fibrillation or pulseless ventricular tachycardia. JACC Clin Electrophysiol. 2022;8(4):411–23. https://doi.org/10.1016/j.jacep.2022.02.004.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Carrick RT, Te Riele A, Gasperetti A, Bosman L, Muller SA, Pendleton C, et al. Longitudinal prediction of ventricular arrhythmic risk in patients with arrhythmogenic right ventricular cardiomyopathy. Circ Arrhythm Electrophysiol. 2022;15(11):e011207. https://doi.org/10.1161/circep.122.011207.

  33. •• Barker J, Li X, Khavandi S, Koeckerling D, Mavilakandy A, Pepper C, et al. Machine learning in sudden cardiac death risk prediction: a systematic review. Europace: European pacing, arrhythmias, and cardiac electrophysiology: Journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology. 2022;24(11):1777–87. https://doi.org/10.1093/europace/euac135Findings from the study summarize the contemporary landscape of machine learning application and limitation for the prediction of sudden cardiac death.

    Article  PubMed  Google Scholar 

  34. Levy WC, Hellkamp AS, Mark DB, Poole JE, Shadman R, Dardas TF, et al. Improving the use of primary prevention implantable cardioverter-defibrillators therapy with validated patient-centric risk estimates. JACC Clin Electrophysiol. 2018;4(8):1089–102. https://doi.org/10.1016/j.jacep.2018.04.015.

    Article  PubMed  Google Scholar 

  35. Levy WC, Li Y, Reed SD, Zile MR, Shadman R, Dardas T, et al. Does the implantable cardioverter-defibrillator benefit vary with the estimated proportional risk of sudden death in heart failure patients? JACC Clin Electrophysiol. 2017;3(3):291–8. https://doi.org/10.1016/j.jacep.2016.09.006.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Fukuoka R, Kohno T, Kohsaka S, Shiraishi Y, Sawano M, Abe T, et al. Prediction of sudden cardiac death in Japanese heart failure patients: international validation of the Seattle Proportional Risk Model. Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology. 2020;22(4):588–97. https://doi.org/10.1093/europace/euaa002.

    Article  PubMed  Google Scholar 

  37. Bilchick KC, Wang Y, Cheng A, Curtis JP, Dharmarajan K, Stukenborg GJ, et al. Seattle heart failure and proportional risk models predict benefit from implantable cardioverter-defibrillators. J Am Coll Cardiol. 2017;69(21):2606–18. https://doi.org/10.1016/j.jacc.2017.03.568.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Dagres N, Peek N, Leclercq C, Hindricks G. The PROFID project. Eur Heart J. 2020;41(39):3781–2. https://doi.org/10.1093/eurheartj/ehaa645.

    Article  PubMed  PubMed Central  Google Scholar 

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Hayashi M, Shimizu W, Albert CM. The spectrum of epidemiology underlying sudden cardiac death. Circ Res. 2015;116(12):1887–906. https://doi.org/10.1161/circresaha.116.304521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tung R, Zimetbaum P, Josephson ME. A critical appraisal of implantable cardioverter-defibrillator therapy for the prevention of sudden cardiac death. J Am Coll Cardiol. 2008;52(14):1111–21. https://doi.org/10.1016/j.jacc.2008.05.058.

    Article  PubMed  Google Scholar 

  3. Stecker EC, Vickers C, Waltz J, Socoteanu C, John BT, Mariani R, et al. Population-based analysis of sudden cardiac death with and without left ventricular systolic dysfunction: two-year findings from the Oregon Sudden Unexpected Death Study. J Am Coll Cardiol. 2006;47(6):1161–6. https://doi.org/10.1016/j.jacc.2005.11.045.

    Article  PubMed  Google Scholar 

  4. Kober L, Thune JJ, Nielsen JC, Haarbo J, Videbaek L, Korup E, et al. Defibrillator implantation in patients with nonischemic systolic heart failure. N Engl J Med. 2016;375(13):1221–30. https://doi.org/10.1056/NEJMoa1608029.

    Article  PubMed  Google Scholar 

  5. Shen L, Jhund PS, Petrie MC, Claggett BL, Barlera S, Cleland JGF, et al. Declining risk of sudden death in heart failure. N Engl J Med. 2017;377(1):41–51. https://doi.org/10.1056/NEJMoa1609758.

    Article  PubMed  Google Scholar 

  6. Risk stratification and survival after myocardial infarction. N Engl J Med. 1983;309(6):331–6. https://doi.org/10.1056/nejm198308113090602.

    Article  Google Scholar 

  7. Carson PA, O’Connor CM, Miller AB, Anderson S, Belkin R, Neuberg GW, et al. Circadian rhythm and sudden death in heart failure: results from Prospective Randomized Amlodipine Survival Trial. J Am Coll Cardiol. 2000;36(2):541–6. https://doi.org/10.1016/s0735-1097(00)00728-2.

    Article  CAS  PubMed  Google Scholar 

  8. Al-Khatib SM, Stevenson WG, Ackerman MJ, Bryant WJ, Callans DJ, Curtis AB, et al. 2017 AHA/ACC/HRS guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: Executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. Heart Rhythm. 2018;15(10):e190–252. https://doi.org/10.1016/j.hrthm.2017.10.035.

    Article  PubMed  Google Scholar 

  9. Chatterjee NA, Moorthy MV, Pester J, Schaecter A, Panicker GK, Narula D, et al. Sudden death in patients with coronary heart disease without severe systolic dysfunction. JAMA Cardiol. 2018;3(7):591–600. https://doi.org/10.1001/jamacardio.2018.1049.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Venkateswaran RV, Moorthy MV, Chatterjee NA, Pester J, Kadish AH, Lee DC, et al. Diabetes and risk of sudden death in coronary artery disease patients without severe systolic dysfunction. JACC Clin Electrophysiol. 2021;7(12):1604–14. https://doi.org/10.1016/j.jacep.2021.05.014.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Junttila MJ, Barthel P, Myerburg RJ, Makikallio TH, Bauer A, Ulm K, et al. Sudden cardiac death after myocardial infarction in patients with type 2 diabetes. Heart Rhythm. 2010;7(10):1396–403. https://doi.org/10.1016/j.hrthm.2010.07.031.

    Article  PubMed  Google Scholar 

  12. Koene RJ, Norby FL, Maheshwari A, Rooney MR, Soliman EZ, Alonso A, et al. Predictors of sudden cardiac death in atrial fibrillation: The Atherosclerosis Risk in Communities (ARIC) study. PLoS One. 2017;12(11):e0187659. https://doi.org/10.1371/journal.pone.0187659.

  13. Albert CM, Chae CU, Grodstein F, Rose LM, Rexrode KM, Ruskin JN, et al. Prospective study of sudden cardiac death among women in the United States. Circulation. 2003;107(16):2096–101. https://doi.org/10.1161/01.Cir.0000065223.21530.11.

    Article  PubMed  Google Scholar 

  14. Yao Y, Xue J, Li B. Obesity and sudden cardiac death: Prevalence, pathogenesis, prevention and intervention. Front Cell Dev Biol. 2022;10:1044923. https://doi.org/10.3389/fcell.2022.1044923.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Chen LY, Sotoodehnia N, Bůžková P, Lopez FL, Yee LM, Heckbert SR, et al. Atrial fibrillation and the risk of sudden cardiac death: the atherosclerosis risk in communities study and cardiovascular health study. JAMA Intern Med. 2013;173(1):29–35. https://doi.org/10.1001/2013.jamainternmed.744.

    Article  PubMed  PubMed Central  Google Scholar 

  16. van der Burgh AC, Stricker BH, Rizopoulos D, Ikram MA, Hoorn EJ, Chaker L. Kidney function and the risk of sudden cardiac death in the general population. Clin Kidney J. 2022;15(8):1524–33. https://doi.org/10.1093/ckj/sfac049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jouven X, Desnos M, Guerot C, Ducimetiere P. Predicting sudden death in the population: the Paris Prospective Study I. Circulation. 1999;99(15):1978–83.

    Article  CAS  PubMed  Google Scholar 

  18. Sandhu RK, Jimenez MC, Chiuve SE, Fitzgerald KC, Kenfield SA, Tedrow UB, et al. Smoking, smoking cessation, and risk of sudden cardiac death in women. Circ Arrhythm Electrophysiol. 2012;5(6):1091–7. https://doi.org/10.1161/circep.112.975219.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Tu SJ, Gallagher C, Elliott AD, Linz D, Pitman BM, Hendriks JML, et al. Alcohol consumption and risk of ventricular arrhythmias and sudden cardiac death: an observational study of 408,712 individuals. Heart Rhythm. 2022;19(2):177–84. https://doi.org/10.1016/j.hrthm.2021.09.040.

    Article  PubMed  Google Scholar 

  20. Albert CM, Manson JE, Cook NR, Ajani UA, Gaziano JM, Hennekens CH. Moderate alcohol consumption and the risk of sudden cardiac death among US male physicians. Circulation. 1999;100(9):944–50. https://doi.org/10.1161/01.cir.100.9.944.

    Article  CAS  PubMed  Google Scholar 

  21. Whang W, Manson JE, Hu FB, Chae CU, Rexrode KM, Willett WC, et al. Physical exertion, exercise, and sudden cardiac death in women. JAMA. 2006;295(12):1399–403. https://doi.org/10.1001/jama.295.12.1399.

    Article  CAS  PubMed  Google Scholar 

  22. Albert CM, Mittleman MA, Chae CU, Lee IM, Hennekens CH, Manson JE. Triggering of sudden death from cardiac causes by vigorous exertion. N Engl J Med. 2000;343(19):1355–61. https://doi.org/10.1056/nejm200011093431902.

    Article  CAS  PubMed  Google Scholar 

  23. Chatterjee NA, Tikkanen JT, Panicker GK, Narula D, Lee DC, Kentta T, et al. Simple electrocardiographic measures improve sudden arrhythmic death prediction in coronary disease. Eur Heart J. 2020;41(21):1988–99. https://doi.org/10.1093/eurheartj/ehaa177.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Deyell MW, Krahn AD, Goldberger JJ. Sudden cardiac death risk stratification. Circ Res. 2015;116(12):1907–18. https://doi.org/10.1161/circresaha.116.304493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Loring Z, Zareba W, McNitt S, Strauss DG, Wagner GS, Daubert JP. ECG quantification of myocardial scar and risk stratification in MADIT-II. Annals of noninvasive electrocardiology: the official Journal of the International Society for Holter and Noninvasive Electrocardiology, Inc. 2013;18(5):427–35. https://doi.org/10.1111/anec.12065.

  26. Magnani JW, Gorodeski EZ, Johnson VM, Sullivan LM, Hamburg NM, Benjamin EJ, et al. P wave duration is associated with cardiovascular and all-cause mortality outcomes: the National Health and Nutrition Examination Survey. Heart Rhythm. 2011;8(1):93–100. https://doi.org/10.1016/j.hrthm.2010.09.020.

    Article  PubMed  Google Scholar 

  27. Narayanan K, Reinier K, Teodorescu C, Uy-Evanado A, Chugh H, Gunson K, et al. Electrocardiographic versus echocardiographic left ventricular hypertrophy and sudden cardiac arrest in the community. Heart Rhythm. 2014;11(6):1040–6. https://doi.org/10.1016/j.hrthm.2014.03.023.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Strauss DG, Selvester RH, Lima JA, Arheden H, Miller JM, Gerstenblith G, et al. ECG quantification of myocardial scar in cardiomyopathy patients with or without conduction defects: correlation with cardiac magnetic resonance and arrhythmogenesis. Circ Arrhythm Electrophysiol. 2008;1(5):327–36. https://doi.org/10.1161/circep.108.798660.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Soliman EZ, Elsalam MA, Li Y. The relationship between high resting heart rate and ventricular arrhythmogenesis in patients referred to ambulatory 24 h electrocardiographic recording. Europace: European pacing, arrhythmias, and cardiac electrophysiology: journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology. 2010;12(2):261–5. https://doi.org/10.1093/europace/eup344.

    Article  PubMed  Google Scholar 

  30. Teodorescu C, Reinier K, Uy-Evanado A, Gunson K, Jui J, Chugh SS. Resting heart rate and risk of sudden cardiac death in the general population: influence of left ventricular systolic dysfunction and heart rate-modulating drugs. Heart Rhythm. 2013;10(8):1153–8. https://doi.org/10.1016/j.hrthm.2013.05.009.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Aro AL, Anttonen O, Tikkanen JT, Junttila MJ, Kerola T, Rissanen HA, et al. Intraventricular conduction delay in a standard 12-lead electrocardiogram as a predictor of mortality in the general population. Circ Arrhythm Electrophysiol. 2011;4(5):704–10. https://doi.org/10.1161/circep.111.963561.

    Article  PubMed  Google Scholar 

  32. Desai AD, Yaw TS, Yamazaki T, Kaykha A, Chun S, Froelicher VF. Prognostic significance of quantitative QRS duration. Am J Med. 2006;119(7):600–6. https://doi.org/10.1016/j.amjmed.2005.08.028.

    Article  PubMed  Google Scholar 

  33. Rosengarten JA, Scott PA, Morgan JM. Fragmented QRS for the prediction of sudden cardiac death: a meta-analysis. Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology. 2015;17(6):969–77. https://doi.org/10.1093/europace/euu279.

    Article  PubMed  Google Scholar 

  34. Torigoe K, Tamura A, Kawano Y, Shinozaki K, Kotoku M, Kadota J. The number of leads with fragmented QRS is independently associated with cardiac death or hospitalization for heart failure in patients with prior myocardial infarction. J Cardiol. 2012;59(1):36–41. https://doi.org/10.1016/j.jjcc.2011.09.003.

    Article  PubMed  Google Scholar 

  35. Zimetbaum PJ, Buxton AE, Batsford W, Fisher JD, Hafley GE, Lee KL, et al. Electrocardiographic predictors of arrhythmic death and total mortality in the multicenter unsustained tachycardia trial. Circulation. 2004;110(7):766–9. https://doi.org/10.1161/01.cir.0000139311.32278.32.

    Article  PubMed  Google Scholar 

  36. Crow RS, Hannan PJ, Folsom AR. Prognostic significance of corrected QT and corrected JT interval for incident coronary heart disease in a general population sample stratified by presence or absence of wide QRS complex: the ARIC Study with 13 years of follow-up. Circulation. 2003;108(16):1985–9. https://doi.org/10.1161/01.cir.0000095027.28753.9d.

    Article  PubMed  Google Scholar 

  37. Porthan K, Viitasalo M, Toivonen L, Havulinna AS, Jula A, Tikkanen JT, et al. Predictive value of electrocardiographic T-wave morphology parameters and T-wave peak to T-wave end interval for sudden cardiac death in the general population. Circ Arrhythm Electrophysiol. 2013;6(4):690–6. https://doi.org/10.1161/circep.113.000356.

    Article  PubMed  Google Scholar 

  38. Soliman EZ, Shah AJ, Boerkircher A, Li Y, Rautaharju PM. Inter-relationship between electrocardiographic left ventricular hypertrophy and QT prolongation as predictors of increased risk of mortality in the general population. Circ Arrhythm Electrophysiol. 2014;7(3):400–6. https://doi.org/10.1161/circep.113.001396.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Teodorescu C, Reinier K, Uy-Evanado A, Navarro J, Mariani R, Gunson K, et al. Prolonged QRS duration on the resting ECG is associated with sudden death risk in coronary disease, independent of prolonged ventricular repolarization. Heart Rhythm. 2011;8(10):1562–7. https://doi.org/10.1016/j.hrthm.2011.06.011.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Savard P, Rouleau JL, Ferguson J, Poitras N, Morel P, Davies RF, et al. Risk stratification after myocardial infarction using signal-averaged electrocardiographic criteria adjusted for sex, age, and myocardial infarction location. Circulation. 1997;96(1):202–13. https://doi.org/10.1161/01.cir.96.1.202.

    Article  CAS  PubMed  Google Scholar 

  41. Goldberger JJ, Subacius H, Patel T, Cunnane R, Kadish AH. Sudden cardiac death risk stratification in patients with nonischemic dilated cardiomyopathy. J Am Coll Cardiol. 2014;63(18):1879–89. https://doi.org/10.1016/j.jacc.2013.12.021.

    Article  PubMed  Google Scholar 

  42. Yamazaki T, Froelicher VF, Myers J, Chun S, Wang P. Spatial QRS-T angle predicts cardiac death in a clinical population. Heart Rhythm. 2005;2(1):73–8. https://doi.org/10.1016/j.hrthm.2004.10.040.

    Article  PubMed  Google Scholar 

  43. Kors JA, Kardys I, van der Meer IM, van Herpen G, Hofman A, van der Kuip DA, et al. Spatial QRS-T angle as a risk indicator of cardiac death in an elderly population. J Electrocardiol. 2003;36(Suppl):113–4. https://doi.org/10.1016/j.jelectrocard.2003.09.033.

    Article  PubMed  Google Scholar 

  44. Giovanardi P, Vernia C, Tincani E, Giberti C, Silipo F, Fabbo A. Combined effects of age and comorbidities on electrocardiographic parameters in a large non-selected population. J Clin Med. 2022;11(13). https://doi.org/10.3390/jcm11133737.

  45. You T, Luo C, Zhang K, Zhang H. Electrophysiological Mechanisms Underlying T-Wave Alternans and their role in arrhythmogenesis. Front Physiol. 2021;12:614946. https://doi.org/10.3389/fphys.2021.614946.

  46. Exner DV, Kavanagh KM, Slawnych MP, Mitchell LB, Ramadan D, Aggarwal SG, et al. Noninvasive risk assessment early after a myocardial infarction the REFINE study. J Am Coll Cardiol. 2007;50(24):2275–84. https://doi.org/10.1016/j.jacc.2007.08.042.

    Article  PubMed  Google Scholar 

  47. Bauer A, Barthel P, Schneider R, Ulm K, Müller A, Joeinig A, et al. Improved Stratification of Autonomic Regulation for risk prediction in post-infarction patients with preserved left ventricular function (ISAR-Risk). Eur Heart J. 2009;30(5):576–83. https://doi.org/10.1093/eurheartj/ehn540.

    Article  Google Scholar 

  48. Mäkikallio TH, Barthel P, Schneider R, Bauer A, Tapanainen JM, Tulppo MP, et al. Prediction of sudden cardiac death after acute myocardial infarction: role of Holter monitoring in the modern treatment era. Eur Heart J. 2005;26(8):762–9. https://doi.org/10.1093/eurheartj/ehi188.

    Article  PubMed  Google Scholar 

  49. Alexandre J, Saloux E, Dugué AE, Lebon A, Lemaitre A, Roule V, et al. Scar extent evaluated by late gadolinium enhancement CMR: a powerful predictor of long term appropriate ICD therapy in patients with coronary artery disease. J Cardiovasc Magn Reson: Offic J Soc Cardiovasc Magn Reson. 2013;15(1):12. https://doi.org/10.1186/1532-429x-15-12.

    Article  PubMed  Google Scholar 

  50. Scott PA, Morgan JM, Carroll N, Murday DC, Roberts PR, Peebles CR, et al. The extent of left ventricular scar quantified by late gadolinium enhancement MRI is associated with spontaneous ventricular arrhythmias in patients with coronary artery disease and implantable cardioverter-defibrillators. Circ Arrhythm Electrophysiol. 2011;4(3):324–30. https://doi.org/10.1161/circep.110.959544.

    Article  PubMed  Google Scholar 

  51. Assomull RG, Prasad SK, Lyne J, Smith G, Burman ED, Khan M, et al. Cardiovascular magnetic resonance, fibrosis, and prognosis in dilated cardiomyopathy. J Am Coll Cardiol. 2006;48(10):1977–85. https://doi.org/10.1016/j.jacc.2006.07.049.

    Article  PubMed  Google Scholar 

  52. Masci PG, Doulaptsis C, Bertella E, Del Torto A, Symons R, Pontone G, et al. Incremental prognostic value of myocardial fibrosis in patients with non-ischemic cardiomyopathy without congestive heart failure. Circ Heart Fail. 2014;7(3):448–56. https://doi.org/10.1161/circheartfailure.113.000996.

    Article  PubMed  Google Scholar 

  53. Piers SR, Everaerts K, van der Geest RJ, Hazebroek MR, Siebelink HM, Pison LA, et al. Myocardial scar predicts monomorphic ventricular tachycardia but not polymorphic ventricular tachycardia or ventricular fibrillation in nonischemic dilated cardiomyopathy. Heart Rhythm. 2015;12(10):2106–14. https://doi.org/10.1016/j.hrthm.2015.05.026.

    Article  PubMed  Google Scholar 

  54. Jablonowski R, Chaudhry U, van der Pals J, Engblom H, Arheden H, Heiberg E, et al. Cardiovascular magnetic resonance to predict appropriate implantable cardioverter defibrillator therapy in ischemic and nonischemic cardiomyopathy patients using late gadolinium enhancement border zone: comparison of four analysis methods. Circ Cardiovasc Imaging. 2017;10(9). https://doi.org/10.1161/circimaging.116.006105.

  55. Zeidan-Shwiri T, Yang Y, Lashevsky I, Kadmon E, Kagal D, Dick A, et al. Magnetic resonance estimates of the extent and heterogeneity of scar tissue in ICD patients with ischemic cardiomyopathy predict ventricular arrhythmia. Heart Rhythm. 2015;12(4):802–8. https://doi.org/10.1016/j.hrthm.2015.01.007.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Androulakis AFA, Zeppenfeld K, Paiman EHM, Piers SRD, Wijnmaalen AP, Siebelink HJ, et al. Entropy as a novel measure of myocardial tissue heterogeneity for prediction of ventricular arrhythmias and mortality in post-infarct patients. JACC Clin Electrophysiol. 2019;5(4):480–9. https://doi.org/10.1016/j.jacep.2018.12.005.

    Article  PubMed  Google Scholar 

  57. Muser D, Nucifora G, Muser D, Nucifora G, Pieroni M, Castro SA, et al. Prognostic value of nonischemic ringlike left ventricular scar in patients with apparently idiopathic nonsustained ventricular arrhythmias. Circulation. 2021;143(14):1359–73. https://doi.org/10.1161/circulationaha.120.047640.

    Article  CAS  PubMed  Google Scholar 

  58. Gräni C, Eichhorn C, Bière L, Murthy VL, Agarwal V, Kaneko K, et al. Prognostic value of cardiac magnetic resonance tissue characterization in risk stratifying patients with suspected myocarditis. J Am Coll Cardiol. 2017;70(16):1964–76. https://doi.org/10.1016/j.jacc.2017.08.050.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Aquaro GD, Perfetti M, Camastra G, Monti L, Dellegrottaglie S, Moro C, et al. Cardiac MR with late gadolinium enhancement in acute myocarditis with preserved systolic function: ITAMY study. J Am Coll Cardiol. 2017;70(16):1977–87. https://doi.org/10.1016/j.jacc.2017.08.044.

    Article  PubMed  Google Scholar 

  60. Hulten E, Agarwal V, Cahill M, Cole G, Vita T, Parrish S, et al. Presence of late gadolinium enhancement by cardiac magnetic resonance among patients with suspected cardiac sarcoidosis is associated with adverse cardiovascular prognosis: a systematic review and meta-analysis. Circ Cardiovasc Imaging. 2016;9(9):e005001. https://doi.org/10.1161/circimaging.116.005001.

  61. Briasoulis A, Mallikethi-Reddy S, Palla M, Alesh I, Afonso L. Myocardial fibrosis on cardiac magnetic resonance and cardiac outcomes in hypertrophic cardiomyopathy: a meta-analysis. Heart (British Cardiac Society). 2015;101(17):1406–11. https://doi.org/10.1136/heartjnl-2015-307682.

    Article  CAS  PubMed  Google Scholar 

  62. Ashrith G, Gupta D, Hanmer J, Weiss RM. Cardiovascular magnetic resonance characterization of left ventricular non-compaction provides independent prognostic information in patients with incident heart failure or suspected cardiomyopathy. J Cardiovasc Magn Reson: Offic J Soc Cardiovasc Magn Reson. 2014;16(1):64. https://doi.org/10.1186/s12968-014-0064-2.

    Article  PubMed  Google Scholar 

  63. Jain A, Tandri H, Calkins H, Bluemke DA. Role of cardiovascular magnetic resonance imaging in arrhythmogenic right ventricular dysplasia. J Cardiovasc Magn Reson: Offic J Soc Cardiovasc Magn Reson. 2008;10(1):32. https://doi.org/10.1186/1532-429x-10-32.

    Article  PubMed  Google Scholar 

  64. Mentias A, Raeisi-Giglou P, Smedira NG, Feng K, Sato K, Wazni O, et al. Late gadolinium enhancement in patients with hypertrophic cardiomyopathy and preserved systolic function. J Am Coll Cardiol. 2018;72(8):857–70. https://doi.org/10.1016/j.jacc.2018.05.060.

    Article  PubMed  Google Scholar 

  65. Todiere G, Nugara C, Gentile G, Negri F, Bianco F, Falletta C, et al. Prognostic role of late gadolinium enhancement in patients with hypertrophic cardiomyopathy and low-to-intermediate sudden cardiac death risk score. Am J Cardiol. 2019;124(8):1286–92. https://doi.org/10.1016/j.amjcard.2019.07.023.

    Article  CAS  PubMed  Google Scholar 

  66. • Xu L, Khoshknab M, Berger RD, Chrispin J, Dixit S, Santangeli P, et al. Lipomatous metaplasia enables ventricular tachycardia by reducing current loss within the protected corridor. JACC Clin Electrophysiol. 2022;8(10):1274–85. https://doi.org/10.1016/j.jacep.2022.07.005The findings of the study demonstrate the novel role of cardiac imaging and lipomatous metaplasia in the pathogenesis of ventricular arrhythmias.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neal A. Chatterjee.

Ethics declarations

Conflict of Interest

The author declares no competing interests.

Human and Animal Rights and Informed Consent.

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chatterjee, N.A. Prediction of Sudden Cardiac Death: Looking Beyond Ejection Fraction. Curr Cardiol Rep 25, 525–534 (2023). https://doi.org/10.1007/s11886-023-01871-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11886-023-01871-0

Keywords

Navigation