Skip to main content
Log in

Role of the Gut in Modulating Lipoprotein Metabolism

  • Lipid Abnormalities and Cardiovascular Prevention (G De Backer, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

The intestinal production of lipoproteins is one of the key processes by which the body prepares dietary lipid for dissemination to locations throughout the body where they are required. Paramount to this is the relationship between dietary lipid and the enterocytes that line the gut, along with the processes which prepare this lipid for efficient uptake by these cells. These include those which occur in the mouth and stomach along with those which occur within the intestinal lumen itself. Additionally, the interplay between digested lipid, dual avenues for lipid uptake by enterocytes (passive and lipid transporter proteins), a system of intercellular lipid resynthesis and transport, and a complex system of lipoprotein synthesis yield a system open to significant modulation. In this review, we will attempt to outline the processes of lipid digestion, lipoprotein synthesis and the exogenous and endogenous factors which exert their influence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Lichtenstein AH et al. Dietary fat consumption and health. Nutr Rev. 1998;56(5):3–19.

    Google Scholar 

  2. Goris AH, Westerterp KR. Physical activity, fat intake and body fat. Physiol Behav. 2008;94(2):164–8.

    CAS  PubMed  Google Scholar 

  3. Abumrad NA, Davidson NO. Role of the gut in lipid homeostasis. Physiol Rev. 2012;92(3):1061–85. A review detailing the pathways regulating intestinal absorption and delivery of dietary and biliary lipid substrates, principally long-chain fatty acid, cholesterol, and other sterols.

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Mu H, Hoy CE. The digestion of dietary triacylglycerols. Prog Lipid Res. 2004;43(2):105–33.

    CAS  PubMed  Google Scholar 

  5. Kindel T, Lee DM, Tso P. The mechanism of the formation and secretion of chylomicrons. Atheroscler Suppl. 2010;11(1):11–6.

    CAS  PubMed  Google Scholar 

  6. Marteau P et al. Survival of lactic acid bacteria in a dynamic model of the stomach and small intestine: validation and the effects of bile. J Dairy Sci. 1997;80(6):1031–7.

    CAS  PubMed  Google Scholar 

  7. Warnakula S et al. New insights into how the intestine can regulate lipid homeostasis and impact vascular disease: frontiers for new pharmaceutical therapies to lower cardiovascular disease risk. Can J Cardiol. 2011;27(2):183–91.

    CAS  PubMed  Google Scholar 

  8. Demignot S, Beilstein F, Morel E. Triglyceride-rich lipoproteins and cytosolic lipid droplets in enterocytes: key players in intestinal physiology and metabolic disorders. Biochimie. 2014;96:48–55.

    CAS  PubMed  Google Scholar 

  9. Zilversmit DB. Atherogenesis: a postprandial phenomenon. Circulation. 1979;60(3):473–85.

    CAS  PubMed  Google Scholar 

  10. Nakajima K et al. Postprandial lipoprotein metabolism: VLDL vs chylomicrons. Clin Chim Acta. 2011;412(15–16):1306–18.

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Griffin BA, Fielding BA. Postprandial lipid handling. Curr Opin Clin Nutr Metab Care. 2001;4(2):93–8.

    CAS  PubMed  Google Scholar 

  12. Green PH, Riley JW. Lipid absorption and intestinal lipoprotein formation. Aust N Z J Med. 1981;11(1):84–90.

    CAS  PubMed  Google Scholar 

  13. Keating N, Keely SJ. Bile acids in regulation of intestinal physiology. Curr Gastroenterol Rep. 2009;11(5):375–82.

    PubMed  Google Scholar 

  14. Lambert JE, Parks EJ. Postprandial metabolism of meal triglyceride in humans. Biochim Biophys Acta. 2012;1821(5):721–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Tomkin GH, Owens D. Abnormalities in apo B-containing lipoproteins in diabetes and atherosclerosis. Diabetes Metab Res Rev. 2001;17(1):27–43.

    CAS  PubMed  Google Scholar 

  16. Botham KM et al. Direct interaction of dietary lipids carried in chylomicron remnants with cells of the artery wall: implications for atherosclerosis development. Curr Pharm Des. 2005;11(28):3681–95.

    CAS  PubMed  Google Scholar 

  17. Vine DF, Glimm DR, Proctor SD. Intestinal lipid transport and chylomicron production: possible links to exacerbated atherogenesis in a rodent model of the metabolic syndrome. Atheroscler Suppl. 2008;9(2):69–76.

    CAS  PubMed  Google Scholar 

  18. Hamosh M. Lingual and gastric lipases. Nutrition. 1990;6(6):421–8.

    CAS  PubMed  Google Scholar 

  19. Fredrikzon B, Hernell O, Blackberg L. Lingual lipase. Its role in lipid digestion in infants with low birthweight and/or pancreatic insufficiency. Acta Paediatr Scand Suppl. 1982;296:75–80.

    CAS  PubMed  Google Scholar 

  20. Hayes JR et al. Review of triacylglycerol digestion, absorption, and metabolism with respect to Salatrim triacylglycerols. J Agric Food Chem. 1994;42(2):474–83.

    CAS  Google Scholar 

  21. Bracco U. Effect of triglyceride structure on fat absorption. Am J Clin Nutr. 1994;60(6 Suppl):1002S–9.

    CAS  PubMed  Google Scholar 

  22. Liao TH, Hamosh P, Hamosh M. Fat digestion by lingual lipase: mechanism of lipolysis in the stomach and upper small intestine. Pediatr Res. 1984;18(5):402–9.

    CAS  PubMed  Google Scholar 

  23. Shah U, Sanderson IR. Role of the intestinal lumen in the ontogeny of the gastrointestinal tract. In: Sanderson IR, Walker WA, editors. Development of the gastrointestinal tract. Ontario: B.C. Decker Ltd; 1999.

    Google Scholar 

  24. Abrams CK et al. Gastric lipase: localization in the human stomach. Gastroenterology. 1988;95(6):1460–4.

    CAS  PubMed  Google Scholar 

  25. Carriere F et al. Secretion and contribution to lipolysis of gastric and pancreatic lipases during a test meal in humans. Gastroenterology. 1993;105(3):876–88.

    CAS  PubMed  Google Scholar 

  26. Pafumi Y et al. Mechanisms of inhibition of triacylglycerol hydrolysis by human gastric lipase. J Biol Chem. 2002;277(31):28070–9.

    CAS  PubMed  Google Scholar 

  27. Chahinian H et al. How gastric lipase, an interfacial enzyme with a Ser-His-Asp catalytic triad, acts optimally at acidic pH. Biochemistry. 2006;45(3):993–1001.

    CAS  PubMed  Google Scholar 

  28. Verger R. Enzyme kinetics of lipolysis. Methods Enzymol. 1980;64:340–92.

    CAS  PubMed  Google Scholar 

  29. Konturek JW et al. Role of cholecystokinin in the control of gastric emptying and secretory response to a fatty meal in normal subjects and duodenal ulcer patients. Scand J Gastroenterol. 1994;29(7):583–90.

    CAS  PubMed  Google Scholar 

  30. Liddle RA et al. Regulation of gastric emptying in humans by cholecystokinin. J Clin Invest. 1986;77(3):992–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Lindquist S, Hernell O. Lipid digestion and absorption in early life: an update. Curr Opin Clin Nutr Metab Care. 2010;13(3):314–20.

    CAS  PubMed  Google Scholar 

  32. Jensen RG et al. The lipolytic triad: human lingual, breast milk, and pancreatic lipases: physiological implications of their characteristics in digestion of dietary fats. J Pediatr Gastroenterol Nutr. 1982;1(2):243–55.

    CAS  PubMed  Google Scholar 

  33. Johnson K et al. Pancreatic lipase-related protein 2 digests fats in human milk and formula in concert with gastric lipase and carboxyl ester lipase. Pediatr Res. 2013;74(2):127–32.

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Hernell O. Human milk lipases. III. Physiological implications of the bile salt-stimulated lipase. Eur J Clin Invest. 1975;5(3):267–72.

    CAS  PubMed  Google Scholar 

  35. Blackberg L, Hernell O. Bile salt-stimulated lipase in human milk. Evidence that bile salt induces lipid binding and activation via binding to different sites. FEBS Lett. 1993;323(3):207–10.

    CAS  PubMed  Google Scholar 

  36. Hernell O, Blackberg L. Digestion of human milk lipids: physiologic significance of sn-2 monoacylglycerol hydrolysis by bile salt-stimulated lipase. Pediatr Res. 1982;16(10):882–5.

    CAS  PubMed  Google Scholar 

  37. Wasle B, Edwardson JM. The regulation of exocytosis in the pancreatic acinar cell. Cell Signal. 2002;14(3):191–7.

    CAS  PubMed  Google Scholar 

  38. Borovicka J et al. Regulation of gastric and pancreatic lipase secretion by CCK and cholinergic mechanisms in humans. Am J Physiol. 1997;273(2 Pt 1):G374–80.

    CAS  PubMed  Google Scholar 

  39. Williams JA. Intracellular signaling mechanisms activated by cholecystokinin-regulating synthesis and secretion of digestive enzymes in pancreatic acinar cells. Annu Rev Physiol. 2001;63:77–97.

    CAS  PubMed  Google Scholar 

  40. Power ML, Schulkin J. Anticipatory physiological regulation in feeding biology: cephalic phase responses. Appetite. 2008;50(2–3):194–206.

    PubMed Central  PubMed  Google Scholar 

  41. Brownlee IA et al. Physiological parameters governing the action of pancreatic lipase. Nutr Res Rev. 2010;23(1):146–54.

    CAS  PubMed  Google Scholar 

  42. Gullo L et al. Action of secretin on pancreatic enzyme secretion in man. Studies on pure pancreatic juice. Gut. 1984;25(8):867–73.

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Mattson FH, Volpenhein RA. Hydrolysis of primary and secondary esters of glycerol by pancreatic juice. J Lipid Res. 1968;9(1):79–84.

    CAS  PubMed  Google Scholar 

  44. Mattson FH, Beck LW. The digestion in vitro of triglycerides by pancreatic lipase. J Biol Chem. 1955;214(1):115–25.

    CAS  PubMed  Google Scholar 

  45. Mattson FH, Beck LW. The specificity of pancreatic lipase for the primary hydroxyl groups of glycerides. J Biol Chem. 1956;219(2):735–40.

    CAS  PubMed  Google Scholar 

  46. Dutta SK, Russell RM, Iber FL. Influence of exocrine pancreatic insufficiency on the intraluminal pH of the proximal small intestine. Dig Dis Sci. 1979;24(7):529–34.

    CAS  PubMed  Google Scholar 

  47. Freedman SD, Scheele GA. Acid-base interactions during exocrine pancreatic secretion. Primary role for ductal bicarbonate in acinar lumen function. Ann N Y Acad Sci. 1994;713:199–206.

    CAS  PubMed  Google Scholar 

  48. Dutta SK, Russell RM, Iber FL. Impaired acid neutralization in the duodenum in pancreatic insufficiency. Dig Dis Sci. 1979;24(10):775–80.

    CAS  PubMed  Google Scholar 

  49. Felig PFLA. Endocrinology & metabolism. New York: McGraw-Hill, Health Professions Division; 2001.

    Google Scholar 

  50. Chey WY, Chang TM. Secretin: historical perspective and current status. Pancreas. 2014;43(2):162–82.

    CAS  PubMed  Google Scholar 

  51. Holst JJ et al. Secretin release from the isolated, vascularly perfused pig duodenum. J Physiol. 1981;318:327–37.

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Nishiwaki H et al. Postprandial plasma secretin response in patients following gastrectomy. Surg Gynecol Obstet. 1983;156(1):69–72.

    CAS  PubMed  Google Scholar 

  53. Wilde PJ, Chu BS. Interfacial & colloidal aspects of lipid digestion. Adv Colloid Interface Sci. 2011;165(1):14–22.

    CAS  PubMed  Google Scholar 

  54. Chandra R, Liddle RA. Cholecystokinin. Curr Opin Endocrinol Diabetes Obes. 2007;14(1):63–7.

    CAS  PubMed  Google Scholar 

  55. Wang Y et al. Amino acids stimulate cholecystokinin release through the Ca2+-sensing receptor. Am J Physiol Gastrointest Liver Physiol. 2011;300(4):G528–37.

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Liddle RA. Regulation of cholecystokinin secretion in humans. J Gastroenterol. 2000;35(3):181–7.

    CAS  PubMed  Google Scholar 

  57. McLaughlin J et al. Fatty acid chain length determines cholecystokinin secretion and effect on human gastric motility. Gastroenterology. 1999;116(1):46–53.

    CAS  PubMed  Google Scholar 

  58. Niebergall-Roth E, Teyssen S, Singer MV. Neurohormonal control of gallbladder motility. Scand J Gastroenterol. 1997;32(8):737–50.

    CAS  PubMed  Google Scholar 

  59. Zwicker BL, Agellon LB. Transport and biological activities of bile acids. Int J Biochem Cell Biol. 2013;45(7):1389–98.

    CAS  PubMed  Google Scholar 

  60. de Aguiar Vallim TQ, Tarling EJ, Edwards PA. Pleiotropic roles of bile acids in metabolism. Cell Metab. 2013;17(5):657–69.

    PubMed Central  PubMed  Google Scholar 

  61. Ferdinandusse S, Houten SM. Peroxisomes and bile acid biosynthesis. Biochim Biophys Acta. 2006;1763(12):1427–40.

    CAS  PubMed  Google Scholar 

  62. Ito M, Adachi-Akahane S. Inter-organ communication in the regulation of lipid metabolism: focusing on the network between the liver, intestine, and heart. J Pharmacol Sci. 2013;123(4):312–7.

    CAS  PubMed  Google Scholar 

  63. Kerfelec B et al. Computational study of colipase interaction with lipid droplets and bile salt micelles. Proteins. 2008;73(4):828–38.

    CAS  PubMed  Google Scholar 

  64. Charles M et al. Interaction of pancreatic colipase with a bile salt micelle. Biochem Biophys Res Commun. 1975;65(2):740–5.

    CAS  PubMed  Google Scholar 

  65. van Tilbeurgh H et al. Colipase: structure and interaction with pancreatic lipase. Biochim Biophys Acta. 1999;1441(2–3):173–84.

    PubMed  Google Scholar 

  66. Brockman HL. Kinetic behavior of the pancreatic lipase-colipase-lipid system. Biochimie. 2000;82(11):987–95.

    CAS  PubMed  Google Scholar 

  67. Dahim M, Brockman H. How colipase-fatty acid interactions mediate adsorption of pancreatic lipase to interfaces. Biochemistry. 1998;37(23):8369–77.

    CAS  PubMed  Google Scholar 

  68. Schmit GD et al. The affinities of procolipase and colipase for interfaces are regulated by lipids. Biophys J. 1996;71(6):3421–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Borgstrom B. Importance of phospholipids, pancreatic phospholipase A2, and fatty acid for the digestion of dietary fat: in vitro experiments with the porcine enzymes. Gastroenterology. 1980;78(5 Pt 1):954–62.

    CAS  PubMed  Google Scholar 

  70. Freie AB et al. Val-407 and Ile-408 in the beta5'-loop of pancreatic lipase mediate lipase-colipase interactions in the presence of bile salt micelles. J Biol Chem. 2006;281(12):7793–800.

    CAS  PubMed Central  PubMed  Google Scholar 

  71. D'Agostino D et al. Decreased postnatal survival and altered body weight regulation in procolipase-deficient mice. J Biol Chem. 2002;277(9):7170–7.

    PubMed Central  PubMed  Google Scholar 

  72. Cohn JS et al. Reduction in intestinal cholesterol absorption by various food components: mechanisms and implications. Atheroscler Suppl. 2010;11(1):45–8.

    CAS  PubMed  Google Scholar 

  73. Carey MC, Duane WC. Enterohepatic circulation. In: Arias IM et al., editors. The liver: biology and pathobiology. New York: Raven Press; 1994. p. 719–67.

    Google Scholar 

  74. Duan RD, Nyberg L, Nilsson A. Alkaline sphingomyelinase activity in rat gastrointestinal tract: distribution and characteristics. Biochim Biophys Acta. 1995;1259(1):49–55.

    PubMed  Google Scholar 

  75. Duan RD, Nilsson A. Purification of a newly identified alkaline sphingomyelinase in human bile and effects of bile salts and phosphatidylcholine on enzyme activity. Hepatology. 1997;26(4):823–30.

    CAS  PubMed  Google Scholar 

  76. Nilsson A, Duan RD. Alkaline sphingomyelinases and ceramidases of the gastrointestinal tract. Chem Phys Lipids. 1999;102(1–2):97–105.

    CAS  PubMed  Google Scholar 

  77. Olsson M et al. Rat intestinal ceramidase: purification, properties, and physiological relevance. Am J Physiol Gastrointest Liver Physiol. 2004;287(4):G929–37.

    CAS  PubMed  Google Scholar 

  78. Nilsson A, Duan RD. Absorption and lipoprotein transport of sphingomyelin. J Lipid Res. 2006;47(1):154–71.

    CAS  PubMed  Google Scholar 

  79. Duan RD, Nilsson A. Metabolism of sphingolipids in the gut and its relation to inflammation and cancer development. Prog Lipid Res. 2009;48(1):62–72.

    CAS  PubMed  Google Scholar 

  80. Nyberg L, Duan RD, Nilsson A. A mutual inhibitory effect on absorption of sphingomyelin and cholesterol. J Nutr Biochem. 2000;11(5):244–9.

    CAS  PubMed  Google Scholar 

  81. Grundy SM, Metzger AL. A physiological method for estimation of hepatic secretion of biliary lipids in man. Gastroenterology. 1972;62(6):1200–17.

    CAS  PubMed  Google Scholar 

  82. Wang CS, Dashti A, Downs D. Bile salt-activated lipase. Methods Mol Biol. 1999;109:71–9.

    CAS  PubMed  Google Scholar 

  83. Hui DY, Howles PN. Carboxyl ester lipase: structure-function relationship and physiological role in lipoprotein metabolism and atherosclerosis. J Lipid Res. 2002;43(12):2017–30.

    CAS  PubMed  Google Scholar 

  84. Thomson AB et al. Lipid absorption: passing through the unstirred layers, brush-border membrane, and beyond. Can J Physiol Pharmacol. 1993;71(8):531–55.

    CAS  PubMed  Google Scholar 

  85. Buttet M et al. From fatty-acid sensing to chylomicron synthesis: role of intestinal lipid-binding proteins. Biochimie. 2014;96:37–47.

    CAS  PubMed  Google Scholar 

  86. Pan X, Hussain MM. Gut triglyceride production. Biochim Biophys Acta. 2012;1821(5):727–35.

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Chow SL, Hollander D. A dual, concentration-dependent absorption mechanism of linoleic acid by rat jejunum in vitro. J Lipid Res. 1979;20(3):349–56.

    CAS  PubMed  Google Scholar 

  88. Stremmel W. Uptake of fatty acids by jejunal mucosal cells is mediated by a fatty acid binding membrane protein. J Clin Invest. 1988;82(6):2001–10.

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Montoudis A et al. Intestinal-fatty acid binding protein and lipid transport in human intestinal epithelial cells. Biochem Biophys Res Commun. 2006;339(1):248–54.

    CAS  PubMed  Google Scholar 

  90. Abumrad NA et al. Cloning of a rat adipocyte membrane protein implicated in binding or transport of long-chain fatty acids that is induced during preadipocyte differentiation. Homology with human CD36. J Biol Chem. 1993;268(24):17665–8.

    CAS  PubMed  Google Scholar 

  91. Chen M et al. Gut expression and regulation of FAT/CD36: possible role in fatty acid transport in rat enterocytes. Am J Physiol Endocrinol Metab. 2001;281(5):E916–23.

    CAS  PubMed  Google Scholar 

  92. Poirier H et al. Localization and regulation of the putative membrane fatty-acid transporter (FAT) in the small intestine. Comparison with fatty acid-binding proteins (FABP). Eur J Biochem. 1996;238(2):368–73.

    CAS  PubMed  Google Scholar 

  93. Drover VA et al. CD36 deficiency impairs intestinal lipid secretion and clearance of chylomicrons from the blood. J Clin Invest. 2005;115(5):1290–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Goudriaan JR et al. Intestinal lipid absorption is not affected in CD36 deficient mice. Mol Cell Biochem. 2002;239(1–2):199–202.

    CAS  PubMed  Google Scholar 

  95. Masuda D et al. Chylomicron remnants are increased in the postprandial state in CD36 deficiency. J Lipid Res. 2009;50(5):999–1011.

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Stahl A et al. Identification of the major intestinal fatty acid transport protein. Mol Cell. 1999;4(3):299–308.

    CAS  PubMed  Google Scholar 

  97. Moulson CL et al. Cloning of wrinkle-free, a previously uncharacterized mouse mutation, reveals crucial roles for fatty acid transport protein 4 in skin and hair development. Proc Natl Acad Sci U S A. 2003;100(9):5274–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Gimeno RE et al. Targeted deletion of fatty acid transport protein-4 results in early embryonic lethality. J Biol Chem. 2003;278(49):49512–6.

    CAS  PubMed  Google Scholar 

  99. Milger K et al. Cellular uptake of fatty acids driven by the ER-localized acyl-CoA synthetase FATP4. J Cell Sci. 2006;119(Pt 22):4678–88.

    CAS  PubMed  Google Scholar 

  100. Hall AM et al. Enzymatic properties of purified murine fatty acid transport protein 4 and analysis of acyl-CoA synthetase activities in tissues from FATP4 null mice. J Biol Chem. 2005;280(12):11948–54.

    CAS  PubMed  Google Scholar 

  101. Trigatti BL, Anderson RG, Gerber GE. Identification of caveolin-1 as a fatty acid binding protein. Biochem Biophys Res Commun. 1999;255(1):34–9.

    CAS  PubMed  Google Scholar 

  102. Field FJ et al. Caveolin is present in intestinal cells: role in cholesterol trafficking? J Lipid Res. 1998;39(10):1938–50.

    CAS  PubMed  Google Scholar 

  103. Lajoie P, Nabi IR. Lipid rafts, caveolae, and their endocytosis. Int Rev Cell Mol Biol. 2010;282:135–63.

    CAS  PubMed  Google Scholar 

  104. Siddiqi S et al. Intestinal caveolin-1 is important for dietary fatty acid absorption. Biochim Biophys Acta. 2013;1831(8):1311–21.

    CAS  PubMed  Google Scholar 

  105. Murota K et al. Inhibitory effect of monoacylglycerol on fatty acid uptake into rat intestinal epithelial cells. Biosci Biotechnol Biochem. 2001;65(6):1441–3.

    CAS  PubMed  Google Scholar 

  106. Murota K, Storch J. Uptake of micellar long-chain fatty acid and sn-2-monoacylglycerol into human intestinal Caco-2 cells exhibits characteristics of protein-mediated transport. J Nutr. 2005;135(7):1626–30.

    CAS  PubMed  Google Scholar 

  107. Storch J, Zhou YX, Lagakos WS. Metabolism of apical versus basolateral sn-2-monoacylglycerol and fatty acids in rodent small intestine. J Lipid Res. 2008;49(8):1762–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  108. van der Wulp MY, Verkade HJ, Groen AK. Regulation of cholesterol homeostasis. Mol Cell Endocrinol. 2013;368(1–2):1–16.

    PubMed  Google Scholar 

  109. Betters JL, Yu L. NPC1L1 and cholesterol transport. FEBS Lett. 2010;584(13):2740–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Ge L et al. The cholesterol absorption inhibitor ezetimibe acts by blocking the sterol-induced internalization of NPC1L1. Cell Metab. 2008;7(6):508–19.

    CAS  PubMed  Google Scholar 

  111. Garmy N et al. Interaction of cholesterol with sphingosine: physicochemical characterization and impact on intestinal absorption. J Lipid Res. 2005;46(1):36–45.

    CAS  PubMed  Google Scholar 

  112. Bass NM. Function and regulation of hepatic and intestinal fatty acid binding proteins. Chem Phys Lipids. 1985;38(1–2):95–114.

    CAS  PubMed  Google Scholar 

  113. Newberry EP et al. Protection against Western diet-induced obesity and hepatic steatosis in liver fatty acid-binding protein knockout mice. Hepatology. 2006;44(5):1191–205.

    CAS  PubMed  Google Scholar 

  114. Vassileva G et al. The intestinal fatty acid binding protein is not essential for dietary fat absorption in mice. FASEB J. 2000;14(13):2040–6.

    CAS  PubMed  Google Scholar 

  115. Neeli I et al. Liver fatty acid-binding protein initiates budding of pre-chylomicron transport vesicles from intestinal endoplasmic reticulum. J Biol Chem. 2007;282(25):17974–84.

    CAS  PubMed  Google Scholar 

  116. Black DD. Development and physiological regulation of intestinal lipid absorption. I. Development of intestinal lipid absorption: cellular events in chylomicron assembly and secretion. Am J Physiol Gastrointest Liver Physiol. 2007;293(3):G519–24.

    CAS  PubMed  Google Scholar 

  117. Yen CL et al. Identification of a gene encoding MGAT1, a monoacylglycerol acyltransferase. Proc Natl Acad Sci U S A. 2002;99(13):8512–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  118. Yen CL, Farese Jr RV. MGAT2, a monoacylglycerol acyltransferase expressed in the small intestine. J Biol Chem. 2003;278(20):18532–7.

    CAS  PubMed  Google Scholar 

  119. Cao J et al. Cloning and functional characterization of a mouse intestinal acyl-CoA: monoacylglycerol acyltransferase, MGAT2. J Biol Chem. 2003;278(16):13860–6.

    CAS  PubMed  Google Scholar 

  120. Yen CL et al. Deficiency of the intestinal enzyme acyl CoA: monoacylglycerol acyltransferase-2 protects mice from metabolic disorders induced by high-fat feeding. Nat Med. 2009;15(4):442–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  121. Csaki LS, Reue K. Lipins: multifunctional lipid metabolism proteins. Annu Rev Nutr. 2010;30:257–72.

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Reue K, Brindley DN. Thematic review series: glycerolipids. multiple roles for lipins/phosphatidate phosphatase enzymes in lipid metabolism. J Lipid Res. 2008;49(12):2493–503.

    CAS  PubMed Central  PubMed  Google Scholar 

  123. Buhman KK et al. DGAT1 is not essential for intestinal triacylglycerol absorption or chylomicron synthesis. J Biol Chem. 2002;277(28):25474–9.

    CAS  PubMed  Google Scholar 

  124. Cheng D et al. Acylation of acylglycerols by acyl coenzyme A: diacylglycerol acyltransferase 1 (DGAT1). Functional importance of DGAT1 in the intestinal fat absorption. J Biol Chem. 2008;283(44):29802–11.

    CAS  PubMed Central  PubMed  Google Scholar 

  125. Farese Jr RV. Acyl CoA: cholesterol acyltransferase genes and knockout mice. Curr Opin Lipidol. 1998;9(2):119–23.

    CAS  PubMed  Google Scholar 

  126. Stone SJ et al. Lipopenia and skin barrier abnormalities in DGAT2-deficient mice. J Biol Chem. 2004;279(12):11767–76.

    CAS  PubMed  Google Scholar 

  127. Lee RG et al. Differential expression of ACAT1 and ACAT2 among cells within liver, intestine, kidney, and adrenal of nonhuman primates. J Lipid Res. 2000;41(12):1991–2001.

    CAS  PubMed  Google Scholar 

  128. Bisgaier CL, Glickman RM. Intestinal synthesis, secretion, and transport of lipoproteins. Annu Rev Physiol. 1983;45:625–36.

    CAS  PubMed  Google Scholar 

  129. Rava P, Hussain MM. Acquisition of triacylglycerol transfer activity by microsomal triglyceride transfer protein during evolution. Biochemistry. 2007;46(43):12263–74.

    CAS  PubMed Central  PubMed  Google Scholar 

  130. Yao Y et al. Regulation of microsomal triglyceride transfer protein by apolipoprotein A-IV in newborn swine intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol. 2011;300(2):G357–63. In vivo study demonstrating that MTP is regulated by apo A-IV in a manner to promote increased packaging of TG into the CM core.

    CAS  PubMed Central  PubMed  Google Scholar 

  131. Lu S et al. Overexpression of apolipoprotein A-IV enhances lipid transport in newborn swine intestinal epithelial cells. J Biol Chem. 2002;277(35):31929–37.

    CAS  PubMed  Google Scholar 

  132. Siddiqi SA et al. The identification of a novel endoplasmic reticulum to Golgi SNARE complex used by the prechylomicron transport vesicle. J Biol Chem. 2006;281(30):20974–82.

    CAS  PubMed Central  PubMed  Google Scholar 

  133. Mattes RD. Oral fatty acid signaling and intestinal lipid processing: support and supposition. Physiol Behav. 2011;105(1):27–35.

    CAS  PubMed  Google Scholar 

  134. Stewart JE, Feinle-Bisset C, Keast RS. Fatty acid detection during food consumption and digestion: associations with ingestive behavior and obesity. Prog Lipid Res. 2011;50(3):225–33.

    CAS  PubMed  Google Scholar 

  135. Xiao C et al. New and emerging regulators of intestinal lipoprotein secretion. Atherosclerosis. 2014;233(2):608–15. A discussion regarding the current understanding and developments in the understanding of the regulation of intestinal lipoprotein production and how through modulation therapeutic strategies for treatment of dyslipidemia and atherosclerosis can be achieved.

    CAS  PubMed  Google Scholar 

  136. Xiao C, Lewis GF. Regulation of chylomicron production in humans. Biochim Biophys Acta. 2012;1821(5):736–46.

    CAS  PubMed  Google Scholar 

  137. Baggio LL, Drucker DJ. Biology of incretins: GLP-1 and GIP. Gastroenterology. 2007;132(6):2131–57.

    CAS  PubMed  Google Scholar 

  138. Xiao C et al. Exenatide, a glucagon-like peptide-1 receptor agonist, acutely inhibits intestinal lipoprotein production in healthy humans. Arterioscler Thromb Vasc Biol. 2012;32(6):1513–9.

    CAS  PubMed  Google Scholar 

  139. Edfalk S, Steneberg P, Edlund H. Gpr40 is expressed in enteroendocrine cells and mediates free fatty acid stimulation of incretin secretion. Diabetes. 2008;57(9):2280–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  140. Miyauchi S et al. New frontiers in gut nutrient sensor research: free fatty acid sensing in the gastrointestinal tract. J Pharmacol Sci. 2010;112(1):19–24.

    CAS  PubMed  Google Scholar 

  141. Meier JJ et al. Glucagon-like peptide 2 stimulates glucagon secretion, enhances lipid absorption, and inhibits gastric acid secretion in humans. Gastroenterology. 2006;130(1):44–54.

    CAS  PubMed  Google Scholar 

  142. Hsieh J et al. Glucagon-like peptide-2 increases intestinal lipid absorption and chylomicron production via CD36. Gastroenterology. 2009;137(3):997–1005. 1005 e1-4.

    CAS  PubMed  Google Scholar 

  143. Oakenfull D, Sidhu GS. Could saponins be a useful treatment for hypercholesterolaemia? Eur J Clin Nutr. 1990;44(1):79–88.

    CAS  PubMed  Google Scholar 

  144. Simons LA et al. Long-term treatment of hypercholesterolaemia with a new palatable formulation of guar gum. Atherosclerosis. 1982;45(1):101–8.

    CAS  PubMed  Google Scholar 

  145. Levrat-Verny MA et al. Low levels of viscous hydrocolloids lower plasma cholesterol in rats primarily by impairing cholesterol absorption. J Nutr. 2000;130(2):243–8.

    CAS  PubMed  Google Scholar 

  146. Rideout TC et al. Guar gum and similar soluble fibers in the regulation of cholesterol metabolism: current understandings and future research priorities. Vasc Health Risk Manag. 2008;4(5):1023–33.

    CAS  PubMed Central  PubMed  Google Scholar 

  147. Lairon D, Play B, Jourdheuil-Rahmani D. Digestible and indigestible carbohydrates: interactions with postprandial lipid metabolism. J Nutr Biochem. 2007;18(4):217–27.

    CAS  PubMed  Google Scholar 

  148. Ikeda I, Tanabe Y, Sugano M. Effects of sitosterol and sitostanol on micellar solubility of cholesterol. J Nutr Sci Vitaminol (Tokyo). 1989;35(4):361–9.

    CAS  Google Scholar 

  149. Ikeda I et al. Tea catechins decrease micellar solubility and intestinal absorption of cholesterol in rats. Biochim Biophys Acta. 1992;1127(2):141–6.

    CAS  PubMed  Google Scholar 

  150. Raederstorff DG et al. Effect of EGCG on lipid absorption and plasma lipid levels in rats. J Nutr Biochem. 2003;14(6):326–32.

    CAS  PubMed  Google Scholar 

  151. Bursill CA, Roach PD. Modulation of cholesterol metabolism by the green tea polyphenol (-)-epigallocatechin gallate in cultured human liver (HepG2) cells. J Agric Food Chem. 2006;54(5):1621–6.

    CAS  PubMed  Google Scholar 

  152. Yang TT, Koo MW. Hypocholesterolemic effects of Chinese tea. Pharmacol Res. 1997;35(6):505–12.

    CAS  PubMed  Google Scholar 

  153. Sahebkar A. Fat lowers fat: purified phospholipids as emerging therapies for dyslipidemia. Biochim Biophys Acta. 2013;1831(4):887–93.

    CAS  PubMed  Google Scholar 

  154. Malinow MR et al. Effect of alfalfa saponins on intestinal cholesterol absorption in rats. Am J Clin Nutr. 1977;30(12):2061–7.

    CAS  PubMed  Google Scholar 

  155. Luo H et al. Decreased bodyweight without rebound and regulated lipoprotein metabolism by gymnemate in genetic multifactor syndrome animal. Mol Cell Biochem. 2007;299(1–2):93–8.

    CAS  PubMed  Google Scholar 

  156. Nakamura Y et al. Fecal steroid excretion is increased in rats by oral administration of gymnemic acids contained in Gymnema sylvestre leaves. J Nutr. 1999;129(6):1214–22.

    CAS  PubMed  Google Scholar 

  157. Lairon D. Macronutrient intake and modulation on chylomicron production and clearance. Atheroscler Suppl. 2008;9(2):45–8.

    CAS  PubMed  Google Scholar 

  158. Roche HM et al. The effect of test meal monounsaturated fatty acid: saturated fatty acid ratio on postprandial lipid metabolism. Br J Nutr. 1998;79(5):419–24.

    CAS  PubMed  Google Scholar 

  159. Burdge GC, Powell J, Calder PC. Lack of effect of meal fatty acid composition on postprandial lipid, glucose and insulin responses in men and women aged 50-65 years consuming their habitual diets. Br J Nutr. 2006;96(3):489–500.

    CAS  PubMed  Google Scholar 

  160. Tholstrup T et al. Effect of 6 dietary fatty acids on the postprandial lipid profile, plasma fatty acids, lipoprotein lipase, and cholesterol ester transfer activities in healthy young men. Am J Clin Nutr. 2001;73(2):198–208.

    CAS  PubMed  Google Scholar 

  161. Feldman EB et al. Effects of tristearin, triolein and safflower oil diets on cholesterol balance in rats. J Nutr. 1979;109(12):2226–36.

    CAS  PubMed  Google Scholar 

  162. Xu Q et al. Medium-chain fatty acids enhanced the excretion of fecal cholesterol and cholic acid in C57BL/6J mice fed a cholesterol-rich diet. Biosci Biotechnol Biochem. 2013;77(7):1390–6.

    CAS  PubMed  Google Scholar 

  163. Beermann C et al. Short term effects of dietary medium-chain fatty acids and n-3 long-chain polyunsaturated fatty acids on the fat metabolism of healthy volunteers. Lipids Health Dis. 2003;2:10.

    PubMed Central  PubMed  Google Scholar 

  164. Velagapudi VR et al. The gut microbiota modulates host energy and lipid metabolism in mice. J Lipid Res. 2010;51(5):1101–12.

    CAS  PubMed Central  PubMed  Google Scholar 

  165. Jones ML et al. The human microbiome and bile acid metabolism: dysbiosis, dysmetabolism, disease and intervention. Expert Opin Biol Ther. 2014;14(4):467–82.

    CAS  PubMed  Google Scholar 

  166. Wostmann BS, Wiech NL, Kung E. Catabolism and elimination of cholesterol in germfree rats. J Lipid Res. 1966;7(1):77–82.

    CAS  PubMed  Google Scholar 

  167. Kellogg TF, Wostmann BS. Fecal neutral steroids and bile acids from germfree rats. J Lipid Res. 1969;10(5):495–503.

    CAS  PubMed  Google Scholar 

  168. Begley M, Hill C, Gahan CG. Bile salt hydrolase activity in probiotics. Appl Environ Microbiol. 2006;72(3):1729–38.

    CAS  PubMed Central  PubMed  Google Scholar 

  169. Stellwag EJ, Hylemon PB. Purification and characterization of bile salt hydrolase from Bacteroides fragilis subsp. fragilis. Biochim Biophys Acta. 1976;452(1):165–76.

    CAS  PubMed  Google Scholar 

  170. Jones ML et al. Cholesterol lowering with bile salt hydrolase-active probiotic bacteria, mechanism of action, clinical evidence, and future direction for heart health applications. Expert Opin Biol Ther. 2013;13(5):631–42.

    CAS  PubMed  Google Scholar 

  171. Thomas C et al. Targeting bile-acid signalling for metabolic diseases. Nat Rev Drug Discov. 2008;7(8):678–93.

    CAS  PubMed  Google Scholar 

  172. Porez G et al. Bile acid receptors as targets for the treatment of dyslipidemia and cardiovascular disease. J Lipid Res. 2012;53(9):1723–37.

    CAS  PubMed Central  PubMed  Google Scholar 

  173. Lima LF et al. Production and characterization of the exopolysaccharides produced by Agaricus brasiliensis in submerged fermentation. Appl Biochem Biotechnol. 2008;151(2–3):283–94.

    CAS  PubMed  Google Scholar 

  174. Duobin M et al. Fermentation characteristics in stirred-tank reactor of exopolysaccharides with hypolipidemic activity produced by Pleurotus geesteranus 5#. An Acad Bras Cienc. 2013;85(4):1473–81.

    PubMed  Google Scholar 

  175. Elizaquivel P et al. Evaluation of yogurt and various beverages as carriers of lactic acid bacteria producing 2-branched (1,3)-beta-D-glucan. J Dairy Sci. 2011;94(7):3271–8.

    CAS  PubMed  Google Scholar 

  176. Wichmann A et al. Microbial modulation of energy availability in the colon regulates intestinal transit. Cell Host Microbe. 2013;14(5):582–90.

    CAS  PubMed  Google Scholar 

  177. Yadav H et al. Beneficial metabolic effects of a probiotic via butyrate-induced GLP-1 hormone secretion. J Biol Chem. 2013;288(35):25088–97.

    CAS  PubMed  Google Scholar 

  178. Marcil V et al. Butyrate impairs lipid transport by inhibiting microsomal triglyceride transfer protein in Caco-2 cells. J Nutr. 2003;133(7):2180–3.

    CAS  PubMed  Google Scholar 

  179. Marcil V et al. Modulation of lipid synthesis, apolipoprotein biogenesis, and lipoprotein assembly by butyrate. Am J Physiol Gastrointest Liver Physiol. 2002;283(2):G340–6.

    CAS  PubMed  Google Scholar 

  180. Druart C et al. Role of the lower and upper intestine in the production and absorption of gut microbiota-derived PUFA metabolites. PLoS One. 2014;9(1):e87560. Study demonstrating the in vivo production of conjugated linoleic acid isomers from dietary triglycerides in the intestinal environment by the resident microbiota.

    PubMed Central  PubMed  Google Scholar 

  181. Barrett E et al. Rapid screening method for analyzing the conjugated linoleic acid production capabilities of bacterial cultures. Appl Environ Microbiol. 2007;73(7):2333–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  182. Coakley M et al. Conjugated linoleic acid biosynthesis by human-derived Bifidobacterium species. J Appl Microbiol. 2003;94(1):138–45.

    CAS  PubMed  Google Scholar 

  183. Qi X et al. Effects of dietary conjugated linoleic acids on lipid metabolism and antioxidant capacity in laying hens. Arch Anim Nutr. 2011;65(5):354–65.

    CAS  PubMed  Google Scholar 

  184. Baddini Feitoza A et al. Conjugated linoleic acid (CLA): effect modulation of body composition and lipid profile. Nutr Hosp. 2009;24(4):422–8.

    CAS  PubMed  Google Scholar 

  185. Salas-Salvado J, Marquez-Sandoval F, Bullo M. Conjugated linoleic acid intake in humans: a systematic review focusing on its effect on body composition, glucose, and lipid metabolism. Crit Rev Food Sci Nutr. 2006;46(6):479–88.

    CAS  PubMed  Google Scholar 

  186. Mitchell PL, McLeod RS. Conjugated linoleic acid and atherosclerosis: studies in animal models. Biochem Cell Biol. 2008;86(4):293–301.

    CAS  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Alan A. Hennessy, R. Paul Ross, Gerald F. Fitzgerald, Noel Caplice, and Catherine Stanton declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine Stanton.

Additional information

This article is part of the Topical Collection on Lipid Abnormalities and Cardiovascular Prevention

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hennessy, A.A., Ross, R.P., Fitzgerald, G.F. et al. Role of the Gut in Modulating Lipoprotein Metabolism. Curr Cardiol Rep 16, 515 (2014). https://doi.org/10.1007/s11886-014-0515-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-014-0515-2

Keywords

Navigation