Skip to main content
Log in

Recent Advances in Cardiac SPECT Instrumentation and System Design

  • Nuclear Cardiology (V Dilsizian, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Recent advances in clinical cardiac SPECT instrumentation are reviewed from a systems perspective. New hardware technologies include pixelated scintillator and semiconductor detector elements; photodetectors such as position-sensitive photomultiplier tubes (PSPMT), avalanche photodiodes (APD) and silicon photomultipliers (SiPM); and novel cardiac collimation methods. There are new approaches for positioning detectors and controlling their motion during cardiac imaging. Software technology advances include iterative image reconstruction with modeling of Poisson statistics and depth-dependent collimator response. These new technologies enable faster acquisitions, the lowering of administered activity and radiation dose, and improved image resolution. Higher sensitivity collimators are a significant factor enabling faster acquisitions. Several clinical systems incorporating new technologies are discussed and different system designs can achieve similar performance. With detector elements such as APDs, SiPMs and semiconductors that are insensitive to magnetic fields, the potential for cardiac SPECT imagers that are MRI compatible opens up new frontiers in clinical cardiac research and patient care.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Madsen MT. Recent advances in SPECT imaging. J Nucl Med. 2007;48:661–73.

    Article  PubMed  Google Scholar 

  2. Patton JA, Slomka PJ, Germano G, et al. Recent technologic advances in nuclear cardiology. J Nucl Cardiol. 2007;14(4):501–13.

    Article  PubMed  Google Scholar 

  3. Slomka PJ, Patton JA, Berman DS, et al. Advances in technical aspects of myocardial perfusion SPECT imaging. J Nucl Cardiol. 2009;16(2):255–76.

    Article  PubMed  Google Scholar 

  4. Nichols KJ, Tosh AV, Palestro CJ. Prospects for advancing nuclear cardiology by means of new detector designs. J Nucl Cardiol. 2009;16(5):691–6.

    Article  PubMed  Google Scholar 

  5. • Hutton BF. New SPECT technology: potential and challenges. Eur J Nucl Med Mol Imaging. 2010;37:1883–6. This editorial commentary includes a useful discussion of the dependence of reported system resolution results on iteration and background activity when iterative image reconstruction is employed.

    Article  PubMed  Google Scholar 

  6. Sharir T, Slomka PJ, Berman DS. Solid-state SPECT technology: fast and furious. J Nucl Cardiol. 2010;17(5):890–6.

    Article  PubMed  Google Scholar 

  7. Schillaci O, Danieli R. Dedicated cardiac cameras: a new option for nuclear myocardial perfusion imaging. Eur J Nucl Med Mol Imaging. 2010;37:1706–9.

    Article  PubMed  Google Scholar 

  8. Garcia EV, Faber TL, Esteves FP. Cardiac dedicated ultrafast SPECT cameras: new designs and clinical implications. J Nucl Med. 2011;52(2):210–7.

    Article  PubMed  Google Scholar 

  9. Garcia EV. Quantitative nuclear cardiology: we are almost there! J Nucl Cardiol. 2012;19(3):424–37.

    Article  PubMed  Google Scholar 

  10. •• DePuey EG. Advances in SPECT camera software and hardware: currently available and new on the horizon. J Nucl Med. 2012;19(3):551–81. This paper provides an excellent overview of new commercially available cardiac SPECT hardware and image reconstruction software that enable faster clinical acquisitions.

    Google Scholar 

  11. Imbert L, Poussier S, Franken PR, et al. Compared performance of high-sensitivity cameras dedicated to myocardial perfusion SPECT: a comprehensive analysis of phantom and human images. J Nucl Med. 2012;53(12):1897–903.

    Article  PubMed  Google Scholar 

  12. Graham LS, Links JM. Instrumentation. In: Christian PE, Waterstram-Rich KM, editors. Nuclear medicine and PET/CT technology and techniques. St Louis, MO: Mosby Elsevier; 2007. p. 59–104.

    Google Scholar 

  13. Levin C. Application-specific small field-of-view nuclear emission imagers in medicine. In: Wernick MN, Aarsvold JN, editors. Emission tomography: the fundamentals of PET and SPECT. San Diego: Elsevier Academic; 2004. p. 293–334.

    Chapter  Google Scholar 

  14. Tornai MP, Brzymialkiewicz CN, Bradshaw ML, et al. Comparison of compact gamma cameras with 1.3- and 2.0-mm quantized elements for dedicated emission mammotomography. IEEE Trans Nucl Sci. 2005;52(5):1251–6.

    Article  Google Scholar 

  15. Levin C. Basic physics of radionuclide imaging. In: Wernick MN, Aarsvold JN, editors. Emission tomography: the fundamentals of PET and SPECT. San Diego: Elsevier Academic; 2004. p. 53–88.

    Chapter  Google Scholar 

  16. Siegel S, Silverman RW, Shao Y, et al. Simple charge division readouts for imaging scintillator arrays using a multi-channel PMT. IEEE Trans Nucl Sci. 1996;43(3):1634–41.

    Article  Google Scholar 

  17. Weisenberger AG, Barbosa F, Green TD, et al. Small field of view scintimammography gamma camera integrated to a stereotactic core biopsy digital X-ray system. IEEE Trans Nucl Sci. 2002;49(5):2256–61.

    Article  Google Scholar 

  18. Shao Y, Silverman RW, Farrell R, et al. Design studies of a high resolution PET detector using APD arrays. IEEE Trans Nucl Sci. 2000;47(3):1051–7.

    Article  Google Scholar 

  19. Cherry SR, Sorenson JA, Phelps ME. Physics in nuclear medicine. Philadelphia, PA: Saunders; 2003.

    Google Scholar 

  20. Shah KS, Farrell R, Grazioso R, et al. Position-sensitive avalanche photodiodes for gamma-ray imaging. IEEE Trans Nucl Sci. 2002;49(4):1687–92.

    Article  CAS  Google Scholar 

  21. Kolb A, Wehrl HF, Hofmann M, et al. Technical performance of a human brain PET/MRI system. Eur Radiol. 2012;22:1776–88.

    Article  PubMed  Google Scholar 

  22. Herbert DJ, Saveliev V, Belcari N, et al. First results of scintillator readout with silicon photomultiplier. IEEE Trans Nucl Sci. 2006;53(1):389–94.

    Article  CAS  Google Scholar 

  23. Yoon HS, Ko GB, Kwon SI, et al. Initial results of simultaneous PET/MRI experiments with an MRI-compatible silicon photomultiplier PET scanner. J Nucl Med. 2012;53(4):608–14.

    Article  PubMed  CAS  Google Scholar 

  24. Thompson CJ, Goertzen AL, Berg EJ, et al. Evaluation of high density pixellated crystal blocks with SiPM readout as candidates for PET/MR detectors in a small animal PET insert. IEEE Trans Nucl Sci. 2012;59(5):1791–7.

    Article  CAS  Google Scholar 

  25. Butler JF, Lingren CL, Friesenhahn SJ, et al. CdZnTe solid-state gamma camera. IEEE Trans Nucl Sci. 1998;45(3):359–63.

    Article  CAS  Google Scholar 

  26. Eisen Y, Mardor I, Shor A, et al. NUCAM3 - a gamma camera based on segmented monolithic CdZnTe detectors. IEEE Trans Nucl Sci. 2002;49(4):1728–32.

    Article  CAS  Google Scholar 

  27. Anger HO. Scintillation camera with multichannel collimators. J Nucl Med. 1964;5:515–31.

    PubMed  CAS  Google Scholar 

  28. Kastis GA, Barber HB, Barrett HH, et al. Gamma-ray imaging using a CdZnTe pixel array and a high-resolution, parallel-hole collimator. IEEE Trans Nucl Sci. 2000;47(6):1923–7.

    Article  Google Scholar 

  29. Metzler SD, Accorsi R, Novak JR, et al. On-axis sensitivity and resolution of a slit-slat collimator. J Nucl Med. 2006;47(11):1884–90.

    PubMed  Google Scholar 

  30. Hawman PC, Haines EJ. The cardiofocal collimator: a variable-focus collimator for cardiac SPECT. Phys Med Biol. 1994;39(3):539–450.

    Article  Google Scholar 

  31. Rozler M, Chang W. Collimator interchange system for adaptive cardiac imaging in C-SPECT. IEEE Trans Nucl Sci. 2011;58(5):2226–33.

    Article  Google Scholar 

  32. Barrrett HH, Wilson DW, Tsui BMW. Noise properties of the EM algorithm: I. Theory. Phys Med Biol. 1994;39:833–46.

    Article  Google Scholar 

  33. Wilson DW, Tsui BMW, Barrett HH. Noise properties of the EM algorithm: II. Monte Carlo simulations. Phys Med Biol. 1994;39:847–71.

    Article  PubMed  CAS  Google Scholar 

  34. Lange K, Carson R. EM reconstruction algorithms for emission and transmission tomography. J Comput Assist Tomogr. 1984;8(2):306–16.

    PubMed  CAS  Google Scholar 

  35. Hudson HH, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging. 1994;13(4):601–9.

    Article  PubMed  CAS  Google Scholar 

  36. Borges-Neto S, Pagnanelli RA, Shaw LK, et al. Clinical results of a novel wide beam reconstruction method for shortening scan time of Tc-99m cardiac SPECT perfusion studies. J Nucl Cardiol. 2007;14(4):555–65.

    Article  PubMed  Google Scholar 

  37. DePuey EG, Gadiraju R, Clark J, et al. Ordered subset expectation maximization and wide beam reconstruction "half-time" gated myocardial perfusion SPECT functional imaging: a comparison to "full-time" filtered backprojection. J Nucl Cardiol. 2008;15(4):547–63.

    Article  PubMed  Google Scholar 

  38. DePuey EG. New software methods to cope with reduced counting statistics: shorter SPECT acquisitions and many more possibilities. J Nucl Cardiol. 2009;16(3):335–8.

    Article  PubMed  Google Scholar 

  39. Druz RS, Phillips LM, Chugkowski M, et al. Wide-beam reconstruction half-time SPECT improves diagnostic certainty and preserves normalcy and accuracy: a quantitative perfusion analysis. J Nucl Cardiol. 2011;18:52–61.

    Article  PubMed  Google Scholar 

  40. DePuey EG, Bommireddipalli S, Clark J, et al. A comparison of the image quality of full-time myocardial perfusion SPECT vs wide beam reconstruction half-time and half-dose SPECT. J Nucl Cardiol. 2011;18:273–80.

    Article  PubMed  Google Scholar 

  41. DePuey EG, Ata P, Wray R, et al. Very low-activity stress/high-activity rest, single-day myocardial perfusion SPECT with a conventional sodium iodide camera and wide beam reconstruction processing. J Nucl Cardiol. 2012;19(5):931–44.

    Article  PubMed  Google Scholar 

  42. Zafrir N, Solodky A, Ben-Shlomo A, et al. Feasibility of myocardial perusion imaging with half the radiation dose using ordered-subset expectation maximization with resolution recovery software. J Nucl Cardiol. 2012;19(4):704–12.

    Article  PubMed  Google Scholar 

  43. Modi BN, Brown JLE, Kumar G, et al. A qualitative and quantitative assessment of the impact of three processing algorithms with halving of study count statistics in myocardial perfusion imaging: filtered backprojection, maximal likelihood expectation maximisation and ordered subset expectation maximisation with resolution recovery. J Nucl Cardiol. 2012;19(5):945–57.

    Article  PubMed  CAS  Google Scholar 

  44. Marcassa C, Campini R, Zoccarato O, et al. Wide beam reconstruction for half-dose or half-time cardiac gated SPECT acqusiitions: optimization of resources and reduction in radiation exposure. Eur J Nucl Med Mol Imaging. 2011;38:499–508.

    Article  PubMed  Google Scholar 

  45. Valenta I, Treyer V, Husmann L, et al. New reconstruction algorithm allows shortened acquisition time for myocardial perfusion SPECT. Eur J Nucl Med Mol Imaging. 2010;37:750–7.

    Article  PubMed  Google Scholar 

  46. Bateman TM, Heller GV, McGhie AI, et al. Multicenter investigation comparing a highly efficient half-time stress-only attenuation correction approach against standard rest-stress Tc-99m SPECT imaging. J Nucl Cardiol. 2009;16:726–35.

    Article  PubMed  Google Scholar 

  47. Venero CV, Heller GV, Bateman TM, et al. A multicenter evaluation of a new post-processing method with depth-dependent collimator resolution applied to full-time and half-time acquisitions without and with simultaneously acquired attenuation correction. J Nucl Cardiol. 2009;16:714–25.

    Article  PubMed  Google Scholar 

  48. DePuey EG, Bommireddipalli S, Clark J, et al. Wide beam reconstruction "quarter-time" gated myocardial perfusion SPECT functional imaging: a comparison to "full-time" ordered subset expectation maximum. J Nucl Cardiol. 2009;16:736–52.

    Article  PubMed  Google Scholar 

  49. Bai C, Conwell R, Kindem J, et al. Phantom evaluation of a cardiac SPECT/VCT system that uses a common set of solid-state detectors for both emission and transmission scans. J Nucl Cardiol. 2010;17(2):459–69.

    Article  PubMed  Google Scholar 

  50. Babla H, Bai C, Conwell R, et al. A triple-head solid state camera for cardiac single photon emission tomography (SPECT). Accessed from www.digirad.com December 2012.

  51. Bai C, Conwell R, Babla H, et al. Improving image quality and imaging efficiency using nSPEED(SM) three-dimensional image reconstruction in cardiac SPECT. Accessed from www.digirad.com December 2012.

  52. Bai C, Babla H, Kindem J, et al. Evaluation of a cardiac SPECT system using a common set of solid-state detectors for both emission and transmission scans and a ultra-low dose lead X-ray transmission line source. In Yu B, editor. 2009 IEEE Nuclear Science Symposium and Medical Imaging Conference Record. Oct 24, 2009 - Nov 1, 2009; Orlando, Florida; IEEE; 2009. p. 3606–3610.

  53. Maddahi J, Mendez R, Mahmarian JJ, et al. Prospective multicenter evaluation of rapid, gated SPECT myocardial perfusion upright imaging. J Nucl Cardiol. 2009;16(3):351–7.

    Article  PubMed  Google Scholar 

  54. Gambhir SS, Berman DS, Ziffer J, et al. A novel high-sensitivity rapid-acquisition single-photon cardiac imaging camera. J Nucl Med. 2009;50(4):635–43.

    Article  PubMed  Google Scholar 

  55. Patton J, Sandler M, Berman D, et al. D-SPECT: a new solid state camera for high speed molecular imaging. J Nucl Med. 2006;47(5 Suppl):189P.

    Google Scholar 

  56. Erlandsson K, Kacperski K, van Gramberg D, et al. Performance evaluation of D-SPECT: a novel SPECT system for nuclear cardiology. Phys Med Biol. 2009;54:2635–49.

    Article  PubMed  Google Scholar 

  57. Sharir T, Ben-Haim S, Merzon K, et al. High-speed myocardial perfusion imaging: initial clinical comparison with conventional dual detector Anger camera imaging. J Am Coll Cardiol Img. 2008;1(2):156–63.

    Article  Google Scholar 

  58. Berman DS, Kang X, Tamarappoo B, et al. Stress thallium-201/rest technetium-99m sequential dual isotope high-speed myocardial perfusion imaging. J Am Coll Cardiol Img. 2009;2(3):273–82.

    Article  Google Scholar 

  59. Nakazato R, Tamarappoo BK, Kang X, et al. Quantitative upright-supine high-speed SPECT myocardial perfusio imaging for detection of coronary artery disease: correlation with invasive coronary angiography. J Nucl Med. 2010;51(11):1724–31.

    Article  PubMed  Google Scholar 

  60. Sharir T, Slomka PJ, Hayes SW, et al. Multicenter trial of high-speed versus conventional single-photon emission computed tomography imaging. J Am Coll Cardiol. 2010;55(18):1965–74.

    Article  PubMed  Google Scholar 

  61. Ben-Haim S, Kacperski K, Hain S, et al. Simultaneous dual-radionuclide myocardial perfusion imaging with a solid-state dedicated cardiac camera. Eur J Nucl Med Mol Imaging. 2010;37(9):1710–21.

    Article  PubMed  Google Scholar 

  62. Nakazato R, Berman DS, Gransar H, et al. Prognostic value of quantitative high-speed myocardial perfusion imaging. J Nucl Cardiol. 2012;19(2):1113–23.

    Article  PubMed  Google Scholar 

  63. Verger A, Djaballah W, Fourquet N, et al. Comparison between stress myocardial perfusion SPECT recorded with cadmium-zinc-telluride and Anger cameras in various study protocols. Eur J Nucl Med Mol Imaging. 2012;40(3):331–40.

    Article  PubMed  Google Scholar 

  64. CardiArc. Available at www.cardiarc.com. Accessed December 2012.

  65. Bocher M, Blevis IM, Tsukerman L, et al. A fast cardiac gamma camera with dynamic SPECT capabilities: design, system validation and future potential. Eur J Nucl Med Mol Imaging. 2010;37:1887–902.

    Article  PubMed  Google Scholar 

  66. Esteves FP, Raggi P, Folks RD, et al. Novel solid-state-detector dedicated cardiac camera for fast myocardial perfusion imaging: multicenter comparison with standard dual detector cameras. J Nucl Cardiol. 2009;16(6):927–34.

    Article  PubMed  Google Scholar 

  67. Buechel RR, Herzog BA, Husmann L, et al. Ultrafast nuclear myocardial perfusion imaging on a new gamma camera with semiconductor detector technique: first clinical validation. Eur J Nucl Med Mol Imaging. 2010;37:773–8.

    Article  PubMed  Google Scholar 

  68. Pazhenkottil AP, Buechel RR, Herzog BA, et al. Ultrafast assessment of left ventricular dyssynchrony from nuclear myocardial perfusion imaging on a new high-speed gamma camera. Eur J Nucl Med Mol Imaging. 2010;37:2086–92.

    Article  PubMed  Google Scholar 

  69. Herzog BA, Buechel RR, Katz R, et al. Nuclear myocardial perfusion imaging with a cadmium-zinc-telluride detector technique: optimized protocol for scan time reduction. J Nucl Med. 2010;51(1):46–51.

    Article  PubMed  Google Scholar 

  70. Duvall WL, Croft LB, Ginsberg ES, et al. Reduced isotope dose and imaging time with a high-efficiency CZT SPECT camera. J Nucl Cardiol. 2011;18:847–57.

    Article  PubMed  Google Scholar 

  71. Duvall WL, Sweeny JM, Croft LB, et al. Comparison of high efficiency CZT SPECT MPI to coronary angiography. J Nucl Cardiol. 2011;18:595–604.

    Article  PubMed  Google Scholar 

  72. Duvall WL, Sweeny JM, Croft LB, et al. Reduced stress dose with rapid acquisition CZT SPECT MPI in a non-obese clinical population: comparison to coronary angiography. J Nucl Cardiol. 2012;19(1):19–27.

    Article  PubMed  Google Scholar 

  73. Fiechter M, Ghadri JR, Kuest SM, et al. Nuclear myocardial perfusion imaging with a novel cadmium-zinc-telluride detector SPECT/CT device: first validation versus invasive coronary angiography. Eur J Nucl Med Mol Imaging. 2011;38:2025–30.

    Article  PubMed  CAS  Google Scholar 

  74. Wells RG. Position dependent attenuation artifacts with a multi-pinhole dedicated cardiac camera. In: Yu B, editor. 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record. October 29 - November 3, 2012; Anaheim; IEEE; 2012. p. 2515–2518.

  75. Fiechter M, Gebhard C, Fuchs TA, et al. Cadmium-zinc-telluride myocardial perfusion imaging in obese patients. J Nucl Med. 2012;53(9):1401–6.

    Article  PubMed  CAS  Google Scholar 

  76. Gimelli A, Bottai M, Giorgetti A, et al. Evaluation of ischaemia in obese patients: feasibility and accuracy of a low-dose protocol with a cadmium-zinc-telluride camera. Eur J Nucl Med Mol Imaging. 2012;39:1254–61.

    Article  PubMed  CAS  Google Scholar 

  77. Aarsvold JN, Galt JR, Nye JA, et al. The quality field of view of a Discovery 530c. In: Yu B, editor. 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record. October 29 - November 3, 2012; Anaheim; IEEE; 2012. p. 3551–3555.

  78. Cherk MH, Ky J, Yap KSK, et al. Optimal reproducibility of gated sestamibi and thallium myocardial perfusion study left ventricular ejection fractions obtained on a solid-state CZT cardiac camera requires operator input. J Nucl Cardiol. 2012;19(4):713–8.

    Article  PubMed  Google Scholar 

  79. Vija AH, Malmin R, Yahil A, et al. A method for improving the efficiency of myocardial perfusion imaging using conventional SPECT and SPECT/CT imaging systems. In Ziock K, editor. 20100 IEEE Nuclear Science Symposium and Medical Imaging Conference Record. October 30 - November 6, 2010; Knoxville; IEEE; 2010. pp. 3433–3437.

  80. Rajaram R, Bhattacharya M, Ding X, et al. Tomographic performance of the IQ SPECT system. In: Chmeissani M, editor. 2011 IEEE Nuclear Science Symposium and Medical Imaging Conference Record, October 23 - October 29, 2011; Valencia, Spain; IEEE; 2011. p. 2451–2456.

  81. Zeintl J, Rempel TD, Bhattacharya M, et al. Performance characteristics of the SMARTZOOM(R) collimator. In: Chmeissani M, editor. 2011 IEEE. Nuclear Science Symposium and Medical Imaging Conference Record. October 23 - October 29, 2011; Valencia, Spain; IEEE; 2011. p. 2426–2429.

  82. Steele PP, Kirch DL, Koss JE. Comparison of simultaneous dual-isotope multipinhole SPECT with rotational SPECT in a group of patients with coronary artery disease. J Nucl Med. 2008;49(7):1080–9.

    Article  PubMed  Google Scholar 

  83. Philips Medical Systems: SKYLight(TM) camera and collimator specifications. Document 4535 983 03298/882 2003-08. 2003.

  84. Digirad. Cardius(TM)-3 triple head cardiac camera, publication 112333 [product brochure]. Obtained at Society of Nuclear Medicine Annual Meeting, June 2005.

  85. Nuclear Fields. Nuclear Fields microcast collimators, vital for your imaging [product brochure]. Obtained at Society of Nuclear Medicine Annual Meeting, June 2010.

  86. Moore SC, Kouris K, Cullum I. Collimator design for single photon emission computed tomography. Eur J Nucl Med. 1992;19:138–50.

    Article  PubMed  CAS  Google Scholar 

  87. Muehllehner G, Dudek J, Moyer R. Influence of hole shape on collimator performance. Phys Med Biol. 1976;21(2):242–50.

    Article  PubMed  CAS  Google Scholar 

  88. Hubbell JH, Seltzer SM. Tables of x-ray mass attenuation coefficients and mass energy-absorption coefficients from 1 keV to 20 MeV for elements Z=1 to 92 and 48 additional substances of dosimetric interest. US Department of Commerce; Gaithersburg, Maryland. 1996.

  89. Gunter DL. Collimator design for nuclear medicine. In: Wernick MN, Aarsvold JN, editors. Emission tomography: the fundamentals of PET and SPECT. San Diego: Elsevier Academic; 2004. p. 153–68.

    Chapter  Google Scholar 

  90. Anger HO. Radioisotope cameras. In: Hine GJ, editor. Instrumentation in nuclear medicine. New York: Academic; 1967. p. 485–552.

    Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Mark F. Smith has received research grant support from GE Healthcare and Siemens Medical Solutions.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark F. Smith.

Additional information

This article is part of the Topical Collection on Nuclear Cardiology

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, M.F. Recent Advances in Cardiac SPECT Instrumentation and System Design. Curr Cardiol Rep 15, 387 (2013). https://doi.org/10.1007/s11886-013-0387-x

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-013-0387-x

Keywords

Navigation