Skip to main content
Log in

Does Timing of Antihypertensive Medication Dosing Matter?

  • Hypertension (DS Geller and DL Cohen, Section Editors)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Current hypertension guidelines do not provide recommendation on when-to-treat. Herein, we review the current evidence on ingestion-time differences of hypertension medications in blood pressure (BP)–lowering effects and prevention of cardiovascular disease (CVD) events.

Recent Findings

The vast (81.6%) majority of the 136 published short-term treatment-time trials document benefits, including enhanced reduction of asleep BP and increased sleep-time relative BP decline (dipping), when hypertension medications and their combinations are ingested before sleep rather than upon waking. Long-term outcome trials further document bedtime hypertension therapy markedly reduces risk of major CVD events. The inability of the very small 18.4% of the published trials to substantiate treatment-time difference in effects is mostly explained by deficiencies of study design and conduct.

Summary

Our comprehensive review of the published literature reveals no single study has reported better benefits of the still conventional, yet scientifically unjustified, morning than bedtime hypertension treatment scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Hermida RC, Ayala DE, Calvo C, Portaluppi F, Smolensky MH. Chronotherapy of hypertension: administration-time dependent effects of treatment on the circadian pattern of blood pressure. Adv Drug Deliv Rev. 2007;59:923–39.

    CAS  PubMed  Google Scholar 

  2. Smolensky MH, Hermida RC, Ayala DE, Tiseo R, Portaluppi F. Administration-time-dependent effect of blood pressure-lowering medications: basis for the chronotherapy of hypertension. Blood Press Monit. 2010;15:173–80.

    PubMed  Google Scholar 

  3. Hermida RC, Ayala DE, Fernández JR, Portaluppi F, Fabbian F, Smolensky MH. Circadian rhythms in blood pressure regulation and optimization of hypertension treatment with ACE inhibitor and ARB medications. Am J Hypertens. 2011;24:383–91.

    CAS  PubMed  Google Scholar 

  4. Zhao P, Xu P, Wan C, Wang Z. Evening versus morning dosing regimen drug therapy for hypertension. Cochrane Database Syst Rev. 2011;10:CD004184.

    Google Scholar 

  5. De Giorgi A, Menegatti AM, Fabbian F, Portaluppi F, Manfredini R. Circadian rhythms and medical diseases: does it matter when drugs are taken? Eur J Intern Med. 2013;24:698–706.

    PubMed  Google Scholar 

  6. Hermida RC, Ayala DE, Fernández JR, Mojón A, Smolensky MH, Fabbian F, et al. Administration-time-differences in effects of hypertension medications on ambulatory blood pressure regulation. Chronobiol Int. 2013;30:280–314.

    CAS  PubMed  Google Scholar 

  7. Liu X, Liu X, Huang W, Leo S, Li Y, Liu M, et al. Evening – versus morning – dosing drug therapy for chronic kidney disease patients with hypertension: a systematic review. Kidney Blood Press Res. 2014;39:427–40.

    CAS  PubMed  Google Scholar 

  8. Schillaci G, Battista F, Settimi L, Schillaci L, Pucci G. Antihypertensive drug treatment and circadian blood pressure rhythm: a review of the role of chronotherapy in hypertension. Curr Pharm Des. 2015;21:756–72.

    CAS  PubMed  Google Scholar 

  9. • Smolensky MH, Hermida RC, Ayala DE, Portaluppi F. Bedtime hypertension chronotherapy: concepts and patient outcomes. Curr Pharm Des. 2015;21:773–90 This publication reviews the main principles and concepts of chronopharmacology and chronotherapy of hypertension and summarizes the differential reduction of awake and asleep SBP/DBP means by upon-awakening versus at-bedtime ingestion of conventional BP-lowering medications.

    CAS  PubMed  Google Scholar 

  10. Stranges PM, Drew AM, Rafferty P, Shuster JE, Brooks AD. Treatment of hypertension with chronotherapy: is it time? Ann Pharmacother. 2015;49:323–34.

    CAS  PubMed  Google Scholar 

  11. Hermida RC, Ayala DE, Smolensky MH, Fernández JR, Mojón A, Portaluppi F. Chronotherapy with conventional blood pressure medications improves management of hypertension and reduces cardiovascular and stroke risks. Hypertens Res. 2016;39:277–92.

    PubMed  Google Scholar 

  12. Sun Y, Yu X, Liu J, Zhou N, Chen L, Zhao Y, et al. Effect of bedtime administration of blood-pressure lowering agents on ambulatory blood pressure monitoring results: a meta-analysis. Cardiol J. 2016;23:473–81.

    PubMed  Google Scholar 

  13. Hermida RC, Ayala DE, Fernández JR, Mojón A, Crespo C, Ríos MT, et al. Bedtime blood pressure chronotherapy significantly improves hypertension management. Heart Fail Clin. 2017;13:759–73.

    PubMed  Google Scholar 

  14. Bowles NP, Thosar SS, Herzig MX, Shea SA. Chronotherapy for hypertension. Curr Hypertens Rep. 2018;20:97.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Hermida RC, Ayala DE, Mojón A, Fernández JR. Influence of circadian time of hypertension treatment on cardiovascular risk: results of the MAPEC study. Chronobiol Int. 2010;27:1629–51.

    PubMed  Google Scholar 

  16. • Roush GC, Fapohunda J, Kostis JB. Evening dosing of antihypertensive therapy to reduce cardiovascular events: a third type of evidence based on a systematic review and meta-analysis of randomized trials. J Clin Hypertens (Greenwich). 2014;16:561–8 This publication is a comprehensive meta-analysis verifying attenuation of CVD events is substantially improved when hypertension medications are consistently ingested in the evening/bedtime rather than morning/upon-awakening.

    CAS  Google Scholar 

  17. Sobiczewski W, Wirthwein M, Gruchala M, Kocic I. Mortality in hypertensive patients with coronary heart disease depends on chronopharmacotherapy and dipping status. Pharmacol Rep. 2014;66:448–52.

    CAS  PubMed  Google Scholar 

  18. •• Hermida RC, Crespo JJ, Domínguez-Sardiña M, Otero A, Moyá A, Ríos MT, et al. Bedtime hypertension treatment improves cardiovascular risk reduction: the Hygia Chronotherapy Trial. Eur Heart J. 2019. https://doi.org/10.1093/eurheartj/ehz754This publication reports major findings of the Hygia Chronotherapy Trial, the so far largest randomized trial conducted at the primary care setting, documenting routine ingestion by hypertensive patients of ≥ 1 prescribed BP-lowering medications at bedtime, as opposed to upon-waking, results in improved ambulatory BP control and, most importantly, markedly diminished occurrence of major CVD events.

  19. Gupta R, Malik AH, Popli T, Ranchal P, Yandrapalli S, Aronow WS. Impact of bedtime dosing of antihypertensives compared to morning therapy: a meta-analysis of randomised controlled trials. Eur J Prev Cardiol. 2020 Feb 3:204748732090361. https://doi.org/10.1177/2047487320903611.

  20. National Institute for Health and Clinical Excellence. Hypertension: The clinical management of primary hypertension in adults. NICE Clinical Guidelines 127: Methods, evidence and recommendations. National Clinical Guidelines Centre, London, UK. 2011. http://guidance.nice.org.uk/CG/Wave2/14 (accessed 27 May 2020).

  21. Chiang CE, Wang TD, Ueng KC, Lin TH, Yeh HI, Chen CY, et al. 2015 guidelines of the Taiwan Society of Cardiology and the Taiwan Hypertension Society for the Management of Hypertension. J Chin Med Assoc. 2015;78:1–47.

    PubMed  Google Scholar 

  22. Whelton PK, Carey RM, Aronow WS, Casey DE Jr, Collins KJ, Himmerfarb CD, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol. 2018;71:e127–248.

    PubMed  Google Scholar 

  23. Williams B, Mancia G, Spiering W, Rosei EA, Azizi M, Burnier M, et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension: the Task Force for the management of arterial hypertension of the European Society of Cardiology (ESC) and the European Society of Hypertension (ESH). Eur Heart J. 2018;39:3021–104.

    PubMed  Google Scholar 

  24. Umemura S, Arima H, Arima S, Asayama K, Dohi Y, Hirooka Y, et al. The Japanese Society of Hypertension Guidelines for the Management of Hypertension (JSH 2019). Hypertens Res. 2019;42:1235–481.

    PubMed  Google Scholar 

  25. Rabi DM, McBrien KA, Sapir-Pichhadze R, Nakhla M, Ahmed SB, Dumanski SM, et al. Hypertension Canada’s 2020 comprehensive guidelines for the prevention, diagnosis, risk assessment, and treatment of hypertension in adults and children. Can J Cardiol. 2020;36:596–624.

    PubMed  Google Scholar 

  26. Ohkubo T, Hozawa A, Yamaguchi J, Kikuya M, Ohmori K, Michimata M, et al. Prognostic significance of the nocturnal decline in blood pressure in individuals with and without high 24-h blood pressure: the Ohasama study. J Hypertens. 2002;20:2183–9.

    CAS  PubMed  Google Scholar 

  27. Dolan E, Stanton A, Thijs L, Hinedi K, Atkins N, McClory S, et al. Superiority of ambulatory over clinic blood pressure measurement in predicting mortality: the Dublin outcome study. Hypertension. 2005;46:156–61.

    CAS  PubMed  Google Scholar 

  28. Ben-Dov IZ, Kark JD, Ben-Ishay D, Mekler J, Ben-Arie L, Bursztyn M. Predictors of all-cause mortality in clinical ambulatory monitoring. Unique aspects of blood pressure during sleep. Hypertension. 2007;49:1235–41.

    CAS  PubMed  Google Scholar 

  29. Boggia J, Li Y, Thijs L, Hansen TW, Kikuya M, Björklund-Bodegård K, et al. Prognostic accuracy of day versus night ambulatory blood pressure: a cohort study. Lancet. 2007;370:1219–29.

    PubMed  Google Scholar 

  30. Fagard RH, Celis H, Thijs L, Staessen JA, Clement DL, De Buyzere ML, et al. Daytime and nighttime blood pressure as predictors of death and cause-specific cardiovascular events in hypertension. Hypertension. 2008;51:55–61.

    CAS  PubMed  Google Scholar 

  31. Fan HQ, Li Y, Thijs L, Hansen TW, Boggia J, Kikuya M, et al. Prognostic value of isolated nocturnal hypertension on ambulatory measurement in 8711 individuals from 10 populations. J Hypertens. 2010;28:2036–45.

    CAS  PubMed  Google Scholar 

  32. Hermida RC, Ayala DE, Mojón A, Fernández JR. Decreasing sleep-time blood pressure determined by ambulatory monitoring reduces cardiovascular risk. J Am Coll Cardiol. 2011;58:1165–73.

    CAS  PubMed  Google Scholar 

  33. Minutolo R, Agarwal R, Borrelli S, Chiodini P, Bellizzi V, Nappi F, et al. Prognostic role of ambulatory blood pressure measurement in patients with nondialysis chronic kidney disease. Arch Intern Med. 2011;171:1090–8.

    PubMed  Google Scholar 

  34. Hermida RC, Ayala DE, Mojón A, Fernández JR. Blunted sleep-time relative blood pressure decline increases cardiovascular risk independent of blood pressure level – the “normotensive non-dipper” paradox. Chronobiol Int. 2013;30:87–98.

    PubMed  Google Scholar 

  35. • Roush GC, Fagard RH, Salles GF, Pierdomenico SD, Reboldi G, Verdecchia P, et al. Prognostic impact from clinic, daytime, and nighttime systolic blood pressure in 9 cohorts on 13,844 patients with hypertension. J Hypertens. 2014;32:2332–40 This publication reports the meta-analysis of original data of nine hypertensive cohorts describing the asleep SBP mean as the best predictor of CVD events, independent of daytime OBPM or awake and 24h ABP means.

    CAS  PubMed  Google Scholar 

  36. • Salles GF, Reboldi G, Fagard RH, Cardoso C, Pierdomenico SD, Verdecchia P, et al. Prognostic impact of the nocturnal blood pressure fall in hypertensive patients: The ambulatory blood pressure collaboration in patients with hypertension (ABC-H) meta-analysis. Hypertension. 2016;67:693–700 This publication reports the meta-analysis of original data of 17,312 hypertensive patients describing the significant prognostic value of sleep-time relative BP decline (BP dipping) as marker of CVD risk.

    CAS  PubMed  Google Scholar 

  37. •• Hermida RC, Crespo JJ, Otero A, Domínguez-Sardiña M, Moyá A, Ríos MT, et al. Asleep blood pressure: Significant prognostic marker of vascular risk and therapeutic target for prevention. Eur Heart J. 2018;39:4159–71 This publication reports major findings of the large cohort primary care–based multicenter Hygia Project verifying the asleep SBP mean and sleep-time SBP relative decline are jointly the two most sensitive ABPM-derived variables predictive of CVD risk as well as novel BP targets for prevention.

    PubMed  Google Scholar 

  38. Hermida RC, Ayala DE, Portaluppi F. Circadian variation of blood pressure: the basis for the chronotherapy of hypertension. Adv Drug Deliv Rev. 2007;59:904–22.

    CAS  PubMed  Google Scholar 

  39. Smolensky MH, Hermida RC, Castriotta RJ, Portaluppi F. Role of sleep-wake cycle on blood pressure circadian rhythms and hypertension. Sleep Med. 2007;8:668–80.

    PubMed  Google Scholar 

  40. Portaluppi F, Tiseo R, Smolensky MH, Hermida RC, Ayala DE, Fabbian F. Circadian rhythms and cardiovascular health. Sleep Med Rev. 2012;16:151–66.

    PubMed  Google Scholar 

  41. Fabbian F, Smolensky MH, Tiseo R, Pala M, Manfredini R, Portaluppi F. Dipper and non-dipper blood pressure 24-hour patterns: circadian rhythm-dependent physiologic and pathophysiologic mechanisms. Chronobiol Int. 2013;30:17–30.

    PubMed  Google Scholar 

  42. • Smolensky MH, Hermida RC, Portaluppi F. Circadian mechanisms of 24-hour blood pressure regulation and patterning. Sleep Med Rev. 2017;33:4–16 This publication constitutes a recent extensive review of the broad range of endogenous circadian rhythms and ambient environmental cyclic influences that are mechanistic of the 24-h BP pattern.

    PubMed  Google Scholar 

  43. Angeli A, Gatti G, Masera R. Chronobiology of the hypothalamic-pituitary-adrenal and renin-angiotensin-aldosterone systems. In: Touitou Y, Haus E, editors. Biologic rhythms in clinical and laboratory medicine. Berlin: Springer-Verlag; 1992. p. 292–314.

    Google Scholar 

  44. Sothern RB, Vesely DL, Kanabrocki EL, Hermida RC, Bremner FW, Third JLHC, et al. Temporal (circadian) and functional relationship between atrial natriuretic peptides and blood pressure. Chronobiol Int. 1995;12:106–20.

    CAS  PubMed  Google Scholar 

  45. Hermida RC, Smolensky MH, Ayala DE, Portaluppi F, Crespo JJ, Fabbian F, et al. ambulatory blood pressure monitoring recommendations for the diagnosis of adult hypertension, assessment of cardiovascular and other hypertension-associated risk, and attainment of therapeutic goals. Joint recommendations from the International Society for Chronobiology (ISC), American Association of Medical Chronobiology and Chronotherapeutics (AAMCC), Spanish Society of Applied Chronobiology, Chronotherapy, and Vascular Risk (SECAC), Spanish Society of Atherosclerosis (SEA), and Romanian Society of Internal Medicine (RSIM). Chronobiol Int. 2013;30:355–410.

    CAS  PubMed  Google Scholar 

  46. Verdecchia P, Porcellati C, Schillaci G, Borgioni C, Ciucci A, Battistell M, et al. Ambulatory blood pressure: an independent predictor of prognosis in essential hypertension. Hypertension. 1994;24:793–801.

    CAS  PubMed  Google Scholar 

  47. Clement DL, De Buyzere ML, De Bacquer DA, de Leeuw PW, Duprez DA, Fagard RH, et al. Prognostic value of ambulatory blood-pressure recordings in patients with treated hypertension. N Engl J Med. 2003;348:2407–15.

    PubMed  Google Scholar 

  48. Eguchi K, Pickering TG, Hoshide S, Ishikawa J, Ishikawa S, Schwartz J, et al. Ambulatory blood pressure is a better marker than clinic blood pressure in predicting cardiovascular events in patients with/without type 2 diabetes. Am J Hypertens. 2008;21:443–50.

    PubMed  Google Scholar 

  49. Salles GF, Cardoso CR, Muxfeldt ES. Prognostic influence of office and ambulatory blood pressures in resistant hypertension. Arch Intern Med. 2008;168:2340–6.

    PubMed  Google Scholar 

  50. Frank M, Peyrard S, Bobrie G, Azizi M. Method of mean value calculation as an additional source of variability in ambulatory blood pressure measurement. Am J Hypertens. 2010;23:725–31.

    PubMed  Google Scholar 

  51. Hermida RC, Calvo C, Ayala DE, Fernández JR, Ruilope LM, López JE. Evaluation of the extent and duration of the “ABPM effect” in hypertensive patients. J Am Coll Cardiol. 2002;40:710–7.

    PubMed  Google Scholar 

  52. • Hermida RC, Ayala DE, Fontao MJ, Mojón A, Fernández JR. Ambulatory blood pressure monitoring: Importance of sampling rate and duration – 48 versus 24 hours – on the accurate assessment of cardiovascular risk. Chronobiol Int. 2013;30:55–67 This publication provides in-depth verification the duration of ABPM—48 h vs. 24 h—rather than the frequency of measurement more accurately derives representative awake and asleep SBP and DBP means as well as sleep-time relative BP decline (dipper status) and CVD risk.

    PubMed  Google Scholar 

  53. Julious SA. Sample sizes for clinical trials with normal data. Stat Med. 2004;23(12):1921–86. https://doi.org/10.1002/sim.1783.

    Article  PubMed  Google Scholar 

  54. Ciobanu DM, Veresiu IA, Bala CG, Roman G, Mircea PA. Benefits of bedtime hypertension medication in type 2 diabetes demonstrated on ambulatory blood pressure monitoring. 49th Ann Sci Meeting Eur Soc Clin Invest. 2015:107–12.

  55. Huangfu W, Duan P, Xiang D, Gao R. Administration time-dependent effects of combination therapy on ambulatory blood pressure in hypertensive subjects. Int J Clin Exp Med. 2015;8(10):19156–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Kasiakogias A, Tsioufis C, Thomopoulos C, Andrikou I, Aragiannis D, Dimitriadis K, et al. Evening versus morning dosing of antihypertensive drugs in hypertensive patients with sleep apnoea: a cross-over study. J Hypertens. 2015;33(2):393–400.

    CAS  PubMed  Google Scholar 

  57. Lafeber M, Grobbee DE, Schrover IM, Thom S, Webster R, Rodgers A, et al. Comparison of a morning polypill, evening polypill and individual pills on LDL-cholesterol, ambulatory blood pressure and adherence in high-risk patients; a randomized crossover trial. Int J Cardiol. 2015;181:193–9.

    CAS  PubMed  Google Scholar 

  58. Ponte-Márquez PH, Solé MJ, Arroyo JA, Matas L, Benet MT, Roca-Cusachs A. Differences in the reduction of blood pressure according to drug administration at activity hours or rest hours. Med Clin (Barc). 2015;144(2):51–4.

    Google Scholar 

  59. Ushijima K, Nakashima H, Shiga T, Harada K, Ishikawa S, Ioka T, et al. Different chronotherapeutic effects of valsartan and olmesartan in non-dipper hypertensive patients during valsartan treatment at morning. J Pharmacol Sci. 2015;127(1):62–8.

    CAS  PubMed  Google Scholar 

  60. Zappe DH, Crikelair N, Kandra A, Palatini P. Time of administration important? Morning versus evening dosing of valsartan. J Hypertens. 2015;33(2):385–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhu GS. Therapeutic effect of various medication times on anti-hypertension in elderly patients. J Huaihai Med. 2015;33:356–7.

    Google Scholar 

  62. Crippa G, Zabzuni D, Cassi A, Bravi E. Effect of bedtime dosing of barnidipine hydrochloride in non-dipper hypertensive patients with obstructive sleep apnoea not treated with continuous positive airway pressure. Eur Rev Med Pharmacol Sci. 2016;20(2):339–44.

    CAS  PubMed  Google Scholar 

  63. Hjortkjær HØ, Jensen T, Kofoed KF, Mogensen UM, Sigvardsen PE, Køber L, et al. Nocturnal antihypertensive treatment in patients with type 1 diabetes with autonomic neuropathy and non-dipping: a randomised, placebo-controlled, double-blind cross-over trial. BMJ Open. 2016;6(12):e012307.

    PubMed  PubMed Central  Google Scholar 

  64. Hou SF. Effect of levamlopine on elderly non-dipper hypertension at different time. World Clin Med. 2016;10:67–71.

    Google Scholar 

  65. Kario K, Hoshide S, Uchiyama K, Yoshida T, Okazaki O, Noshiro T, et al. Dose timing of an angiotensin II receptor blocker/calcium channel blocker combination in hypertensive patients with paroxysmal atrial fibrillation. J Clin Hypertens (Greenwich). 2016;18(10):1036–44.

    CAS  Google Scholar 

  66. Lin YJ, Wu CF. Clinical analysis of the pharmacology of levamlodipine on correcting elderly non-dipper hypertension. Strait Pharmaceut J. 2016;28:95–6.

    Google Scholar 

  67. Fujiwara T, Hoshide S, Yano Y, Kanegae H, Kario K. Comparison of morning vs bedtime administration of the combination of valsartan/amlodipine on nocturnal brachial and central blood pressure in patients with hypertension. J Clin Hypertens (Greenwich). 2017;19(12):1319–26.

    CAS  Google Scholar 

  68. Khodadoustan S, Ashrafi IN, Satheesh KV, Kumar C, Hs S, S C. Evaluation of the effect of time dependent dosing on pharmacokinetic and pharmacodynamics of amlodipine in normotensive and hypertensive human subjects. Clin Exp Hypertens 2017;39(6):520–526.

  69. Serinel Y, Yee BJ, Grunstein RR, Wong KH, Cistulli PA, Arima H, et al. Chronotherapy for hypertension in obstructive sleep apnoea (CHOSA): a randomised, double-blind, placebo-controlled crossover trial. Thorax. 2017;72(6):550–8.

    PubMed  Google Scholar 

  70. Poulter NR, Savoloulos C, Anjum A, Apostolopoulou M, Chapman N, Cross M, et al. Randomized crossover trial of the impact of morning or evening dosing of antihypertensive agents on 24-hour ambulatory blood pressure – the HARMONY trial. Hypertension. 2018;72:870–3.

    CAS  PubMed  Google Scholar 

  71. Kuate LM, Ondoa HOB, Jean-Claude K, Tankeu AT, Bokam MCA, Bimbai AM, et al. Effects of morning versus evening administration of perindopril on the circadian control of blood pressure in Cameroonian type 2 diabetes individuals: a crossover randomized trial. Int Arch Cardiovasc Dis. 2019;3:014.

    Google Scholar 

  72. Sellén-Sanchén E, Ferrer-Herrera IM, Coll-Bujardon D. Ambulatory blood pressure monitoring and chronotherapy response in a diabetic hypertensive population. Rev Arch Med Camagüey. 2019;23(6):697–708.

    Google Scholar 

  73. Hermida RC, Calvo C, Ayala DE, López JE. Decrease in urinary albumin excretion associated to the normalization of nocturnal blood pressure in hypertensive subjects. Hypertension. 2005;46:960–8.

    CAS  PubMed  Google Scholar 

  74. Hermida RC, Ayala DE, Mojon A, Fernandez JR. Chronotherapy with nifedipine GITS in hypertensive patients: improved efficacy and safety with bedtime dosing. Am J Hypertens. 2008;21:948–54.

    CAS  PubMed  Google Scholar 

  75. Staessen JA, Fagard R, Thijs L, Celis H, Arabidze GG, Birkenhager WH, et al. Randomised double-blind comparison of placebo and active treatment for older patients with isolated systolic hypertension. Lancet. 1997;350:757–64.

    CAS  PubMed  Google Scholar 

  76. Liu L, Wang JG, Gong L, Liu G, Staessen JA. Comparison of active treatment and placebo in older Chinese patients with isolated systolic hypertension. Systolic Hypertension in China (Syst-China) Collaborative Group. J Hypertens. 1998;16:1823–9.

    CAS  PubMed  Google Scholar 

  77. Yusuf S, Sleight P, Pogue J, Bosch J, Davies R, Dagenais G. Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients: the Heart Outcomes Prevention Evaluation Study Investigators. N Engl J Med. 2000;342:145–53.

    CAS  PubMed  Google Scholar 

  78. Tatti P, Pahor M, Byington RP, Di Mauro P, Guarisco R, Strollo G, et al. Outcome results of the fosinopril versus amlodipine cardiovascular events randomized trial (FACET) in patients with hypertension and NIDDM. Diabetes Care. 1998;21(4):597–603.

    CAS  PubMed  Google Scholar 

  79. Black HR, Elliott WJ, Grandits G, Grambsch P, Lucente T, White WB, et al. Principal results of the Controlled Onset Verapamil Investigation of Cardiovascular End Points (CONVINCE) trial. JAMA. 2003;289:2073–82.

    CAS  PubMed  Google Scholar 

  80. White WB, Black HR, Weber MA, Elliott WJ, Brysinski B, Fakourhi TD. Comparison of effects of controlled-onset extended-release verapamil at bedtime and nifedipine gastrointestinal therapeutic system on arising on early morning blood pressure, heart rate, and the heart rate-blood pressure product. Am J Cardiol. 1998;81:424–31.

    CAS  PubMed  Google Scholar 

  81. Law MR, Morris JK, Wald NJ. Use of blood pressure lowering drugs in the prevention of cardiovascular disease: meta-analysis of 147 randomised trials in the context of expectations from prospective epidemiological studies. BMJ. 2009;338:b1665.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Carter BL, Chrischilles EA, Rosenthal G, Gryzlak BM, Eisenstein EL, Vander Weg MW. Efficacy and safety of nighttime dosing of antihypertensives: review of the literature and design of a pragmatic clinical trial. J Clin Hypertens (Greenwich). 2014;16:115–21.

    CAS  Google Scholar 

  83. Rorie DA, Rogers A, Mackenzie IS, Ford I, Webb DJ, Williams B, et al. Methods of a large prospective, randomized, open-label, blinded end-point study comparing morning versus evening dosing in hypertensive patients: the Treatment In Morning versus Evening (TIME) study. BMJ Open. 2016;6:e010313. https://doi.org/10.1136/bmjopen-2015-010313.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Hermida RC, Mojón A, Fernández JR. Comparing the design of the primary-care based Hygia Chronotherapy Trial and the internet-based TIME study. Eur Heart J. 2020;41:1608.

    PubMed  Google Scholar 

  85. Kim SYH, Miller FG. Ethical complexities in standard of care randomized trials: a case study of morning versus nighttime docing of blood pressure drugs. Clin Trials. 2015;12:557–63.

    PubMed  PubMed Central  Google Scholar 

  86. Kanabrocki EL, George M, Hermida RC, Messmore HL, Ryan MD, Ayala DE, et al. Day-night variations in blood levels of nitric oxide, T-TFPI and E-selectin. Clin Appl Thrombosis/Hemostasis. 2001;7:339–45.

    CAS  Google Scholar 

  87. Sole MJ, Martino TA. Diurnal physiology: core principles with application to the pathogenesis, diagnosis, prevention, and treatment of myocardial hypertrophy and failure. J Appl Physiol. 2009;107:1318–27.

    CAS  PubMed  Google Scholar 

  88. Martino TA, Tata N, Simpson JA, Vanderlaan R, Dawood F, Kabir MG, et al. The primary benefits of angiotensin-converting enzyme inhibition on cardiac remodeling occur during sleep time in murine pressure overload hypertrophy. J Am Coll Cardiol. 2011;57:2020–8.

    CAS  PubMed  Google Scholar 

  89. Rana S, Prabhu SD, Young ME. Chronobiological influence over cardiovascular function. The good, the bad, and ugly. Circ Res. 2020;126:258–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Hermida RC, Ayala DE, Mojón A, Fernández JR. Cardiovascular risk of essential hypertension: influence of class, number, and treatment-time regimen of hypertension medications. Chronobiol Int. 2013;30:315–27.

    PubMed  Google Scholar 

  91. Hermida RC, Crespo JJ, Domínguez-Sardiña M, for the Hygia Chronotherapy Trial investigators. Improved reduction of cardiovascular risk by bedtime ingestion of ARB and ACEI medication class therapies. Eur Heart J. 2020;41:1602–3.

    PubMed  Google Scholar 

  92. Hermida RC, Ayala DE, Mojón A, Smolensky MH, Fernández JR. Diagnosis and management of hypertension: around-the-clock ambulatory blood pressure monitoring is substantially more effective and less costly than daytime office blood pressure measurements. Chronobiol Int. 2019;36:1515–27.

    PubMed  Google Scholar 

  93. Hermida RC, Ayala DE, Mojón A, Fernández JR. Influence of time of day of blood pressure-lowering treatment on cardiovascular risk in hypertensive patients with type 2 diabetes. Diabetes Care. 2011;34:1270–6.

    PubMed  PubMed Central  Google Scholar 

  94. Hermida RC, Ayala DE, Mojón A, Fernández JR. Bedtime dosing of antihypertensive medications reduces cardiovascular risk in CKD. J Am Soc Nephrol. 2011;22:2313–21.

    PubMed  PubMed Central  Google Scholar 

  95. Ayala DE, Hermida RC, Mojón A, Fernández JR. Cardiovascular risk of resistant hypertension: dependence on treatment-time regimen of blood pressure-lowering medications. Chronobiol Int. 2013;30:340–52.

    CAS  PubMed  Google Scholar 

  96. • Hermida RC, Ayala DE, Mojón A, Fernández JR. Bedtime ingestion of hypertension medications reduces the risk of new-onset type 2 diabetes: a randomised controlled trial. Diabetologia. 2016;59:255–65 This publication documents risk for new-onset type 2 diabetes can be significantly diminished when the asleep SBP mean is appropriately controlled by bedtime hypertension chronotherapy.

    CAS  PubMed  Google Scholar 

  97. •• Hermida RC, Ayala DE, Mojón A, Fernánez JR. Risk of incident chronic kidney disease is better reduced by bedtime than upon awakening ingestion of hypertension medications. Hypertens Res. 2018;41:342–53 This publication demonstrates bedtime hypertension chronotherapy not only more effectively diminishes asleep SBP mean than upon-awakening treatment, but significantly reduces risk for incident CKD.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramón C. Hermida.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

All reported studies with human subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional research committee standards, and institutional guidelines).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Hypertension

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hermida, R.C., Hermida-Ayala, R.G., Smolensky, M.H. et al. Does Timing of Antihypertensive Medication Dosing Matter?. Curr Cardiol Rep 22, 118 (2020). https://doi.org/10.1007/s11886-020-01353-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-020-01353-7

Keywords

Navigation