Skip to main content
Log in

Targeted Medical Therapies for Hypertrophic Cardiomyopathy

  • Myocardial Disease (A Abbate and G Sinagra, Section Editors)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The management of hypertrophic cardiomyopathy (HCM) has changed considerably over the years, although molecular therapies targeting core mechanisms of the disease are still lacking. This review provides an overview of the contemporary medical approach to patients with HCM, and of promising novel developments hopefully soon to enter the clinical arena.

Recent Findings

Our perception of therapeutic targets for medical therapy in HCM is rapidly evolving. Novel approaches include myocardial metabolic modulation, late sodium current inhibition, and allosteric myosin inhibition, actively pursued to reduce and hopefully prevent the development of severe HCM phenotypes, improve symptom control, and preserve patients from disease-related complications.

Summary

Clinical management of patients with HCM should be guided by in-depth knowledge of the complex mechanisms at the energetic, metabolic, and electrophysiologic level. Until new experimental therapies become available, tailored management of modifiable disease manifestations should be pursued, including lifestyle counseling and prevention of comorbidities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AF:

Atrial fibrillation

ASA:

Alcohol septal ablation

CMR:

Cardiac magnetic resonance

CPET:

Cardiopulmonary exercise test

HCM:

Hypertrophic cardiomyopathy

HOCM:

Hypertrophic obstructive cardiomyopathy

HF:

Heart failure

LGE:

Late gadolinium enhancement

LVEF:

Left ventricular ejection fraction

LVOT:

Left ventricular outflow tract

SAM:

Systolic anterior motion

SCD:

Sudden cardiac death

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Elliott PM, Anastasakis A, Borger MA, Borggrefe M, Cecchi F, Charron P, et al. 2014 ESC guidelines on diagnosis and management of hypertrophic cardiomyopathy: the Task Force for the Diagnosis and Management of Hypertrophic Cardiomyopathy of the European Society of Cardiology (ESC). Eur Heart J [Internet] 2014;35:2733–2779. Available from: https://doi.org/10.1093/eurheartj/ehu284

  2. Gersh BJ, Maron BJ, Bonow RO, Dearani JA, Fifer MA, Link MS, et al. 2011 ACCF/AHA guideline for the diagnosis and treatment of hypertrophic cardiomyopathy: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation [Internet] 2011;124:e783–e831. Available from: https://doi.org/10.1161/CIR.0b013e31829e8807

    PubMed  Google Scholar 

  3. Maron BJ, Maron MS, Maron BA, Loscalzo J. Moving beyond the sarcomere to explain heterogeneity in hypertrophic cardiomyopathy: JACC review topic of the week. J Am Coll Cardiol. 2019;73:1978–86.

    PubMed  Google Scholar 

  4. Olivotto I, Cecchi F, Poggesi C, Yacoub MH. Patterns of disease progression in hypertrophic cardiomyopathy: an individualized approach to clinical staging. Circ Heart Fail United States. 2012;5:535–46.

    Google Scholar 

  5. Maurizi N, Michels M, Rowin EJ, Semsarian C, Girolami F, Tomberli B, et al. Clinical course and significance of hypertrophic cardiomyopathy without left ventricular hypertrophy. Circulation [Internet]. 2019;139:830–3 Available from: http://www.ncbi.nlm.nih.gov/pubmed/30715937.

    Google Scholar 

  6. Ho CY, Lakdawala NK, Cirino AL, Lipshultz SE, Sparks E, Abbasi SA, et al. Diltiazem treatment for pre-clinical hypertrophic cardiomyopathy sarcomereMutation carriers: a pilot randomized trial to modify disease expression. JACC Hear Fail. 2015;3:180–8.

    Google Scholar 

  7. Olivotto I, Maron BJ, Tomberli B, Appelbaum E, Salton C, Haas TS, et al. Obesity and its association to phenotype and clinical course in hypertrophic cardiomyopathy. J Am Coll Cardiol United States. 2013;62:449–57.

    Google Scholar 

  8. Reineck E, Rolston B, Bragg-Gresham JL, Salberg L, Baty L, Kumar S, et al. Physical activity and other health behaviors in adults with hypertrophic cardiomyopathy. Am J Cardiol United States. 2013;111:1034–9.

    Google Scholar 

  9. • Fumagalli C, Maurizi N, Day SM, Ashley EA, Michels M, Colan SD, et al. Association of obesity with adverse long-term outcomes in hypertrophic cardiomyopathy. JAMA Cardiol. Published online November 06, 2019. https://doi.org/10.1001/jamacardio.2019.4268 Findings from this study suggest that obesity is associated with higher prevalence of atrial fibrillation, heart failure, and overall disease progression in patients with HCM.

    Google Scholar 

  10. Sweeting J, Ingles J, Timperio A, Patterson J, Ball K, Semsarian C. Physical activity in hypertrophic cardiomyopathy: prevalence of inactivity and perceived barriers. Open Hear. 2016;3:1–9.

    Google Scholar 

  11. Finocchiaro G, Magavern E, Sinagra G, Ashley E, Papadakis M, Tome-Esteban M, et al. Impact of demographic features, lifestyle, and comorbidities on the clinical expression of hypertrophic cardiomyopathy. J Am Heart Assoc England. 2017;6.

  12. Wasserstrum Y, Barriales-Villa R, Fernández-Fernández X, Adler Y, Lotan D, Peled Y, et al. The impact of diabetes mellitus on the clinical phenotype of hypertrophic cardiomyopathy. Eur Heart J [Internet]. 2019;40:1671–1677. Available from: https://doi.org/10.1093/eurheartj/ehy625/5144691

  13. Saberi S, Wheeler M, Bragg-Gresham J, Hornsby W, Agarwal PP, Attili A, et al. Effect of moderate-intensity exercise training on peak oxygen consumption in patients with hypertrophic cardiomyopathy a randomized clinical trial. JAMA - J Am Med Assoc. 2017;317:1349–57.

    Google Scholar 

  14. Maron MS, Olivotto I, Betocchi S, Casey SA, Lesser JR, Losi MA, et al. Effect of left ventricular outflow tract obstruction on clinical outcome in hypertrophic cardiomyopathy. N Engl J Med. 2003;348:295–303.

    PubMed  Google Scholar 

  15. Meghji Z, Nguyen A, Fatima B, Geske JB, Nishimura RA, Ommen SR, et al. Survival differences in women and men after septal myectomy for obstructive hypertrophic cardiomyopathy. JAMA Cardiol. 2019;4:237–45.

    PubMed  Google Scholar 

  16. Olivotto I, Maron MS, Adabag AS, Casey SA, Vargiu D, Link MS, et al. Gender-related differences in the clinical presentation and outcome of hypertrophic cardiomyopathy. J Am Coll Cardiol. 2005;46:480–7.

    PubMed  Google Scholar 

  17. Ammirati E, Contri R, Coppini R, Cecchi F, Frigerio M, Olivotto I. Pharmacological treatment of hypertrophic cardiomyopathy: current practice and novel perspectives. Eur J Hear Fail. 2016;18:1106–18.

    Google Scholar 

  18. Nistri S, Olivotto I, Maron MS, Ferrantini C, Coppini R, Grifoni C, et al. β Blockers for prevention of exercise-induced left ventricular outflow tract obstruction in patients with hypertrophic cardiomyopathy. Am J Cardiol. 2012;110:715–9.

    CAS  PubMed  Google Scholar 

  19. Adler A, Fourey D, Weissler-Snir A, Hindieh W, Chan RH, Gollob MH, et al. Safety of outpatient initiation of disopyramide for obstructive hypertrophic cardiomyopathy patients. J Am Heart Assoc. 2017;6.

  20. Sherrid MV, Barac I, McKenna WJ, Elliott PM, Dickie S, Chojnowska L, et al. Multicenter study of the efficacy and safety of disopyramide in obstructive hypertrophic cardiomyopathy. J Am Coll Cardiol. 2005;45:1251–8.

    CAS  PubMed  Google Scholar 

  21. Coppini R, et al. Translational study of the electrophysiological and contractile effects of disopyramide in patients with obstructive hypertrophic cardiomyopathy. JACC Basic to Transl Sci. 2019;In Press.

  22. Anderson RL, Trivedi DV, Sarkar SS, Henze M, Ma W, Gong H, et al. Deciphering the super relaxed state of human β-cardiac myosin and the mode of action of mavacamten from myosin molecules to muscle fibers. Proc Natl Acad Sci. 2018;115:E8143–52.

    CAS  PubMed  Google Scholar 

  23. Green EM, Wakimoto H, Anderson RL, Evanchik MJ, Gorham JM, Harrison BC, et al. Heart disease: a small-molecule inhibitor of sarcomere contractility suppresses hypertrophic cardiomyopathy in mice. Science (80- ). 2016;351:617–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Stern JA, Markova S, Ueda Y, Kim JB, Pascoe PJ, Evanchik MJ, et al. A small molecule inhibitor of sarcomere contractility acutely relieves left ventricular outflow tract obstruction in feline hypertrophic cardiomyopathy. PLoS One. 2016;11.

    PubMed  PubMed Central  Google Scholar 

  25. • Heitner SB, Jacoby D, Lester SJ, Owens A, Wang A, Zhang D, et al. Mavacamten treatment for obstructive hypertrophic cardiomyopathy a clinical trial. Ann Intern Med. 2019;170:741–8 Mavacamten, an orally administered, small-molecule modulator of cardiac myosin that targets underlying biomechanical abnormalities in obstructive HCM was shown to reduce LVOT obstruction and improve exercise capacity.

    PubMed  Google Scholar 

  26. Cavigli L, Fumagalli C, Maurizi N, Rossi A, Arretini A, Targetti M, et al. Timing of invasive septal reduction therapies and outcome of patients with obstructive hypertrophic cardiomyopathy. Int J Cardiol [Internet]. 2018; Available from: https://linkinghub.elsevier.com/retrieve/pii/S0167527318305758

  27. Kim LK, Swaminathan R V, Looser P, Minutello RM, Wong SC, Bergman G, et al. Hospital volume outcomes after septal myectomy and alcohol septal ablation for treatment of obstructive hypertrophic cardiomyopathy: US Nationwide Inpatient Database, 2003-2011. JAMA Cardiol. United States; 2016;1:324–332.

  28. Maron BJ, Dearani JA, Ommen SR, Maron MS, Schaff H V., Nishimura RA, et al. Low operative mortality achieved with surgical septal myectomy role of dedicated hypertrophic cardiomyopathy centers in the management of dynamic subaortic obstruction. J. Am. Coll. Cardiol. 2015. p. 1307–8.

    PubMed  Google Scholar 

  29. Ommen SR, Maron BJ, Olivotto I, Maron MS, Cecchi F, Betocchi S, et al. Long-term effects of surgical septal myectomy on survival in patients with obstructive hypertrophic cardiomyopathy. J Am Coll Cardiol [Internet]. Elsevier Masson SAS; 2005;46:470–476. Available from: https://doi.org/10.1016/j.jacc.2005.02.090

    PubMed  Google Scholar 

  30. Liebregts M, Vriesendorp PA, Mahmoodi BK, Schinkel AFL, Michels M, Ten Berg JM. A systematic review and meta-analysis of long-term outcomes after septal reduction therapy in patients with hypertrophic cardiomyopathy. JACC Hear Fail. 2015;3:896–905.

    Google Scholar 

  31. Nguyen A, Schaff H V., Nishimura RA, Geske JB, Ackerman MJ, Bos JM, et al. Survival following myectomy for obstructive hypertrophic cardiomyopathy-what causes late mortality? Ann Thorac Surg. 2019;

  32. Veselka J, Jensen MK, Liebregts M, Januska J, Krejci J, Bartel T, et al. Long-term clinical outcome after alcohol septal ablation for obstructive hypertrophic cardiomyopathy: results from the Euro-ASA registry. Eur Heart J. 2016;37:1517–23.

    PubMed  Google Scholar 

  33. Liebregts M, Faber L, Jensen MK, Vriesendorp PA, Januska J, Krejci J, et al. Outcomes of alcohol septal ablation in younger patients with obstructive hypertrophic cardiomyopathy. JACC Cardiovasc Interv. 2017;10:1134–43.

    PubMed  Google Scholar 

  34. Osman M, Kheiri B, Osman K, Barbarawi M, Alhamoud H, Alqahtani F, et al. Alcohol septal ablation vs myectomy for symptomatic hypertrophic obstructive cardiomyopathy: systematic review and meta-analysis. Clin Cardiol. 2019. p. 190–7.

    PubMed  PubMed Central  Google Scholar 

  35. Batzner A, Pfeiffer B, Neugebauer A, Aicha D, Blank C, Seggewiss H. Survival after alcohol septal ablation in patients with hypertrophic obstructive cardiomyopathy. J Am Coll Cardiol [Internet]. 2018;72:3087–94. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30545446.

    PubMed  Google Scholar 

  36. Arnold AD, Howard JP, Chiew K, Kerrigan WJ, de Vere F, Johns HT, et al. Right ventricular pacing for hypertrophic obstructive cardiomyopathy: meta-analysis and meta-regression of clinical trials. Eur Hear J - Qual Care Clin Outcomes [Internet]. 2019; Available from: http://www.ncbi.nlm.nih.gov/pubmed/30715300.

  37. Siontis KC, Geske JB, Ong K, Nishimura RA, Ommen SR, Gersh BJ. Atrial fibrillation in hypertrophic cardiomyopathy: prevalence, clinical correlations, and mortality in a large high-risk population. J Am Heart Assoc. 2014;3.

  38. Vaidya K, Semsarian C, Chan KH. Atrial fibrillation in hypertrophic cardiomyopathy. Hear. Lung Circ. 2017. p. 975–82.

    PubMed  Google Scholar 

  39. Zhao DS, Shen Y, Zhang Q, Lin G, Lu YH, Chen BT, et al. Outcomes of catheter ablation of atrial fibrillation in patients with hypertrophic cardiomyopathy: a systematic review and meta-analysis. Europace. 2016;18:508–20.

    PubMed  Google Scholar 

  40. Di Donna P, Olivotto I, Delcrè SDL, Caponi D, Scaglione M, Nault I, et al. Efficacy of catheter ablation for atrial fibrillation in hypertrophic cardiomyopathy: impact of age, atrial remodelling, and disease progression. Europace. 2010;12:347–55.

    PubMed  Google Scholar 

  41. Providencia R, Elliott P, Patel K, McCready J, Babu G, Srinivasan N, et al. Catheter ablation for atrial fibrillation in hypertrophic cardiomyopathy: a systematic review and meta-analysis. Heart. 2016;102:1533–43.

    CAS  PubMed  Google Scholar 

  42. Bassiouny M, Lindsay BD, Lever H, Saliba W, Klein A, Banna M, et al. Outcomes of nonpharmacologic treatment of atrial fibrillation in patients with hypertrophic cardiomyopathy. Hear Rhythm. 2015;12:1438–47.

    Google Scholar 

  43. Rowin EJ, Hausvater A, Link MS, Abt P, Gionfriddo W, Wang W, et al. Clinical profile and consequences of atrial fibrillation in hypertrophic cardiomyopathy. Circulation. 2017;136:2420–36.

    PubMed  Google Scholar 

  44. Olivotto I, Cecchi F, Casey SA, Dolara A, Traverse JH, Maron BJ. Impact of atrial fibrillation on the clinical course of hypertrophic cardiomyopathy. Circulation [Internet]. 2001;104:2517–24 Available from: http://www.ncbi.nlm.nih.gov/pubmed/11714644.

    CAS  Google Scholar 

  45. Noseworthy PA, Yao X, Shah ND, Gersh BJ. Stroke and bleeding risks in NOAC- and warfarin-treated patients with hypertrophic cardiomyopathy and atrial fibrillation. J. Am. Coll. Cardiol. United States; 2016. p. 3020–3021.

  46. Dominguez F, Climent V, Zorio E, Ripoll-Vera T, Salazar-Mendiguchia J, Garcia-Pinilla JM, et al. Direct oral anticoagulants in patients with hypertrophic cardiomyopathy and atrial fibrillation. Int J Cardiol Netherlands. 2017;248:232–8.

    Google Scholar 

  47. Jung H, Yang PS, Jang E, Yu HT, Kim TH, Uhm JS, et al. Effectiveness and safety of non-vitamin K antagonist oral anticoagulants in patients with atrial fibrillation with hypertrophic cardiomyopathy: a nationwide cohort study. Chest. 2019;155:354–63.

    PubMed  Google Scholar 

  48. • Ho CY, Day SM, Ashley EA, Michels M, Pereira AC, Jacoby D, et al. Genotype and lifetime burden of disease in hypertrophic cardiomyopathy. Circulation. 2018;138:1387–98 The cumulative burden of HCM is dominated by heart failure and atrial fibrillation occurring many years after diagnosis. Young age at diagnosis and the presence of a sarcomere mutation are powerful predictors of adverse outcome.

    PubMed  PubMed Central  Google Scholar 

  49. Melacini P, Maron BJ, Bobbo F, Basso C, Tolcajuk B, Zucchetto M, et al. Evidence that pharmacological strategies lack efficacy for the prevention of sudden death in hypertrophic cardiomyopathy. Heart. 2007;93:708–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Maron BJ, Rowin EJ, Casey SA, Maron MS. How hypertrophic cardiomyopathy became a contemporary treatable genetic disease with low mortality: shaped by 50 years of clinical research and practice. JAMA Cardiol United States. 2016;1:98–105.

    Google Scholar 

  51. Adelman AG, Shah PM, Gramiak R, Wigle ED. Long-term propranolol therapy in muscular subaortic stenosis. Heart [Internet]. 2007;32:804–11. Available from: http://www.ncbi.nlm.nih.gov/pubmed/5212354.

    CAS  Google Scholar 

  52. Östman-Smith I, Wettrell G, Riesenfeld T. A cohort study of childhood hypertrophic cardiomyopathy: improved survival following high-dose beta-adrenoceptor antagonist treatment. J Am Coll Cardiol [Internet]. 1999;34:1813–22. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10577575.

    PubMed  Google Scholar 

  53. Tendera M, Wycisk A, Schneeweiss A, Polonski L, Wodniecki J. Effect of sotalol on arrhythmias and exercise tolerance in patients with hypertrophic cardiomyopathy. Cardiology. 1993;82:335–42.

    CAS  PubMed  Google Scholar 

  54. Proietti R, Russo V, AlTurki A. Anti-arrhythmic therapy in patients with non-ischemic cardiomyopathy [Internet]. Pharmacol. Res. 2019. p. 27–32. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30844534.

    CAS  PubMed  Google Scholar 

  55. Olivotto I, Camici PG, Merlini PA, Rapezzi C, Patten M, Climent V, et al. Efficacy of ranolazine in patients with symptomatic hypertrophic cardiomyopathy. Circ Hear Fail. 2018;11:e004124.

    CAS  Google Scholar 

  56. O’Mahony C, Akhtar MM, Anastasiou Z, Guttmann OP, Vriesendorp PA, Michels M, et al. Effectiveness of the 2014 european society of cardiology guideline on sudden cardiac death in hypertrophic cardiomyopathy: a systematic review and meta-analysis. Heart. 2019;105:623–31.

    PubMed  Google Scholar 

  57. Wang W, Lian Z, Rowin EJ, Maron BJ, Maron MS, Link MS. Prognostic implications of nonsustained ventricular tachycardia in high-risk patients with hypertrophic cardiomyopathy. Circ Arrhythmia Electrophysiol. 2017;10.

  58. Chan RH, Maron BJ, Olivotto I, Pencina MJ, Assenza GE, Haas T, et al. Prognostic value of quantitative contrast-enhanced cardiovascular magnetic resonance for the evaluation of sudden death risk in patients with hypertrophic cardiomyopathy. Circulation. 2014;130:484–95.

    PubMed  Google Scholar 

  59. Avanesov M, Münch J, Weinrich J, Well L, Säring D, Stehning C, et al. Prediction of the estimated 5-year risk of sudden cardiac death and syncope or non-sustained ventricular tachycardia in patients with hypertrophic cardiomyopathy using late gadolinium enhancement and extracellular volume CMR. Eur Radiol [Internet]. 2017;27:5136–45. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28616729.

    PubMed  Google Scholar 

  60. Axelsson A, Iversen K, Vejlstrup N, Ho C, Norsk J, Langhoff L, et al. Efficacy and safety of the angiotensin II receptor blocker losartan for hypertrophic cardiomyopathy: the INHERIT randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol. 2015;3:123–31.

    CAS  PubMed  Google Scholar 

  61. Maron MS, Chan RH, Kapur NK, Jaffe IZ, McGraw AP, Kerur R, et al. Effect of spironolactone on myocardial fibrosis and other clinical variables in patients with hypertrophic cardiomyopathy. Am J Med. 2018;131:837–41.

    CAS  PubMed  Google Scholar 

  62. Abozguia K, Elliott P, McKenna W, Phan TT, Nallur-Shivu G, Ahmed I, et al. Metabolic modulator perhexiline corrects energy deficiency and improves exercise capacity in symptomatic hypertrophic cardiomyopathy. Circulation. 2010;122:1562–9.

    CAS  PubMed  Google Scholar 

  63. Coats CJ, Pavlou M, Watkinson OT, Protonotarios A, Moss L, Hyland R, et al. Effect of trimetazidine dihydrochloride therapy on exercise capacity in patients with nonobstructive hypertrophic cardiomyopathy: a randomized clinical trial. JAMA Cardiol. 2019;4:230–5.

    PubMed  Google Scholar 

  64. Killu AM, Park JY, Sara JD, Hodge DO, Gersh BJ, Nishimura RA, et al. Cardiac resynchronization therapy in patients with end-stage hypertrophic cardiomyopathy. Europace [Internet]. 2018;20:82–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29315424.

    Google Scholar 

  65. Kato TS, Takayama H, Yoshizawa S, Marboe C, Schulze PC, Farr M, et al. Cardiac transplantation in patients with hypertrophic cardiomyopathy. Am J Cardiol [Internet]. 2012;110:568–74 Available from: https://globalcardiologyscienceandpractice.com/index.php/gcsp/article/view/343.

    Google Scholar 

  66. Zuñiga Cisneros J, Stehlik J, Selzman CH, Drakos SG, McKellar SH, Wever-Pinzon O. Outcomes in patients with hypertrophic cardiomyopathy awaiting heart transplantation. Circ Heart Fail. 2018;11:e004378.

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the European Union’s Horizon 2020 Research and Innovation Programme under Grant Agreement no. 777204: “SILICOFCM - In Silico trials for drug tracing the effects of sarcomeric protein mutations leading to familial cardiomyopathy”; by the Italian Ministry of Health “Left ventricular hypertrophy in aortic valve disease and hypertrophic cardiomyopathy: genetic basis, biophysical correlates, and viral therapy models” (RF-2013-02356787), and by the Ente Cassa di Risparmio di Firenze (bando 2016) “juvenile sudden cardiac death: just know and treat.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Fumagalli.

Ethics declarations

Conflict of Interest

Carlo Fumagalli, Maria Grazia De Gregorio, Mattia Zampieri, Elisa Fedele, Alessia Tomberli, Chiara Chiriatti, Alberto Marchi, and Iacopo Olivotto declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Myocardial Disease

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fumagalli, C., De Gregorio, M.G., Zampieri, M. et al. Targeted Medical Therapies for Hypertrophic Cardiomyopathy. Curr Cardiol Rep 22, 10 (2020). https://doi.org/10.1007/s11886-020-1258-x

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-020-1258-x

Keywords

Navigation