Skip to main content

Advertisement

Log in

Current Status of Stem Cell Therapy in Heart Failure

  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Inspired by studies demonstrating the potential for new myocyte formation within adult mammalian hearts, an ongoing explosion of research is elucidating the biology of cardiac myogenesis and angiogenesis. Multiple lines of research suggest that disease-associated activation of endogenous cardiac repair processes are often insufficient to overcome the cell death resulting from myocardial infarction and chronic heart failure. In this context, this review highlights current evidence supporting endogenous cardiac repair mechanisms in human hearts, recent progress with clinical application of myocardial cell therapy, and complementary efforts to manipulate endogenous myocardial repair processes using a variety of tissue engineering strategies. The goal of this overview is to demonstrate that the insights and opportunities derived from each of these lines of inquiry are mutually complementary for ultimately achieving the goal of therapeutic cardiac regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

BALANCE:

Clinical Benefit and Long-Term Outcome After Intracoronary Autologous Bone Marrow Cell Transplantation in Patients With Acute Myocardial Infarction

BOOST:

Bone Marrow Transfer to Enhance ST-Elevation Infarct Regeneration

CADUCEUS:

Cardiosphere-Derived Autologous Stem Cells to Reverse Ventricular Dysfunction

FIRSTLINE-AMI:

Front-Integrated Revascularization and Stem Cell Liberation in Evolving Acute Myocardial Infarction by Granulocyte Colony-Stimulating Factor

MAGIC:

Myoblast Autologous Grafting in Ischemic Cardiomyopathy

MARVEL-1:

To Assess Safety and Efficacy of Myoblast Implantation Into Myocardium Post Myocardial Infarction-1

MYSTAR:

Myocardial Stem Cell Administration After Acute Myocardial Infarction

PROMETHEUS:

Prospective Randomized Assessment Of Mesenchymal Stem Cell Therapy in Patients Undergoing Surgery

REPAIR-AMI:

Reinfusion of Enriched Progenitor Cells and Infarct Remodeling in Acute Myocardial Infarction

REVIVAL-2:

Bone Marrow Stem Cell Mobilisation Therapy for Acute Myocardial Infarction

SCIPIO:

Myocardial Regeneration Using Cardiac Stem Cells

STEMMI:

Stem Cells in Myocardial Infarction

TAC-HFT:

Transendocardial Autologous Cells in Heart Failure Trial

References

Papers of particular interest, published recently, have been highlighted as follows: • Of importance, •• Of major importance

  1. Lloyd-Jones D, Adams R, Carnethon M, et al. : Heart disease and stroke statistics–2009 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 2009, 119:e21–e181.

    Article  PubMed  Google Scholar 

  2. Glaser R, Lu MM, Narula N, Epstein JA: Smooth muscle cells, but not myocytes, of host origin in transplanted human hearts. Circulation 2002, 106:17–19.

    Article  PubMed  Google Scholar 

  3. Hocht-Zeisberg E, Kahnert H, Guan K, et al.: Cellular repopulation of myocardial infarction in patients with sex-mismatched heart transplantation. Eur Heart J 2004, 25:749–758.

    Article  PubMed  Google Scholar 

  4. Urbanek K, Torella D, Sheikh F, et al.: Myocardial regeneration by activation of multipotent cardiac stem cells in ischemic heart failure. Proc Natl Acad Sci U S A 2005, 102:8692–8697.

    Article  CAS  PubMed  Google Scholar 

  5. Angelini P, Markwald RR: Stem cell treatment of the heart: a review of its current status on the brink of clinical experimentation. Tex Heart Inst J 2005, 32:479–488.

    PubMed  Google Scholar 

  6. Leri A, Kajstura J, Anversa P: Cardiac stem cells and mechanisms of myocardial regeneration. Physiol Rev 2005, 85:1373–1416.

    Article  CAS  PubMed  Google Scholar 

  7. Kajstura J, Rota M, Whang B, et al.: Bone marrow cells differentiate in cardiac cell lineages after infarction independently of cell fusion. Circ Res 2005, 96:127–137.

    Article  CAS  PubMed  Google Scholar 

  8. Murry CE, Soonpaa MH, Reinecke H, et al.: Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 2004, 428:664–668.

    Article  CAS  PubMed  Google Scholar 

  9. • Smith RR, Barile L, Cho HC, et al.: Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation 2007, 115:896–908. This is a study demonstrating isolation of c-kit expressing S/PCs from human heart biopsies. These cells are capable of proliferation, and capable of generating new functional cardiac myocytes in vitro or in vitro.

  10. Balsam LB, Wagers AJ, Christensen JL, et al.: Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature 2004, 428:668–673.

    Article  CAS  PubMed  Google Scholar 

  11. Fazel S, Cimini M, Chen L, et al.: Cardioprotective c-kit+ cells are from the bone marrow and regulate the myocardial balance of angiogenic cytokines. J Clin Invest 2006, 116:1865–1877.

    Article  CAS  PubMed  Google Scholar 

  12. Hsieh PC, Segers VF, Davis ME, et al.: Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury. Nat Med 2007, 13:970–974.

    Article  CAS  PubMed  Google Scholar 

  13. •• Bergmann O, Bhardwaj RD, Bernard S, et al.: Evidence for cardiomyocyte renewal in humans. Science 2009, 324:98–102. This is a novel quantitative demonstration of new cardiac myocyte formation in the adult human heart by exploiting fluxes in atmospheric radiation induced by an era of nuclear testing.

  14. • Kubo H, Jaleel N, Kumarapeli A, et al.: Increased cardiac myocyte progenitors in failing human hearts. Circulation 2008, 118:649–657. This is a study demonstrating that S/PCs expressing c-kit can be isolated from virtually all human hearts, are more abundant in failing hearts, and can be induced to differentiate into immature cardiac myocytes.

  15. Menasche P, Alfieri O, Janssens S, et al.: The Myoblast Autologous Grafting in Ischemic Cardiomyopathy (MAGIC) trial: first randomized placebo-controlled study of myoblast transplantation. Circulation 2008, 117:1189–1200.

    Article  PubMed  Google Scholar 

  16. Raible E: MARVEL-1: Autologous myoblast transplantation linked with slight improvements in congestive HF. Cardiology Today 2009, 12:1.

    Google Scholar 

  17. Valgimigli M, Rigolin GM, Cittanti C, et al.: Use of granulocyte-colony stimulating factor during acute myocardial infarction to enhance bone marrow stem cell mobilization in humans: clinical and angiographic safety profile. Eur Heart J 2005, 26:1838–1845.

    Article  CAS  PubMed  Google Scholar 

  18. Ripa RS, Jorgensen E, Wang Y, et al.: Stem cell mobilization induced by subcutaneous granulocyte-colony stimulating factor to improve cardiac regeneration after acute ST-elevation myocardial infarction: result of the double-blind, randomized, placebo-controlled stem cells in myocardial infarction (STEMMI) trial. Circulation 2006, 113:1983–1992.

    Article  CAS  PubMed  Google Scholar 

  19. Zohlnhofer D, Dibra A, Koppara T, et al.: Stem cell mobilization by granulocyte colony-stimulating factor for myocardial recovery after acute myocardial infarction: a meta-analysis. J Am Coll Cardiol 2008, 51:1429–1437.

    Article  PubMed  Google Scholar 

  20. Dill T, Schachinger V, Rolf A, et al.: Intracoronary administration of bone marrow-derived progenitor cells improves left ventricular function in patients at risk for adverse remodeling after acute ST-segment elevation myocardial infarction: results of the Reinfusion of Enriched Progenitor cells And Infarct Remodeling in Acute Myocardial Infarction study (REPAIR-AMI) cardiac magnetic resonance imaging substudy. Am Heart J 2009, 157:541–547.

    Article  PubMed  Google Scholar 

  21. Meyer GP, Wollert KC, Lotz J, et al.: Intracoronary bone marrow cell transfer after myocardial infarction: eighteen months' follow-up data from the randomized, controlled BOOST (Bone marrow transfer to enhance ST-elevation infarct regeneration) trial. Circulation 2006, 113:1287–1294.

    Article  PubMed  Google Scholar 

  22. • Martin-Rendon E, Brunskill SJ, Hyde CJ, et al.: Autologous bone marrow stem cells to treat acute myocardial infarction: a systematic review. Eur Heart J 2008, 29:1807–1818. This is a meta-analysis of all multiple clinical trials administering autologous bone marrow–derived stem cells in the setting of acute MI.

  23. Lunde K, Solheim S, Forfang K, et al.: Anterior myocardial infarction with acute percutaneous coronary intervention and intracoronary injection of autologous mononuclear bone marrow cells: safety, clinical outcome, and serial changes in left ventricular function during 12-months' follow-up. J Am Coll Cardiol 2008, 51:674–676.

    Article  PubMed  Google Scholar 

  24. Yousef M, Schannwell CM, Kostering M, et al.: The BALANCE Study: clinical benefit and long-term outcome after intracoronary autologous bone marrow cell transplantation in patients with acute myocardial infarction. J Am Coll Cardiol 2009, 53:2262–2269.

    Article  PubMed  Google Scholar 

  25. Gyongyosi M, Lang I, Dettke M, et al.: Combined delivery approach of bone marrow mononuclear stem cells early and late after myocardial infarction: the MYSTAR prospective, randomized study. Nat Clin Pract Cardiovasc Med 2009, 6:70–81.

    Article  PubMed  Google Scholar 

  26. Chen SL, Fang WW, Ye F, et al.: Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. Am J Cardiol 2004, 94:92–95.

    Article  PubMed  Google Scholar 

  27. Katritsis DG, Sotiropoulou PA, Karvouni E, et al.: Transcoronary transplantation of autologous mesenchymal stem cells and endothelial progenitors into infarcted human myocardium. Catheter Cardiovasc Interv 2005, 65:321–329.

    Article  PubMed  Google Scholar 

  28. Bartunek J, Vanderheyden M, Vandekerckhove B, et al.: Intracoronary injection of CD133-positive enriched bone marrow progenitor cells promotes cardiac recovery after recent myocardial infarction: feasibility and safety. Circulation 2005, 112:1178–1183.

    Google Scholar 

  29. Hofmann M, Wollert KC, Meyer GP, et al.: Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation 2005, 111:2198–2202.

    Article  PubMed  Google Scholar 

  30. • Qiao H, Surti S, Choi SR, et al.: Death and proliferation time course of stem cells transplanted in the myocardium. Mol Imaging Biol 2009, 11:408–414. This is a carefully executed animal study using labeling, imaging, and molecular techniques to demonstrate the fate of administered S/PCs after in vivo implantation.

  31. Kelly DJ, Rosen AB, Schuldt AJ, et al.: Increased myocyte content and mechanical function within a tissue-engineered myocardial patch following implantation. Tissue Eng Part A 2009, 15:2189–2201.

    Article  CAS  PubMed  Google Scholar 

  32. Dai W, Hale SL, Kay GL, et al.: Delivering stem cells to the heart in a collagen matrix reduces relocation of cells to other organs as assessed by nanoparticle technology. Regen Med 2009, 4:387–395.

    Article  CAS  PubMed  Google Scholar 

  33. Suuronen EJ, Zhang P, Kuraitis D, et al.: An acellular matrix-bound ligand enhances the mobilization, recruitment and therapeutic effects of circulating progenitor cells in a hindlimb ischemia model. FASEB J 2009, 23:1447–1458.

    Article  CAS  PubMed  Google Scholar 

  34. •• Padin-Iruegas ME, Misao Y, Davis ME, et al.: Cardiac progenitor cells and biotinylated insulin-like growth factor-1 nanofibers improve endogenous and exogenous myocardial regeneration after infarction. Circulation 2009, 120:876–887. This is an excellent study demonstrating that endogenous and exogenous S/PC-mediated cardiac repair can be enhanced by concomitant delivery of customized nanofibers that increase local levels of IGF-1.

  35. Fink C, Ergun S, Kralisch D, et al.: Chronic stretch of engineered heart tissue induces hypertrophy and functional improvement. FASEB J 2000, 14:669–679.

    CAS  PubMed  Google Scholar 

  36. O'Cearbhaill ED, Punchard MA, Murphy M, et al.: Response of mesenchymal stem cells to the biomechanical environment of the endothelium on a flexible tubular silicone substrate. Biomaterials 2008, 29:1610–1619.

    Article  PubMed  Google Scholar 

  37. Engler AJ, Sen S, Sweeney HL, Discher DE: Matrix elasticity directs stem cell lineage specification. Cell 2006, 126:677–689.

    Article  CAS  PubMed  Google Scholar 

  38. Geisse NA, Sheehy SP, Parker KK: Control of myocyte remodeling in vitro with engineered substrates. In Vitro Cell Dev Biol Anim 2009, 45:343–350.

    Article  PubMed  Google Scholar 

  39. Ferreira LS, Gerecht S, Fuller J, et al.: Bioactive hydrogel scaffolds for controllable vascular differentiation of human embryonic stem cells. Biomaterials 2007, 28:2706–2717.

    Article  CAS  PubMed  Google Scholar 

  40. • Kobayashi H, Shimizu T, Yamato M, et al.: Fibroblast sheets co-cultured with endothelial progenitor cells improve cardiac function of infarcted hearts. J Artif Organs 2008, 11:141–147. This is a study demonstrating that a sheet-like engineered tissue construct consisting of endothelial progenitors, fibroblasts, and a collagen matrix can increase angiogenesis, increase contractility, and reduce infarct size in experimental MI in rats.

  41. Lesman A, Habib M, Caspi O, et al.: Transplantation of a tissue-engineered human vascularized cardiac muscle. Tissue Eng Part A 2010, 16:115–125.

    Article  CAS  PubMed  Google Scholar 

  42. • Ott HC, Matthiesen TS, Goh SK, et al.: Perfusion-decellularized matrix: using nature's platform to engineer a bioartificial heart. Nat Med 2008, 14:213–221. This is an interesting study showing that decellularized rat hearts can be repopulated with neonatal myocytes and vascular cells to produce a beating heart. This demonstrates the importance of anatomic templates in tissue engineering and raises the possibility of future xenotransplantation applications.

  43. Montoya CV, McFetridge PS: Preparation of ex vivo-based biomaterials using convective flow decellularization. Tissue Eng Part C Methods 2009, 15:191–200.

    Article  CAS  PubMed  Google Scholar 

  44. Radisic M, Marsano A, Maidhof R, et al.: Cardiac tissue engineering using perfusion bioreactor systems. Nat Protoc 2008, 3:719–738.

    Article  CAS  PubMed  Google Scholar 

  45. Tuzlakoglu K, Reis RL: Biodegradable polymeric fiber structures in tissue engineering. Tissue Eng Part B Rev 2009, 15:17–27.

    Article  CAS  PubMed  Google Scholar 

  46. Wu KH, Mo XM, Liu YL: Cell sheet engineering for the injured heart. Med Hypotheses 2008, 71:700–702.

    Article  CAS  PubMed  Google Scholar 

  47. Masuda S, Shimizu T, Yamato M, Okano T: Cell sheet engineering for heart tissue repair. Adv Drug Deliv Rev 2008, 60:277–285.

    Article  CAS  PubMed  Google Scholar 

  48. Stevens KR, Pabon L, Muskheli V, Murry CE: Scaffold-free human cardiac tissue patch created from embryonic stem cells. Tissue Eng Part A 2009, 15:1211–1222.

    Article  CAS  PubMed  Google Scholar 

  49. Brown MA, Iyer RK, Radisic M: Pulsatile perfusion bioreactor for cardiac tissue engineering. Biotechnol Prog 2008, 24:907–920.

    Article  CAS  PubMed  Google Scholar 

  50. Radisic M, Fast VG, Sharifov OF, et al.: Optical mapping of impulse propagation in engineered cardiac tissue. Tissue Eng Part A 2009, 15:851–860.

    Article  CAS  PubMed  Google Scholar 

Download references

Disclosure

The authors acknowledge the National Institutes of Health (for R01 HL089847 to K.B.M), the Southeastern Pennsylvania Affiliate of the American Heart Association (for a predoctoral fellowship to J.E.), and The American Heart Association-Jon Holden DeHaan Foundation Cardiac Myogenesis Research Center Program (for support of M.C. and K.B.M.).

No other potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth B. Margulies.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Codina, M., Elser, J. & Margulies, K.B. Current Status of Stem Cell Therapy in Heart Failure. Curr Cardiol Rep 12, 199–208 (2010). https://doi.org/10.1007/s11886-010-0098-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11886-010-0098-5

Keywords

Navigation